

"Discrete Dislocation Plasticity" Cambridge Thursday 1 July - Friday 2 July, 2004

Recent progress on discrete dislocation dynamics simulations

benoit.devincre@onera.fr

Laboratoire d'Etude des Microstructures, CNRS-ONERA F-92322 Chatillon Cedex, FRANCE

Outline

- A short review of DDD evolutions
- 3D-DDD
 - Piecewise line models
 - Materials specificity
 - Slip system symmetry
 - Contact reactions (junctions)
 - Velocity laws
 - Standing problems
 - Boundary Problems
 - PBC
 - Superposition or Eigenstrain methods ?
 - Computational issues
 - Fast multipole methods (Greengard)
 - Parallelization
- 2D v.s. 3D and 2.5-DDD
- Concluding remarks

Discrete Dislocation Dynamics main dates

Discrete Dislocation Dynamics (DDD)

Discretization time & space & lines

Elastic properties P-K force Line tension Loading

contact reactions junctions

10-20 μm

Boundary problem PBC, free surface, GB, interface, etc..

Constitutive rules Mobility Cross-slip

Nucleation

Space and line discretization

Lattice-based models

(Forest zipping-unzipping)

Code simplicity slip properties

Quasi-continuous models

(Orowan mechanism)

Dislocation self stress field CPU (time step ?)

Curvature v.s. elastic field gradients

The killer is the number of integration points (IP) of the P-K force, not the number of segments needed to describe the curvature of an isolated dislocation !

How good is the elastic theory?

Contact reactions modeling

IP optimization

Line tension at triple nodes

Collinear annihilation

a_{ii} - Interaction coefficients - FCCs (model simulations)

b

a₀: self

a_{1copla}: coplanar

a₃: Lomer a₂: glissile

a_{1ortho}: Hirth

C-S

b

a_{1coli}: annihilation

Hirth (a_{1ortho} = 0.051) Glissile (a_2 = 0.075) Lomer (a_3 = 0.084) $a_{coli} = 1.265$

Velocity laws

Viscous drag

$$v = \frac{\tau_{eff}b}{B(T)}$$

Lattice friction

Internal stress fluctuations!

$$v = v_o \frac{l}{l_o} \exp\left\{-\frac{\Delta G_0}{kT} \left[1 - \left(\frac{\tau_{eff}}{\tau_0}\right)^p\right]^q\right\}$$

Segments length influence (double kink free path)

Eg: Zirconium (prismatic) $v_0 = 10^{14} s^{-1}$ $\Delta G_0 = 1.06 \text{ eV}$: Total energy $\tau_0 = 260 \text{ MPa}$: CRSS at 0 K p = 0.757, q = 1.075

Technical standing problems in dislocation properties modeling

- Cross-slip in non-fccs
- Climb
- Nucleation criteria
- Transmission criteria
- Jogs and kinks in materials with lattice friction
- Over-damped motion approximation

Boundary value problem

Periodic boundary conditions

Benefits:

- continuity of the lines
- balance of fluxes
- internal stresses

PBC

Strong self-interactions

• affects the density of mobile dislocations and the total dislocation storage rate.

• affects the arrangement of the microstructure and the strain hardening properties.

Dislocation mean free path

This quantity must be calculated before computations for each active slip system

(Madec, Devincre, Kubin: IUTAM 2003 proceedings, Kluwer Eds.)

(Monnet, Devincre, Kubin: Acta Mater. 2004)

Orthorhombic box: L_x , L_y , L_z Slip plane (h, k, l)

find 3 integers (u, v, w) such that

 $huL_x + kvL_y + lwL_z = 0$

(first-degree Diophantine equation)

<u>self-annihilation distance</u> Isotropic Loop:

$$2\lambda = \sqrt{(uL_{\rm x})^2 + (vL_{\rm y})^2 + (wL_{\rm z})^2}$$

Anisotropic Loop:

$$\lambda = \frac{uL_{x}}{d_{x}} = \frac{vL_{y}}{d_{y}} = \frac{wL_{z}}{d_{z}}$$

with (dx,dy,dz) the fast gliding direction

Mechanical equilibrium of finite media

<u>∇·<u></u>*σ*=0</u> $\underline{\sigma}$ **n=T** at S_f **u=U** at S_u ∇**u**=<u></u>*ɛ* $\underline{\sigma} = \underline{L}^{M} : \left(\underline{\varepsilon} - \underline{\varepsilon}^{p}\right) \text{ in } V^{M}$ $\underline{\sigma} = \underline{L}^{*} : \underline{\varepsilon} \text{ in } V^{*}$

Different coupling strategies

Elastic problem FE are good to solve boundary value problems

Field singularity at dislocation cores!

Build a FE mesh and specific procedures to capture most of the elastic fields complexity.

<u>Eigenstrain</u>

Eliminate the bulk complexity to simplify the elastic problem treated with the FE mesh.

Superposition

Superposition method

Eigenstrain (homogenisation) method

Plastic strain induced by the motion of each segment "i" at the Gauss points ",e" of the FE mesh and at time "t"

Strength and weakness of DDD-FE coupling

- Computer efficiency!
 - FE computations are faster than DDDs
- Isotropic or anisotropic elasticity !
 - Analytical forms for the displacement field
- Large deformation and surface roughness !
 - homogenisation or re-meshing
- Elastic inclusions !
- Interpolation and shape functions!

Fast multipole method O(N²) to O(NlogN) or O(N)

Mean field approximation: >O(NlogN)

Finite series calculation: O(NlogN) or O(N)

! The number of moments needed to approximate the dislocation self-stress field is very large !

Parallel DDD codes

The LLNL battlefield :-)

Size of dislocation patterns approx 1μm Simulation box L=10μm Dislocation density ρ=10¹²m⁻² Length of dislocation line Γ=ρL³=10⁻³m Discretization length d=10 nm Number of segments N=Γ/d=10⁵

One processor can only handle efficiently 10³-10⁴ segments

2D versus 3D

3D codes Quantitative More complicated to develop Only small strains

•2D simulations are quite rough but they can be helpful to overcome partially the numerical limitations of the 3D computations.

•On the other hand, 3D codes can be used to evaluate, in a realistic way, the dislocation mechanisms which cannot be reproduced by a 2D system (multiplication, cross-slip, pinning mechanisms strength...)

Forest model and Strain hardening

flow stress - junction strengthening

 $d\sigma$ $d\sigma d\rho$ *h* = dε $d\rho d\varepsilon$

multiplication rate - recovery

Dislocations patterning

Self-organization

Similitude principle

Fluctuations of the long range interaction are not essential

Concluding remarks

- The elastic theory of dislocations is powerful
- Material specificities are coming up from the core properties
- PBC are useful, but dangerous
- Solving boundary value problems in 3D is a tough job, still in progress.
- Thanks to multipole algorithm and // codes, larger plastic strains should be available in the near future.
- Need for a rigorous validation and intercomparison of the various approaches currently utilized.