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Discrete Dislocation Plasticity
Continuum description of plastic deformation in crystalline
solids where the deformation mechanism is dislocation glide.

Dislocations are treated as discrete entities and modeled as
line singularities in an elastic solid.

Elasticity – accurately represents dislocation fields
beyond 5b− 8b from the core.

Description between atomistics and a size-independent
continuum. continuum
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Discrete Dislocation Plasticity

A material length scale is introduced – the Burgers vector
magnitude b – other material length scales may dominate that
scale with b. (size matters)

The dislocation stress field is long range – σij ∝ fij/r.
(organized dislocation structures can evolve)

Plastic deformation arises from the nucleation and glide of
dislocations. (dissipation and hysteresis)

The total displacement field is not a continuous single valued
function –

∮

Γ ui,jdxj 6= 0. (highly localized deformations;
new free surface)
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Equilibrium Dislocation Structures
Non-uniqueness.

Long range stresses.

Lubarda et al., Acta Mat., 41, 625, 1993. Camb-04 – p.4



Discrete Dislocation Plasticity
1. Unit process modeling – the interaction between dislocations

and specific microstructural features; for example
dislocation-precipitate interactions.

2. Macroscopic constitutive modeling – the stress-strain
response of a representative volume element.

3. Formulate and solve general boundary value problems where
plastic flow is represented by the collective motion relatively
large numbers of discrete dislocations.

Plastic flow phenomena on a size scale of ≈ 0.1 µm to
≈ 100 µm.
Critical deformation and fracture processes take place at
this scale.
The stress-strain response and the evolution of the
dislocation structure are coupled and sensitive to the
boundary value problem specification.
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Mechanics Framework

Strain-displacement (small deformations):

εij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

Momentum balance (quasi-static):

∂σij
∂xj

= 0 σij = σji

Constitutive relation (isotropic linear elastic):

σij =
E

1 + ν

(

εij +
ν

1− 2ν εkkδij
)
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Mechanics Framework

Long range interactions between dislocation come directly
from elasticity theory.

Constitutive rules are needed at least for dislocation glide,
annihilation and nucleation.

To a certain extent, what constitutive rules are needed
depends on the level of modeling, e.g. 2D vs. 3D, and on
the resolution – dislocation-dislocation interactions can be
well-represented by elasticity theory with near atomic
resolution.
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Boundary Value Problems
ui = ũi + ûi , εij = ε̃ij + ε̂ij , σij = σ̃ij + σ̂ij .

(̃ ) fields – sum of the explicitly known singular equilibrium

fields of the individual dislocations, e.g. σ̃ij =
∑

k σ
(k)
ij .

(̂ ) fields – image fields that correct for the boundary
conditions and are non-singular.

σ̂ij,j = 0 σ̂ijnj = T 0
i − T̃i on Sf ûi = u0

i − ũi on Su

∫

V

σ̂ijδûi,jdV =

∫

ST

(T 0
i − T̃i)δûidS

Camb-04 – p.8



Boundary Value Problems
Specify:

Elastic constants; slip systems; dislocation constitutive
parameters; dislocation sources and obstacles.

Use the balance laws and boundary conditions to determine
the evolution of the dislocation structure and the mechanical
response.

The stress-strain response and the evolution of the dislocation
structure are strongly coupled and are outcomes of the boundary
value problem solution.

Appropriate specification of boundary conditions is
extremely important.

The slip is embodied in the explicitly known (̃ ) fields – the
numerics do not have to attempt to resolve slip.
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Computational Procedure

1. At time t the state of the body is known including σij(xk, t)
and the positions of all dislocations.

2. An increment of loading is prescribed.

3. The state of the body at t+ dt needs to be determined.

Calculate the dislocation interaction force.
Multi-body interaction calculation.

Calculate the change in dislocation structure caused by
dislocation nucleation, dislocation annihilation, etc.

