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A micromechanical constitutive model for a ferroelectric crystal of the perovskite type is
developed. The model uses a crystal plasticity formulation in which transformation between
crystal variants is treated in the same way as slip on a crystal slip system. The volume frac-
tions of the crystal variants are used as variables which represent the state of the crystal. The
dielectric hysteresis and “butterfly” hysteresis of a single crystal under low frequency cyclic:
electric fields are presented. Estimates of the response of a ferroelectric polycrystal to the
same loading are calculated using a self-consistent mean-field homogenization scheme.
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INTRODUCTION

Seccral micromechanical models for e Behaviear of ferroclectric single
crvstals and polvervstals have been developed in recent vearst! =¥, Whilst
these models have been able to capture the non-linear hvsteresis of ferro-
electric polvervstals. they have generally required the presence of one or
more non-physical parameters to achieve realistic results. In this paper. a
preliminary investigation is made of a new model based on an abstraction
of the microstructural features (ferroelectric domains and grains) found
in ferroelectric polvervstals.  All aspects of this model may be justified
on a physical basis. It applies to isothermal loading of ferroelectrics with
stresses and electric fields. in low frequency (quasi-static) conditions.
The movement of a ferroelectric domain wall gives rise to changes in
remanent strain and electric polarization. These changes arise through
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the transformation of material from one cryvstal variant into another twin
crystal variant. The model described here is based on the fundamental ob-
servation that the increments in strain and polarization caused by domain
wall movement may be treated as if they were caused by slip on crystal slip
svstems. This observation allows established methods of crystal plasticity
theory to be applied to ferroelectrics. The approach relies on two steps:
Firstly. constitutive laws governing the behaviour of a single crystal are
postulated. Secondly, appropriate crystal slip svstems are identified: the
volume fractions of cach of the crystal variants present are used as variables
which represent the current state of the crvstal. The instantaneous tan-
gent properties (elastic modulus. piezoelectric coefficients, and dielectric
permittivity) of a ferroelectric single crvstal can then be calculated.

Using the instantaneous tangent properties of a single crystal. the re-
sponse of the crvstal to any path of loading in electric field and stress
space can be simulated. The loading path is broken up into small steps.
and at cach step. the tangent properties of the crvstal are calculated. The
tangent properties are then used to relate the small step in electric field
and stress to the corresponding changes in strain and electric polarization.
These changes include both a lincar piezoelectric part, and a part arising
from ferroelectric domain wall movement.

The response of a single crystal to cveling electric field and stress load-
ing is predicted. Using a polvervstal homogenization scheme it is possible
to estimate the behaviour of a polvervstal consisting of many. randomly
oriented crystals. Predictions of polveryvstal behaviour using an incremen-
tal self-consistent homogenization scheme are presented. This averaging
scheme uses a solution to the Eshelby inclusion problem in a ferroelectric
medium to relate loads applied at the boundaries of a polvervstal to the
local stress and electric field conditions experienced by each crystal. This
allows for the effects of residual stress fields and internal bias fields to be
accounted for in a consistent way  Details of the self-consistent homoge-
nization scheme arc given elsewhere (> 81

Definitions and notation

Notation with subscripted indices is used to represent Cartesian tensors
throughout. with summation over repeated indices. The symbol 9;; is used
to represent the Kronecker delta which takes on the value unity when i =
and zero otherwise. The stress field and electric field in the single crvstal
are assumed to be uniform and represented by o;; and E; respectively. The
total strain and electric displacement in the single cryvstal. defined relative



CRYSTAL PLASTICITY MODEL 41

to a zero initial state, will be represented by ¢;; and D; respectively. The
svinbols €}; and DY refer to the “plastic” or remanent parts of strain and
electric displacement in a crvstal, which would remain upon removal of
stress and electric field. Small increments in all of these quantities are
indicated using a dot. such that j, is a small increment in the stress expe-
rienced by the single crvstal. The analvsis leads to a scheme for evaluating

insta: OUS ‘merties ! Y L for a sinele crvst:
istantaneous, tangent properties Li, . ai,, by, and \j; for a single crystal,
defined byv:

= I ! .
Oij Liju €kl

E, b ik Dy )

i

The reciprocity relation «f.. = bl is not assumed.
A kij ikl

SINGLE CRYSTAL MODEL

This section focuses on a single cryvstal with the perovskite-like tetrago-
nal structure found in several ferroclectrics. which has six distinct crvstal
variants. The following form of constitutive law for a ferroelectric single
crvstal is postulated:

(eij =€) | _ | Mune diij Okl (2)
(Di - Df’) diki h‘?k E;
This relates the linear parts of strain and electric polarization to the applied
stress and clectric field loading. A/ is the current elastic compliance. dy;

the current piezoelectric tensor. and ~§, the current dielectric permittivity
at constant stress. The following assumptions are made:

1. that the stress 7;; and electric field E; are uniform throughout the
crvstal.

