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Discrete Dislocation Dynamics main dates
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Discrete Dislocation Dynamics (DDD)

time & space & lines

P-K force S A Mobility
Line tension e T Cross-slip
Loading e feineg

contact reactions B2 e T Nucleation
junctions =

PBC, free surface, GB, interface, etc..




Space and line discretization
nm uwm

Lattice-based models

(Forest zipping-unzipping) (Orowan mechanism)

Code simplicity Dislocation self stress field
slip properties CPU (fime step ?)




Curvature v.s. elastic field gradients

The killer is the number of integration points (IP)
of the P-K force, not the number of segments needed to
describe the curvature of an isolated dislocation !




How good is the elastic theory?

Collinear
annhihilation




Contact reactions modeling

Line tension at triple nodes

junction

direction of
the junction

dislocation 2 "\‘I
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. = Interaction coefficients - FCCs
(model simulations)
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Velocity laws
Viscous drag

b T b
B(T)

Lattice friction

Internal stress fluctuations!

T,
V=V —expl- 1-(-2)
[ T

14 -1
v, = 10 s
0

AG, = 1.06 eV : Total energy

]q Eg: Zirconium (prismatic)

Segments length influence 7, = 260 MPa : CRSS ar 0K
(double kink free path) p=0757,q =1.075




Technical standing problems
in dislocation properties modeling

* Cross-slip in non-fccs
- Climb
Nucleation criteria
Transmission criteria
- Jogs and kinks in materials with lattice friction

Over-damped motion approximation




Boundary value problem

Bulk (DDD) Size effects (DDD+FE) Loading (DDD+FE)




Periodic boundary conditions

Benefits:

- continuity of the lines
» balance of fluxes

» internal stresses

Wesuz ppC g

» affects the density of mobile
dislocations and the total
dislocation storage rate.

- affects the arrangement of
the microstructure and the
strain hardening properties.




Dislocation mean free path

Orthorhombic box: L,, L, L,
Slip plane (h, k, I)

find 3 integers (u, v, w)
such that

hulL, + kvL, +IwL, =0

(first-degree Diophantine
equation)

This quantity must be calculated before
computations for each active slip system

(Madec, Devincre, Kubin:
IUTAM 2003 proceedings, Kluwer Eds.)

(Monnet, Devincre, Kubin: Acta Mater. 2004)

self-annihilation distance

|sotropic Loop:

with (dx,dy,dz) the fast
gliding direction




Mechanical equilibrium of finite media
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Different coupling strategies

Elastic problem
FE are good to solve boundary value problems

Field sinqularity at dislocation coresl!

2~

Build a FE mesh and specific Eliminate the bulk complexity to
procedures to capture most of simplify the elastic problem
the elastic fields complexity. treated with the FE mesh.

Eigenstrain Superposition




Superposition method

@l—pc - W’p } 06 Su

U=U—u>*—[u¥] on S,




Eigenstrain (homogenisation) method

Plastic strain induced by the
motion of each segment "i" at
the Gauss points " e" of the FE

mesh and at time "t"

Homogenisation slab of
thickness
is OK with elements of 20
nodes and 27 Gauss points.




Strength and weakness of DDD-FE coupling

Computer efficiency!

- FE computations are faster than DDDs
Isotropic or anisotropic elasticity |

- Analytical forms for the displacement field
Large deformation and surface roughness |

- homogenisation or re-meshing
Elastic inclusions |
Interpolation and shape functions!
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| The number of moments needed to approximate
the dislocation self-stress field is very large !

Finite series calculation: O(NlogN) or O(N)

Mean field approximation: >O(NlogN)




Parallel DDD codes

The LLNL battlefield :-)

Size of dislocation patterns approx lum
Simulation box L=10um
Dislocation density p=1012m-2
Length of dislocation line T'=pL3=10-3m
Discretization length d=10 nm

Number of segments N=T'/d=10°

One processor can only handle efficiently 103-10% segments




2D versus 3D

Easier _> Quantitative
higher ¢ available More complicated to develop
Qualitative 4"‘ Only small strains

-2D simulations are quite rough but they can be helpful to overcome
partially the numerical limitations of the 3D computations.

‘On the other hand, 3D codes can be used to evaluate, in a
realistic way, the dislocation mechanisms which cannot be
reproduced by a 2D system (multiplication, cross-slip, pinning
mechanisms strength...)




Dislocation patterning in double slip
2.5 DDD simulation

A

. . . A
MU'TIpIICGTIOh Apt = My* + Sources|M =2.10"

(3D-DDD)

Reactions

Interaction

Annihilation

homogenization
(cross-slip)

B = 0.046

Velocity (rim,t“pp,T)




Forest model
and h
Strain hardening

_do dodp
~de  dp de

flow stress - junction strengthening multiplication rate - recovery

[112]
ideal multiplication

4 5x10°°




Dislocations patterning

Self-organization Similitude principle

0.15 0.20 0.25 0.30 0.35

b/A (107)

Fluctuations of the long range interaction are not essential




Concluding remarks

The elastic theory of dislocations is powerful
Material specificities are coming up from the core properties
PBC are useful, but dangerous

Solving boundary value problems in 3D is a tough job, still in
progress.

Thanks to multipole algorithm and // codes, larger plastic
strains should be available in the near future.

Need for a rigorous validation and intercomparison of the
various approaches currently utilized.




