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Background

® Micron-scale Plastic Behaviour:
s Confined plasticity: e.g. fracture, contact
» Inelastic deformation in small volumes

#® 2D Dislocation Dynamics (“out-of-plane™)

Lepinoux & Kubin; Gulluoglu et al.; Amodeo & Ghoniem; Lubarda et al.

#® 3D Dislocation Dynamics: (mostly periodic BC) Devincre &

Kubin; Canova et al.; Schwarz; Ghoniem et al.; Zbib et al.; Weygand et al.

#® 2D Framework by van der Giessen & Needleman
Solve BVP with plastic flow = glide of L’s

composites; bending; stationary cracks; stress in thin films; fatigue
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What?

Include 3D physics in 2D framework

® In discrete dislocation plasticity the long-range interactions
are directly taken into account. Short-tange interactions are
supplied through constitutive rules.

® Rules are needed in 2D as well as in 3D simulations but
more rules are generally needed in 2D.
® More rules to incorporate more physics
# line tension
# junction formation
#® dynamic sources

#® dynamic obstacles
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Why?

#® Point sources (and obstacles) are not physical;
Real sources are dislocation segments



Why?
#® Point sources (and obstacles) are not physical;

Real sources are dislocation segments

® In the previous 2D framework, the density of sources
does not evolve (idem for obstacles)



w

Why?

o

Point sources (and obstacles) are not physical,
Real sources are dislocation segments

In the previous 2D framework, the density of sources
does not evolve (idem for obstacles)

As a consequence, hardening is quite limited



w

Why?

o

Point sources (and obstacles) are not physical,
Real sources are dislocation segments

In the previous 2D framework, the density of sources
does not evolve (idem for obstacles)

As a consequence, hardening is quite limited

It is also important to identify the parameters affecting
energy storage and dissipation

A



w

Why?

o

Point sources (and obstacles) are not physical,
Real sources are dislocation segments

In the previous 2D framework, the density of sources
does not evolve (idem for obstacles)

As a consequence, hardening is quite limited

It is also important to identify the parameters affecting
energy storage and dissipation

3D Dislocation Dynamics
performance limited by computing power
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Outline

1. Discrete Dislocation Plasticity
2. 3D Rules in 2D Framework

3. Work-Hardening

Benzerga, Bréchet, Needleman & Van der Giessen (MSMSE) 2004
4. Relation to geometric hardening and GNDs

5. The Stored Energy of Cold Work
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Discrete Dislocation Plasticity
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Discrete Dislocation Plasticity
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2D Dislocation Dynamics

® Nucleation: Static initial sources of constant
strength and nucleation time.

® The Peach—-Koehler force.

#® Viscous drag. i
Bv' = fla b
B: phonon drag coefficient
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Incorporating 3D M echangns
into 2D Dislocation Dynamics

Constitutive rules are needed for:
» Junction Formation

» Dynamic Sources

Dynamic Obstacles
Higher-order Interactions

© o o

Line Tension
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Junction Formation

A stable junction is an anchoring point...
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Junction Formation

A breakable junction Is an obstacle...
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Junction Formation

Presumably, cross-slip favors anchoring points...
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Junction Formation

In 2D, anchoring points have formation probability p.
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Dynamic Sources
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Dynamic Sources

® Critical Stress

—Lfmci 1074 < v < 0.1



Dynamic Obstacles

e Destruction rule

S! = nearest neighbor spacing (on either slip plane)
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Dynamic Obstacles

o Breaking Stress

S! = nearest neighbor spacing (on either slip plane)
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Interaction junction/disl ocation

#® Obstacles are not destroyed by annihilation
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Annihilation & Line Tension

# Annihilation: critical distance L.
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Annihilation & Line Tension

® Annihilation: critical distance L.

® Line tension:

L —L
Li — — o Iu‘bz‘ @
873 .
: —{Si—
#® Change of partner:
o after annihilation e _ Cem——
N

A



\ 4
Annihilation & Line Tension

® Annihilation: critical distance L.

® Line tension:

ulb' S
24 —{Sit—

L= —q

#® Change of partner:

# after annihilation

# exiting at free surface O




Dislocation Glide

Viscous drag generalized into:

Bv' = (Ti — 71p + Ci) b



Outline

1. Discrete Dislocation Plasticity

2. 3D Rules in 2D Framework

3. Work-Hardening (isotropic? dissipative?)

4. Relation to geometric hardening and GNDs

5. The Stored Energy of Cold Work
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Work-Hardening
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Phenomenol ogy
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Two-Stage Hardening

slip plane spacing d = 50b
static sources with pg = 4.9 x 10 m~2

Initially non-symmetric glide

© o o o

crystal size: 6 ym X 2 pym
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Two-Stage Hardening

slip plane spacing d = 50b
static sources with py = 4.9 x 1013 m=2
Initially non-symmetric glide

crystal size: 6 ym X 2 pym

© o o o o

parameters for 3D rules:

» critical junction distance d* = 6b

o formation probability of anchoring points p = 0.05
» breaking stress parameter 3 = 1

# nucleation time parameter v = 0.1

# line tension coefficient &« = (
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Two-Stage Hardening
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Comparison with experiments

# slip plane spacing d = 25b
# static sources with py = 9.7 x 1013 m™2

® parameters for 3D rules:
o formation probability of anchoring points p = 0.02

» breaking stress parameter 3 = 5
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Comparison with experiments

# slip plane spacing d = 25b
# static sources with py = 9.7 x 1013 m™2

® parameters for 3D rules:
o formation probability of anchoring points p = 0.02

» breaking stress parameter 3 = 5

® Sources can be destroyed by annihilation
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Comparison with experiments
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Comparison with experiments
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Flow Stress

With7T = o f, = 0 (1/2sin(2¢y))
For stage I

T/u=Axbx/p

T/p="A xbx./p, 2.2_
Averaging over several runs: %2
® 04< A<05 w1
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Cdl Formation
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Structure of Incipient Céll
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Structure of Incipient Céll
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Fine Wall Structure
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Outline

1. Discrete Dislocation Plasticity
2. 3D Rules in 2D Framework
3. Work-Hardening

4. Relation to geometric hardening and GNDs

5. The Stored Energy of Cold Work

A



Bending
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Bending (2D rules)
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Bending (2D rules)
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Bending (new results)
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Bending (new results)
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dislocation density is not the only structural parameter governing strength
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Bending (new results)
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Bending (new results)
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Bending (effect of 3D Rules)
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Bending (effect of 3D Rules)
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Bending (effect of 3D Rules)
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Bending (effect of 3D Rules)
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Bending (effect of 3D Rules)
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