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Background
Micron-scale Plastic Behaviour:

Confined plasticity: e.g. fracture, contact

Inelastic deformation in small volumes

2D Dislocation Dynamics (“out-of-plane”)
Lepinoux & Kubin; Gulluoglu et al.; Amodeo & Ghoniem; Lubarda et al.

3D Dislocation Dynamics: (mostly periodic BC) Devincre &

Kubin; Canova et al.; Schwarz; Ghoniem et al.; Zbib et al.; Weygand et al.

2D Framework by van der Giessen & Needleman
Solve BVP with plastic flow ≡ glide of ⊥’s
composites; bending; stationary cracks; stress in thin films; fatigue
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What?
Include 3D physics in 2D framework

In discrete dislocation plasticity the long-range interactions

are directly taken into account. Short-tange interactions are

supplied through constitutive rules.

Rules are needed in 2D as well as in 3D simulations but

more rules are generally needed in 2D.

More rules to incorporate more physics

line tension

junction formation

dynamic sources

dynamic obstacles
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Why?
Point sources (and obstacles) are not physical;
Real sources are dislocation segments

In the previous 2D framework, the density of sources
does not evolve (idem for obstacles)

As a consequence, hardening is quite limited

It is also important to identify the parameters affecting
energy storage and dissipation

3D Dislocation Dynamics
performance limited by computing power
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Outline

1. Discrete Dislocation Plasticity

2. 3D Rules in 2D Framework

3. Work-Hardening
Benzerga, Bréchet, Needleman & Van der Giessen (MSMSE) 2004

4. Relation to geometric hardening and GNDs

5. The Stored Energy of Cold Work
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Discrete Dislocation Plasticity

T0 on Sf

U0 on Su

u(x)
≡

∇ · σ̂ = 0 ; ε̂ = ∇⊗ û ; σ̂ = L : ε̂ for x ∈ V

u(x) = ũ(x) + û(x) ; ε = ε̃ + ε̂ ; σ = σ̃ + σ̂
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∇ · σ̂ = 0 ; ε̂ = ∇⊗ û ; σ̂ = L : ε̂ for x ∈ V

u(x) = ũ(x) + û(x) ; ε = ε̃ + ε̂ ; σ = σ̃ + σ̂

Incorporating 3D Mechansims into 2D Dislocation Dynamics – p.6/30



Discrete Dislocation Plasticity

T0 on Sf

U0 on Su

u(x)
≡

∞
T̃ on Sf
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Ũ on Su
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2D Dislocation Dynamics
Nucleation: Static initial sources of constant
strength and nucleation time.

The Peach–Koehler force:

f i = ni ·
(

σ̂ +
∑

j 6=i

σj

)

· bi

Viscous drag:

Bvi = f i ≈ τ i bi

B: phonon drag coefficient

mi
ni

i

τ i

bi ≡
(
bi × ti

)
· ni
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Incorporating 3D Mechanisms
into 2D Dislocation Dynamics
Constitutive rules are needed for:

Junction Formation

Dynamic Sources

Dynamic Obstacles

Higher-order Interactions

Line Tension
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Junction Formation

d?

=⇒
bi

i

bj

j
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Junction Formation

d?

=⇒
bi

i

bj

j

A stable junction is an anchoring point...
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Junction Formation

d?

=⇒
bi

i

bj

j

A breakable junction is an obstacle...
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Junction Formation

d?

=⇒
bi

i

bj

j

Presumably, cross-slip favors anchoring points...
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Junction Formation

d?

=⇒
bi

i

bj

j

in 2D, anchoring points have formation probability p.
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Dynamic Sources

Critical Stress

τ I
nuc = β

µbi

SI

Critical Time

tInuc = BF(ξ)
SI

|τ I |bi

tInuc = BF(ξ)
︸ ︷︷ ︸

γ

SI

|τ I |bi

10−4 < γ < 0.1
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Dynamic Obstacles

• Destruction rule

f I

bi
= τ I > τ I

brk

d?
I

SI

=⇒

τ I

i

l
r

� � �

�

�

SI ≡ nearest neighbor spacing (on either slip plane)
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Dynamic Obstacles

• Breaking Stress

τ I
brk ≡ βµ

bi

SI

d?
I

SI

=⇒

τ I

i

l
r

� � �

�

�

SI ≡ nearest neighbor spacing (on either slip plane)
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Interaction junction/dislocation
Obstacles are not destroyed by annihilation

Special behavior of sources:

Rule of destruction by annihilation

vs.

Transparent source (because of cross-slip)
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Annihilation & Line Tension

Annihilation: critical distance Le

Line tension:

Li = −α
µ|bi|
S i

d

Change of partner:

after annihilation

exiting at free surface
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Dislocation Glide
Viscous drag generalized into:

Bvi =
(
τ i − τP + Li

)
bi
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Outline

1. Discrete Dislocation Plasticity

2. 3D Rules in 2D Framework

3. Work-Hardening (isotropic? dissipative?)

4. Relation to geometric hardening and GNDs

5. The Stored Energy of Cold Work
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Work-Hardening
x2

x1 σ, εσ, ε
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∆ϕ
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��
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Phenomenology

stress σ11/σ

1 µm

pattern
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Two-Stage Hardening
slip plane spacing d = 50b

static sources with ρ0 = 4.9 × 1013 m−2

initially non-symmetric glide

crystal size: 6µm × 2µm
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Two-Stage Hardening
slip plane spacing d = 50b
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crystal size: 6µm × 2µm

parameters for 3D rules:
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Comparison with experiments
slip plane spacing d = 25b

static sources with ρ0 = 9.7 × 1013 m−2

parameters for 3D rules:

formation probability of anchoring points p = 0.02

breaking stress parameter β = 5
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Flow Stress

With T = σfs = σ (1/2 sin(2ϕ0))

For stage II

T /µ = A × b ×√
ρ

T /µ = Af × b ×√
ρ

f

Averaging over several runs:

0.4 ≤ A ≤ 0.5

1.0 ≤ Af ≤ 1.8

Γ

T
/(

µ
b√

ρ
)
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µ
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ρ
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Cell Formation

Superposed σ11/σ-field Superposed θ-field

250 nm
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Structure of Incipient Cell

ε = 0.020

70 nm

1

1
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Structure of Incipient Cell
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Structure of Incipient Cell
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Fine Wall Structure

10 nm
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Outline

1. Discrete Dislocation Plasticity

2. 3D Rules in 2D Framework

3. Work-Hardening

4. Relation to geometric hardening and GNDs

5. The Stored Energy of Cold Work
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Bending (2D rules)
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Bending (new results)
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Bending (effect of 3D Rules)
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