Evaluation of constitutive rules.
Calculate the image fields for the updated dislocation
arrangement, i.e. the (̂ ) fields.

Finite element calculation.
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Dislocation Constitutive Rules – 2D
Glide component of the Peach-Koehler force.

f (k) = n
(k) ·

[

σ̂ +
∑

j 6=k

σ
(j)

]

· b(k)

Dislocation nucleation (Frank-Read sources) – nucleation

occurs when f (k) at a source reaches bτnuc during tnuc.

Dislocation motion – v(k) = f (k)/B or

v(I) =







(

f (I) − bτf sign(f (I))
)

/B if |f (I)| > bτf ;

0 otherwise

Dislocation annihilation – annihilation distance Le.

Obstacles – pin dislocations and release them once f(k) attains

bτobs.
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GNDs and Size Effects
Tension.

Bending.

The stress-strain response and the evolution of the dislocation
structure are outcomes of the boundary value problem solution.
Cleveringa et al., Int. J. Plast., 15, 837, 1999. Camb-04 – p.12



GNDs and Size Effects

material (i) material (iii)
GNDs lead to increased hardening and size dependence.

Cleveringa et al., Acta Mat., 45, 3163, 1997; J. de Phys. IV, 8 P4, 83, 1998. Camb-04 – p.13



Smaller can be Softer

For cast A356 Al alloys, smaller is softer experimentally and in
the discrete dislocation calculations.
Benzerga et al., Acta. Mat., 49, 3071, 2001.
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Boundary Layers and Material Properties

A strain gradient arises as a consequence of the constraint of
the interfaces on dislocation motion.

A boundary layer does not develop with a sufficiently large
τf .

Do materials with high values of τf exhibit size effects due to
GNDs but not due to boundary layers?

If so, what are the implications for phenomenological
models?

Shu et al., J. Mech. Phys Solids, 49, 1361, 2001. Camb-04 – p.15



Boundary Layers and Source Limited Plasticity

Cooling from a stress-free state.

There is a rather abrupt change in the hardening rate for
thinner films due to the back stress generated by the boundary
layer dislocations.
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Nicola et al., J. Appl. Phys., 93, 5920, 2003.
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Boundary Layers and Source Limited Plasticity
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For a sufficiently thick film, there is a film thickness
independent boundary layer and

σ = σb
1− hl
h

+ σl
hl
h

σ = σb + (σl − σb)hlh
−1

For a sufficiently thin film, nucleation is inhibited throughout
the film, the size effect becomes more pronounced and the
scaling changes.

Nicola et al., submitted, 2004. Camb-04 – p.17



Size Effects

Geometrically necessary dislocations arising from imposed
strain gradients.

Modeled by a wide variety of nonlocal plasticity theories.

Boundary layers that arise where an overall homogeneous
response is possible.

Requires a nonlocal plasticity theory with higher order
boundary conditions.

Microstructures where smaller is softer.

Source limited plasticity.

Can these be modeled by nonlocal plasticity theory?

What are appropriate length scales and scalings for the
various origins of size effects? Do these evolve? How?
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Sensitivity to Perturbations

L

h
ss

t

ss

Plane strain tension with positions of nucleation sites or
dislocation positions perturbed.

No overall instability.

The system is termed chaotic if small perturbations in the
initial configuration are amplified exponentially with time.

Deshpande et al., Scripta Mat., 45, 1047, 2001.
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Sensitivity to Perturbations
Dislocation dynamics can exhibit extreme sensitivity to small
perturbations – chaotic in this sense.
Two cases; dislocations (or sources) at x0 and x0 + δo at t0.

