Incorporating ?	3D Mechansims into
2D Disloc	ation Dynamics
A. AMINE BENZERGA	
benzer	rga@aero.tamu.edu
Department of Aerospace	e Engineering, Texas A&M University
Y. Bréchet	LTPCM, Grenoble, France
A. NEEDLEMAN	Brown University, Providence, RI
E. VAN DER GIESSEN	Gröningen, The Netherlands
••••••	

Outline	•
1. Discrete Dislocation Plasticity	•
2. 3D Rules in 2D Framework	•
3. Work-Hardening	•
4. Relation to geometric hardening and GNDs	•
5. The Stored Energy of Cold Work	•
	•
	•

Stored Energy of Cold Work

- 1. Method of calculation
- 2. Unloading

Stored Energy of Cold Work

- 1. Method of calculation
- 2. Unloading
- 3. Stored energy under macroscopically homogeneous deformation

Stored Energy of Cold Work

- 1. Method of calculation
- 2. Unloading
- 3. Stored energy under macroscopically homogeneous deformation
- 4. Connection between stored energy, energetic hardening and GNDs

Method of Calculation

$$\int_{S} \mathbf{t} \cdot \dot{\mathbf{u}} dS = \int_{V} \dot{\phi} dV + \int_{V} \zeta dV$$

- small strains and rotations
- quasi-static deformations
- no body forces
- isothermal deformation paths

Method of Calculation Define $\Phi = \int_{U} \phi dV = \frac{1}{2} \int_{U} \boldsymbol{\sigma} : \boldsymbol{\epsilon} dV = \frac{1}{2} \int_{U} (\tilde{\boldsymbol{\sigma}} + \hat{\boldsymbol{\sigma}}) : (\tilde{\boldsymbol{\epsilon}} + \hat{\boldsymbol{\epsilon}}) dV$ Exclude region around dislocation cores Attribute a finite energy to this region $\Phi = \frac{1}{2} \int_{V} \hat{\boldsymbol{\sigma}} : \hat{\boldsymbol{\epsilon}} \, \mathrm{d}V + \frac{1}{2} \int_{V} \left(\hat{\boldsymbol{\sigma}} : \tilde{\boldsymbol{\epsilon}} + \tilde{\boldsymbol{\sigma}} : \hat{\boldsymbol{\epsilon}} \right) \mathrm{d}V$ $+\frac{1}{2}\sum_{J\neq K}\sum_{K}\int_{V}\boldsymbol{\sigma}^{(J)}:\boldsymbol{\epsilon}^{(K)}\,\mathrm{d}V$ $+\sum_{I} \left[\frac{1}{2} \int_{\hat{V}^{(I)}} \boldsymbol{\sigma}^{(I)} : \boldsymbol{\epsilon}^{(I)} \, \mathrm{d}V + \frac{1}{2} \int_{\partial C^{(I)}} \mathbf{t}^{(I)} \cdot \mathbf{u}^{(I)} \, \mathrm{d}S \right] + E_c$ Incorporating 3D Mechansims into 2D Dislocation Dynamics

Plane Strain Specialization

Last two terms in Φ

$$E_l^s = \sum_I \left[\frac{1}{2} \int_{\hat{V}^{(I)}} \boldsymbol{\sigma}^{(I)} : \boldsymbol{\epsilon}^{(I)} \, \mathrm{d}V + \frac{1}{2} \int_{\partial C^{(I)}} \mathbf{t}^{(I)} \cdot \mathbf{u}^{(I)} \, \mathrm{d}S \right] + E_c$$

Use (isotropic) line tension approximation
 ($\mathcal{E} = \alpha \mu b^2$: constant line energy/length around loop)

Assume statistically homogeneous distribution of loops across thickness

$$E_l^{\rm s} = \sum_{\rm pairs} (2\mathcal{S}\mathcal{E}) \, \frac{1}{\mathcal{S}} = 2N_p \mathcal{E} = (\rho + \rho') \, A \, \mathcal{E}$$

