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Stored Energy of Cold Work
1. Method of calculation

2. Unloading

3. Stored energy under macroscopically
homogeneous deformation

4. Connection between stored energy, energetic
hardening and GNDs
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Method of Calculation
∫

S

t · u̇dS =

∫

V

φ̇dV +

∫

V

ζdV

small strains and rotations

quasi-static deformations

no body forces

isothermal deformation paths
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Method of Calculation
Define

Φ =

∫

V

φdV =
1

2

∫

V

σ : εdV =
1

2

∫

V

(σ̃ + σ̂) : (ε̃ + ε̂)dV

Exclude region around dislocation cores

Attribute a finite energy to this region

Φ =
1

2

∫

V

σ̂ : ε̂ dV +
1

2

∫

V

(σ̂ : ε̃ + σ̃ : ε̂) dV

+
1

2

∑∑

J 6= K

∫

V

σ
(J) : ε

(K) dV

+
∑

I

[

1

2

∫

V̂ (I)

σ
(I) : ε

(I) dV +
1

2

∫

∂C(I)

t
(I)

· u
(I) dS

]

+ Ec
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Plane Strain Specialization
Last two terms in Φ

Es
l =

∑

I

[

1

2

∫

V̂ (I)

σ
(I) : ε

(I) dV +
1

2

∫

∂C(I)

t
(I)

· u
(I) dS

]

+ Ec

Use (isotropic) line tension approximation
(E = αµb2: constant line energy/length around loop)

Assume statistically homogeneous distribution of loops
across thickness

Es
l =

∑

pairs

(2SE)
1

S
= 2NpE = (ρ + ρ′)A E

ρ′: density of “half-loops”
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Method of Calculation
Consider loading program from initial t = 0 (stress-free
state) to time t:

∫ t

0

Ẇdt = Φ(t) +

∫ t

0

Ddt

Tension Bending

W = A

∫ t

0

Σε̇dt W =

∫ t

0

MΘ̇dt

Es(t) = Φ(t) −
A

2Ē
Σ2 Es(t) = Φ(t) −

L

2D
M 2
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Unloading (tension)

εp

σ
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3
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Unloading (tension)
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Unloading (bending)
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Energy stored in bending
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Tension vs Bending
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Tension vs Bending
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Tension vs Bending
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Size effects (bending)
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Summary
Computational framework

A previous dislocation-based framework was enhanced to deal

with small-scale plasticity problems (3D physics embedded)

Long-range interactions through elastic fields

Close-range 3D rules formulated and implemented

Application to work-hardening

Two-stage hardening is natural outcome of the simulation.

Work-hardening rates in agreement with experimental values

Dislocation storage parameters suggest scaling is correct

Organized dislocation structures form at multiple scales

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.13/15



Summary
Computational framework

A previous dislocation-based framework was enhanced to deal

with small-scale plasticity problems (3D physics embedded)

Long-range interactions through elastic fields

Close-range 3D rules formulated and implemented

Application to work-hardening

Two-stage hardening is natural outcome of the simulation.

Work-hardening rates in agreement with experimental values

Dislocation storage parameters suggest scaling is correct

Organized dislocation structures form at multiple scales

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.13/15



Summary
Computational framework

A previous dislocation-based framework was enhanced to deal

with small-scale plasticity problems (3D physics embedded)

Long-range interactions through elastic fields

Close-range 3D rules formulated and implemented

Application to work-hardening

Two-stage hardening is natural outcome of the simulation.

Work-hardening rates in agreement with experimental values

Dislocation storage parameters suggest scaling is correct

Organized dislocation structures form at multiple scales

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.13/15



Summary
Computational framework

A previous dislocation-based framework was enhanced to deal

with small-scale plasticity problems (3D physics embedded)

Long-range interactions through elastic fields

Close-range 3D rules formulated and implemented

Application to work-hardening

Two-stage hardening is natural outcome of the simulation.

Work-hardening rates in agreement with experimental values

Dislocation storage parameters suggest scaling is correct

Organized dislocation structures form at multiple scales

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.13/15



Summary
Computational framework

A previous dislocation-based framework was enhanced to deal

with small-scale plasticity problems (3D physics embedded)

Long-range interactions through elastic fields

Close-range 3D rules formulated and implemented

Application to work-hardening

Two-stage hardening is natural outcome of the simulation.

Work-hardening rates in agreement with experimental values

Dislocation storage parameters suggest scaling is correct

Organized dislocation structures form at multiple scales

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.13/15



Summary
Computational framework

A previous dislocation-based framework was enhanced to deal

with small-scale plasticity problems (3D physics embedded)

Long-range interactions through elastic fields

Close-range 3D rules formulated and implemented

Application to work-hardening

Two-stage hardening is natural outcome of the simulation.

Work-hardening rates in agreement with experimental values

Dislocation storage parameters suggest scaling is correct

Organized dislocation structures form at multiple scales

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.13/15



Summary
Computational framework

A previous dislocation-based framework was enhanced to deal

with small-scale plasticity problems (3D physics embedded)

Long-range interactions through elastic fields

Close-range 3D rules formulated and implemented

Application to work-hardening

Two-stage hardening is natural outcome of the simulation.

Work-hardening rates in agreement with experimental values

Dislocation storage parameters suggest scaling is correct

Organized dislocation structures form at multiple scales

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.13/15



Summary
Computational framework

A previous dislocation-based framework was enhanced to deal

with small-scale plasticity problems (3D physics embedded)

Long-range interactions through elastic fields

Close-range 3D rules formulated and implemented

Application to work-hardening

Two-stage hardening is natural outcome of the simulation.

Work-hardening rates in agreement with experimental values

Dislocation storage parameters suggest scaling is correct

Organized dislocation structures form at multiple scales

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.13/15



Summary
In bending the dislocation density is not the only structural

parameter governing strength

At larger sample sizes and/or higher imposed curvature, there

is an enhancement of strength due to statistical dislocations

but GNDs essentially govern the moment-rotation response; A

size effect results

The ratio of stored energy to expended energy increases with

decreasing sample size. There is no simple scaling with the

dislocation density.

Neglecting image contributions may lead to “uncontrolled”

approximations
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Effect of image stresses (ten-
sion)
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