‖δ(t)‖ =
1

N

N
∑

I=1

√

(x
(I)
p (t)− x

(I)
u (t))2 + (y

(I)
p (t)− y

(I)
u (t))2
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Sensitivity to Perturbations
Dislocation dynamics can exhibit extreme sensitivity to small
perturbations – chaotic in this sense.
Two cases; dislocations (or sources) at x0 and x0 + δo at t0.
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1
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N
∑

I=1

√

(x
(I)
p (t)− x

(I)
u (t))2 + (y

(I)
p (t)− y

(I)
u (t))2

(a) (b)(a) (b)
ε (%)

0 0.05 0.1 0.15 0.20

10

20

30

40

50

60

70

unperturbed

perturbed

σ (MPa)

(a) (b)
∆a (µm)

0 0.05 0.1 0.15 0.20

0.4

0.8

1.2

1.6

2

unperturbed

perturbed

KI/K0

Stress-strain Fracture

Deshpande et al., Scripta Mat., 45, 1047, 2001

Camb-04 – p.21



Sensitivity to Perturbations

Which behaviors are sensitive to tiny variations in initial
conditions and which are not?

What are the relative roles of statistical and geometrically
necessary dislocations?

Are there inherent limits to the controllability of dislocation
based phenomena?
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Statistical Effects

From the discreteness of dislocation sources (source
locations can matter).

Continuum plasticity theories, local and gradient, presume
that if field variables at a material point satisfy a plastic
flow condition that there is a source at that material point
to produce the necessary dislocations.
At sufficiently small scales, this is not necessarily the
case.

From the chaotic nature of dislocation interactions.

What are the limits to a deterministic description of plastic flow?

When is a single discrete dislocation calculation insufficient and
an ensemble of calculations needed?
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Size Effects and Fracture
An observed increase in strength at micron size scales is
associated with the dislocation structures induced by plastic
deformation gradients (GNDs), e.g. Fleck et al. (1994).

Crack tip deformation fields give rise to large plastic
deformation gradients.

Dislocations play a dual role in fracture: (i) plastic flow caused by
their motion increases the resistance to crack growth; (ii) local
stress concentrations associated with organized dislocation
structures promote crack growth.
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Stationary Crack – Two Slip Systems
Classical crystal plasticity – sectors of constant stress, Rice
(1987).

Dislocation structure.

Many internal sources – no special dislocation nucleation from the crack tip.
Camb-04 – p.25



Crack Growth

Cohesive surface framework.

The location of one or more cohesive surfaces is specified.

Two constitutive relations – a bulk constitutive relation and a
cohesive constitutive relation.

A characteristic length is introduced.

No crack tip singularity.

Principle of virtual work:
∫

V

σijδεijdV −
∫

Scoh

Tiδ∆idS =

∫

Sext

TiδuidS
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Cohesive Constitutive Relation

K0 =

√

Eφn
1− ν2
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Hysteresis and Fatigue Crack Growth
Crack growth under cyclic loading that occurs even when the
driving force for crack growth is smaller than what is needed
for crack growth under monotonic loading conditions.

Because of the anti-shielding character of the near tip
dislocation structure, decohesion can occur under cyclic
loading conditions in circumstances where it is precluded
under monotonic loading conditions.

Hysteresis is necessary for fatigue.
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Short Crack Effect
Edge cracked specimen.

For a < 100µm cyclic crack growth occurs with
Kmax < K0 =

√

Eφn/(1− ν2).

K0 is a measure of the work of separation, φn, which must
be supplied locally for crack growth to occur.
Kmax = Cσmax

√
πa is a measure of the applied stress;

due to the anti-shielding nature of the dislocation
structure, the “local K” can be greater than Kmax.

Deshpande et al., Acta Mat., 51, 1, 2003. Camb-04 – p.29



The Kitagawa-Takahashi Diagram

σmax/σY < 1→ Kmax/K0 < 1 for a ≈ 10µm, where K0 is
the critical stress intensity factor for elastic crack growth.

Kmax

K0
≈

(

σmax

σY

)

√

a/δn
√

Eσcoh/σ
2
Y

≈

(

σmax

σY

)

√

a/δn

E/σY

≈

(

σmax

σY

)
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Short Crack Effect

For crack sizes of ≈ 5µm and smaller, the high stress region
near the crack tip is not large enough to nucleate and move
many dislocations at σmax < σY . Since fatigue requires
irreversibility, fatigue crack growth is precluded.
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Scaling with Material Properties
The fatigue threshold is relatively independent of the material’s

yield strength, Kang et al. (1992).