 ρ' : density of "half-loops"

Method of Calculation

Consider loading program from initial t = 0 (stress-free state) to time t:

 $\int_0^t \dot{\mathcal{W}} dt = \Phi(t) + \int_0^t \mathcal{D} dt$

Tension

Bending

 $\mathcal{W} = A \int_{0}^{t} \Sigma \dot{\varepsilon} dt \qquad \mathcal{W} = \int_{0}^{t} M \dot{\Theta} dt$

$$E^{\rm s}(t) = \Phi(t) - \frac{A}{2\bar{E}}\Sigma^2$$

$$E^{\rm s}(t) = \Phi(t) - \frac{L}{2D}M^2$$

	•
	•
	•
· Summary	٠
•	٠
	٠
Computational framework	•
	•
	•
•	•
•	•
•	٠
	•
	•
	•
	•
	•
	•
•	٠
	٠
	٠
	•
	•
	•
	•
•	•
•	٠
	٠
	٠
	•
•••••••••••••••••••••••••••••••••••••••	•

- Computational framework
 - A previous dislocation-based framework was enhanced to deal with small-scale plasticity problems (3D physics embedded)

- Computational framework
 - A previous dislocation-based framework was enhanced to deal with small-scale plasticity problems (3D physics embedded)
 - Long-range interactions through elastic fields

- Computational framework
 - A previous dislocation-based framework was enhanced to deal with small-scale plasticity problems (3D physics embedded)
 - Long-range interactions through elastic fields
 - **S** Close-range 3D rules formulated and implemented

- Computational framework
 - A previous dislocation-based framework was enhanced to deal with small-scale plasticity problems (3D physics embedded)
 - Long-range interactions through elastic fields
 - Close-range 3D rules formulated and implemented
- Application to work-hardening

- Computational framework
 - A previous dislocation-based framework was enhanced to deal with small-scale plasticity problems (3D physics embedded)

.

- Long-range interactions through elastic fields
- Close-range 3D rules formulated and implemented
- Application to work-hardening
 - Two-stage hardening is natural outcome of the simulation.
 Work-hardening rates in agreement with experimental values

- Computational framework
 - A previous dislocation-based framework was enhanced to deal with small-scale plasticity problems (3D physics embedded)

.

- Long-range interactions through elastic fields
- Close-range 3D rules formulated and implemented
- Application to work-hardening
 - Two-stage hardening is natural outcome of the simulation.
 Work-hardening rates in agreement with experimental values
 - Dislocation storage parameters suggest scaling is correct

- Computational framework
 - A previous dislocation-based framework was enhanced to deal with small-scale plasticity problems (3D physics embedded)

.

- Long-range interactions through elastic fields
- Close-range 3D rules formulated and implemented
- Application to work-hardening
 - Two-stage hardening is natural outcome of the simulation.
 Work-hardening rates in agreement with experimental values
 - Dislocation storage parameters suggest scaling is correct
 - Organized dislocation structures form at multiple scales

Summary In bending the dislocation density is not the only structural parameter governing strength

- In bending the dislocation density is not the only structural parameter governing strength
- At larger sample sizes and/or higher imposed curvature, there is an enhancement of strength due to statistical dislocations but GNDs essentially govern the moment-rotation response; A size effect results

- In bending the dislocation density is not the only structural parameter governing strength
- At larger sample sizes and/or higher imposed curvature, there is an enhancement of strength due to statistical dislocations but GNDs essentially govern the moment-rotation response; A size effect results
- The ratio of stored energy to expended energy increases with decreasing sample size. There is no simple scaling with the dislocation density.

- In bending the dislocation density is not the only structural parameter governing strength
 - At larger sample sizes and/or higher imposed curvature, there is an enhancement of strength due to statistical dislocations but GNDs essentially govern the moment-rotation response; A size effect results
- The ratio of stored energy to expended energy increases with decreasing sample size. There is no simple scaling with the dislocation density.
- Neglecting image contributions may lead to "uncontrolled" approximations

