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Curvature v.s. elastic field gradients

The killer is the number of integration points (IP)
of the P-K force, not the number of segments needed to

describe the curvature of an isolated dislocation ! 



How good is the elastic theory?
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Contact reactions modeling

jonction Cross
State

repulsion

IP optimization Line tension at triple nodes

Collinear annihilation



aij - Interaction coefficients - FCCs
(model simulations)

Measurement:

a1copla: coplanar

a3: Lomer
a2: glissile
a1ortho: Hirth
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a1coli: annihilation

 acoli= 1.265
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v0 = 1014s−1

ΔG0 = 1.06 eV :  Total energy

τ0 = 260 MPa : CRSS at 0 K

p = 0.757, q = 1.075

Velocity laws

Eg: Zirconium (prismatic)
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v =
τ eff b
B(T)

Viscous drag

Lattice friction

Segments length influence
(double kink free path)

Internal stress fluctuations!



Technical standing problems
in dislocation properties modeling

• Cross-slip in non-fccs
• Climb
• Nucleation criteria
• Transmission criteria
• Jogs and kinks in materials with lattice friction
• Over-damped motion approximation



Size effects (DDD+FE) Loading (DDD+FE)Bulk (DDD)

Boundary value problem

10µm



Benefits:
• continuity of the lines
• balance of fluxes
• internal stresses

Periodic boundary conditions

PBC

Strong self-interactions ! • affects the density of mobile
dislocations and the total
dislocation storage rate.
• affects the arrangement of
the microstructure and the
strain hardening properties.



This quantity must be calculated before
computations for each active slip systemT

Dislocation mean free path
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huLx + kvLy + lwLz = 0
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2λ = (uLx)2 +(vLy)2 + (wLz)2

self-annihilation distanceOrthorhombic box: Lx, Ly, Lz

Slip plane (h, k, l)

find 3 integers (u, v, w) 
such that

Isotropic Loop: 

Anisotropic Loop: 
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with (dx,dy,dz) the fast
gliding direction 

(first-degree Diophantine
equation) 

(Madec, Devincre, Kubin:
IUTAM 2003 proceedings, Kluwer Eds.)

(Monnet, Devincre, Kubin: Acta Mater. 2004)



Mechanical equilibrium of finite media
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∇⋅σ=0
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Different coupling strategies

Build a FE mesh and specific
procedures to capture most of
the elastic fields complexity.

Eigenstrain

Eliminate the bulk complexity to
simplify the elastic problem
treated with the FE mesh.

Superposition

 Elastic problem 
FE are good to solve boundary value problems

Field singularity at dislocation cores!



Superposition method

€ 

∇⋅ ˆ σ =0
ˆ σ ⋅n=T−σ∞⋅n at Sf

ˆ u =U−u∞- up[ ] at Su

∇ ˆ u =ˆ ε 
ˆ σ =LM :ˆ ε  in VM

ˆ σ =L*:ˆ ε +(L*−LM):ε∞ in V*

 

 

 
 

 

 
 

= +



Eigenstrain (homogenisation) method

b
b Plastic strain induced by the

motion of  each segment "i” at
the Gauss points ",e" of the FE

mesh and at time "t"
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Homogenisation slab of
thickness h=1.5 (VG,e)1/3

is OK with elements of 20
nodes and 27 Gauss points.



Strength and weakness of DDD-FE coupling

• Computer efficiency!
– FE computations are faster than DDDs

• Isotropic or anisotropic elasticity !
– Analytical forms for the displacement field

• Large deformation and surface roughness !
– homogenisation or re-meshing

• Elastic inclusions !
• Interpolation and shape functions!



Fast multipole method
O(N2) to O(NlogN) or O(N)

reference cellimage cells

Mean field approximation: >O(NlogN)

Finite series calculation:O(NlogN) or O(N)

! The number of moments needed to approximate
the dislocation self-stress field is very large !



Parallel DDD codes

The LLNL battlefield :-)
Size of dislocation patterns approx 1µm

 Simulation box L=10µm

Dislocation density ρ=1012m-2

Length of dislocation line Γ=ρL3=10-3m

Discretization length d=10 nm

Number of segments N=Γ/d=105

One processor can only handle efficiently 103-104 segments



•2D simulations are quite rough but they can be helpful to overcome
partially the numerical limitations of the 3D computations.

•On the other hand, 3D codes can be used to evaluate, in a
realistic way, the dislocation mechanisms which cannot be
reproduced by a 2D system (multiplication, cross-slip, pinning
mechanisms strength...)

2D codes
Easier

higher ε available
Qualitative

3D codes
Quantitative

More complicated to develop
Only small strains

2D versus 3D



Dislocation patterning in double slip
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2.5 DDD simulation
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   Forest model
and

Strain hardening
flow stress - junction strengthening multiplication rate - recovery
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Similitude principle

Dislocations patterning

Self-organization

Fluctuations of the long range interaction are not essential



Concluding remarks

• The elastic theory of dislocations is powerful
• Material specificities are coming up from the core properties
• PBC are useful, but dangerous
• Solving boundary value problems in 3D is a tough job, still in

progress.
• Thanks to multipole algorithm and // codes, larger plastic

strains should be available in the near future.
• Need for a rigorous validation and intercomparison of the

various approaches currently utilized.