Scaling with Young’s modulus is seen, Liaw et al. (1983).

da/dN is not sensitive to σY in the lower Paris law regime.
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Scaling with Material Properties

0.6 0.8 1 1.2
10-5

10-4

10-3

10-2

10-1

100

σY = 60 MPa

σY = 30 MPa

∆KI/K0 , ∆KI
eff/K0

da/dN (µm/cycle)

da/dN v. ∆KI

da/dN v. ∆KI
eff

0.0005 0.001 0.0015 0.002
10-7

10-6

10-5

δn/b = 3 & φn/(σYb) = 68

E/σcoh = 140 & φn/(σYb) = 68

E/σcoh = 140 & δn/b = 3 (E = 70 GPa))

E/σcoh = 140 & δn/b = 3 (σY = 60 MPa)

σY/E

∆Kth
eff/E (m1/2)

∆Keff
th ∝ K0 =

√

Eφn

1−ν2 (φn = eσcohδn) with some deviation

occurring for very low σY.

Vary material – σcoh ∝ E → ∆Keff
th ∝ E

√
δn.

Fix material, vary φn – ∆Keff
th ∝

√
φn.

Deshpande et al., Acta Mat., 51, 4637, 2003.
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Fracture and Fatigue
The local stress concentrations associated with organized
dislocation structures play a key role.

Current nonlocal plasticity theories can, at least in principle,
account for the associated stress increase.

In discrete dislocation plasticity, hysteresis is a natural
outcome of the solution of boundary value problems under
cyclic loading and is key for fatigue.

Current nonlocal plasticity predictions for hysteresis?
Current nonlocal plasticity predictions for scaling with
material parameters?

Source limitation effects can come into play.

Not modeled by current nonlocal plasticity theories.

Dislocation nucleation from the crack tip.

Finite geometry changes – crack tip blunting.
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3D Discrete Dislocation Plasticity
Representation of 3D dislocation fields in anisotropic solids.

Nodal methods

Shenoy et al., Phys. Rev. Lett., 84, 1491, 2000.

Level set methods.

Xiang et al., Acta Mat., 52, 1745, 2004.

Phase-field methods.

Shen et al., Acta Mat., 51, 2595, 2003. Camb-04 – p.35



3D Discrete Dislocation Plasticity
Efficient and accurate 3D multi-body interaction
computations.

Multipole methods.
Lesar, Rickman, Phys. Rev. B, 65, 144110, 2002

Accurate image force calculations particularly when a
dislocation intersects a free surface.

Weygand et al., Model. Simul. Mat. Sci. Eng., 10, 437, 2002.

How much can be learned from incorporating 3D physics into a
2D computational framework?
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Modeling Needs

Finite deformations.

Dislocation nucleation.

Interaction of dislocations with grain boundaries and
interfaces.

Multi-scale connections.

Direct incorporation of temperature dependence.

Multi-physics and multi-mechanism modeling.
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Finite Deformations

Lattice rotations can play a dominant role in the deformation
response of crystalline solids.

Geometry changes significantly affect response in a wide
variety of contexts; crack tip blunting; asperity flattening
and/or shearing; surface roughening.

Due to slip new free surface can be created.

The displacement field is not a continuous single valued
function.

∮

Γ ui,jdxj 6= 0.

Is it appropriate to insist on compatibility of the total
displacement field in a nonlocal plasticity theory?

Camb-04 – p.38



Finite Deformations

There is strong coupling between finite deformation effects
and the discrete dislocation dynamics.

Dislocations can change slip planes due to slip on
intersecting systems.
The slip plane orientation varies due to nonuniform lattice
rotations.
Nonuniform lattice rotations and elastic anisotropy imply
position dependent elastic moduli Lijkl and a polarization
stress term enters the boundary value problem for the (̂ )
fields.

Deshpande et al., J.Mech. Phys. Solids, 51, 2057, 2003.
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Finite Deformations

A numerical method that allows for the creation of new free
surface due to slip.

A numerical method that allows for resolving the effects of
surface steps.

Such methods are under development.

The creation of new free surface and surface steps is
important for coupled mechanical-chemical phenomena.
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Dislocation Nucleation

1. Dislocation multiplication by Frank-Read sources is a
propagation rather than a nucleation phenomenon.

2. Mesoscale models for dislocation nucleation need to be
developed.

Dislocation nucleation from crack tips.
Dislocation nucleation from surface steps.
Grain boundaries and interfaces as sources and sinks for
dislocations.
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Multi-Scale Modeling
Direct connections to atomistic and continuum plasticity
descriptions are being developed.

Defect passing is key.

Miller et al., Acta Mat., 52, 271, 2004.

Obtaining such solutions is extremely computationally
intensive.
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Connections

The lower the level of modeling, the greater the computational
demands.

Direct coupling atomistics to discrete dislocation plasticity to
continuum plasticity.

Information passing.

From experiment.
From lower level modeling.

Unit process modeling (atomistics or high resolution
discrete dislocation) to discrete dislocation plasticity –
nucleation criteria, dislocation motion rules, dislocation
interaction rules.

To more phenomenological theories.
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Connections
What sort of phenomenological mesoscale plasticity theory is
appropriate? When?

Statistical theories. Zaiser et al., Phys. Rev. B, 64, 224102, 2001.

Field theories. Gurtin, J. Mech. Phys. Solids, 50, 5, 2002.

How can direct connections to discrete dislocation
plasticity be made?
Yefimov et al., J. Mech. Phys. Solids, 52, 279, 2004.

Bittencourt et al., J. Mech. Phys. Solids, 51, 281, 2003.

What are the implications of lack of compatibility at the
discrete dislocation scale of the total displacement field?
Deseri, Owen, J. Elast., 70, 197, 2003.

Can appropriate boundary conditions for
phenomenological mesoscale plasticity theories be
determined from discrete dislocation analyses?
How useful are isotropic theories of crystalline solids at
the mesoscale? Camb-04 – p.44



Predictions

What is needed to obtain quantitatively accurate discrete
dislocation plasticity predictions?

What is worth predicting quantitatively? It should be easier,
faster, cheaper to do the predictiction than to do the
experiment.

When are trends and dependence on parameters good
enough?
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Concluding Remarks
Features that are key for critical deformation and fracture
processes in crystalline solids emerge naturally from discrete
dislocation plasticity:

Size effects due to gradients either imposed or arising
from self-organized dislocation structures.
Source limitation effects.
Hysteresis leading to fatigue.

Discrete dislocation plasticity has provided insight into
mesoscale deformation and failure processes and even in its
current state has the potential to continue to do so.
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Concluding Remarks

Discrete dislocation plasticity provides a conduit for relating
atomistic scale information to macro/micro scale behavior.

Discrete dislocation plasticity can:

Provide a framework for assessing the performance and
reliability of micro/nano-scale devices and components.
Provide a framework for the design of material systems.
Provide a quantitative understanding of key fracture and
fatigue phenomena.
Provide a means of exploring the limits of deterministic
predictability of plastic flow and fracture processes and
(possibly) the basis for a statistical characterization.
Provide a testbed for the development of nonlocal
continuum plasticity theories.

But...
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Significant advances in modeling and in computational
methodology are needed before the full potential of discrete
dislocation plasticity can be realized.

Inelastic deformation is often the consequence of more than
dislocation glide; models for coupling with other processes
(e.g. chemical, diffusional) and other deformation
mechanisms (e.g. twinning, phase changes, grain boundary
deformation modes) are needed.
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