84

that the overall strain ¢;; and electric polarization D; of the crystal
take on the volume average values of the corresponding quantities.
as illustrated in figure 1.

3. that the volume-fraction occupied by the domain walls which sepa-
rate the variants is negligible.

Each variant within a crystal has its own set of linear properties. Let
the variants be numbered [ = 1.6. The symbols M/, d}, and x}; denote
the lincar properties of the Ith variant in the crvstal. and are constants.
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Crystal with a single Twinned crystal with equivalent average strain
variant 2 variants and polarization

Figure 1: Average strain and polarization assumptions in a crystal

Let the volume-fraction of the Ith variant be denoted by ¢!. such that
Y, ¢! = 1. From assumptions 1 and 2 above. it follows that the overall
lincar properties of the cryvstal are given by:

Mg = Y oMy (3)
1

(l,'“ = Zl"([,’k, (-1)
1

o= S e, )
I

Kinematics of twinning transformations

Consider a transformation between different crvstal variants. Each of six
variants may transform into anyv of five other variants giving a total of 30
transformations. Each transformation is characterized by a transformation
strain and a transformation electrical polarization. Here. transtormation
kinematics will be analvsed as if they were the result of slip on crystal slip
svstems.

Typical examples of a 90° and a 180° transformation in a tetragonal
crvstal are shown in figure 2. where the tetragonality is exaggerated for
clarity.  Concentrating on the 90° transformation in figure 2. the strain
associated with complete transformation may be represented as a matrix
€ in the Cartesian axes 1.2 and 3 of figure 2. given by

1 00
e=c| 0 =1 0 (6)
0 00
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Figure 2: Transformations and slip planes in tetragonal crvstals

where € = (I, — [1)/1;. The corresponding shear strain ~. slip plane normal
ny and slip direction s; are given by:

1
v = 2¢, n=—1|1]. s=— ] —1 (7)
0

The transformation strain may be written as 5 where the components
of orientation tensor iy = (nps) + sgny)/2 are:

1/2 0 0
p=1| 0 -1/2 0 (8)
0 0 0

Note that the same transformation strain could be achieved with n =
[=1 1 0)7/V2ands=[~-1 =1 0]7/v2. but this would give rise to
a different final value of polarization. By analogy with the transformation
strain. the transformation polarization change may be written as D; = Ds;.
where D is the magnitude of the polarization change.

180° transformations produce no strain change. but a complete reversal
of polarization. The 180° transformation shown in figure 2 may be rep-

resented formally by n =0 0 0}.s=[0 -1 0]’ giving py = 0
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and D; = V2Ds;. Note that the magnitude of the polarization change is
a factor V2 greater than that of the 90° transformation. The fact that
different transformations have different magnitudes of strain and polar-
ization change associated with them can be incorporated into the model
in a general wayv by numbering the different transformations o = 1..... 30
and having a set of constants v, D* which represent the shear strain and
polarization change associated with the ath transformation.

Next consider an incremental transformation from one variant to an-
other. with slip svstem «. Let fe denote the incremental volume-fraction
of material transformed. The corresponding plastic strain increment is
f“;l}}*,". Similarly. there is an increment in plastic polarization f"s? D".
If several slip svstems are active simultaneously. then the plastic strain
and polarization increments may be computed by summing over the set of
active slip systems: |

=Y frugne (9)
D! = Y festD (10)

Note that the quantities fo are a set of kinematic variables which govern
the increments in both plastic strain and plastic polarization: €7, and D’
are not independent quantities in ferroclectric crystals.

Similarly. increments in the linear coefficients ;\Yijk,. (ikij and k% may be
computed in terms of the kinematic variables f. If slip system a depletes

a variant I and produces a variant .J then it produces an increment M,
of the form (M, — ML) A “connectivity matrix™ 4’® may be defined
such that 47 = 1 if slip svstem « produces variant I. A/ = —1 if slip
svstem a depletes variant /. and 4’® = 0 in all other cases. Then the
increment _\'1,-‘}“ due to slip on svstem a is given by ¥, A"‘f“,\]igk,.
Similar relations are valid for (ik,J and K% Summing cver all active slip
svstems gives:

6

Miw = > -4,‘115(“[:{;1:/ (11)
I=1 a
. 6 hy
dey = SN AlRfdl (12)
I=1 «
6 .
’\TA _ Z Z .-l,(‘fuh'!k (]3)
I=1 o

These equations could equally have been derived by differentiating equa-
tions 3. 4 and 3. noting that ¢! =3, Alefo,
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Yield criterion

A vield criterion is required to define the combinations of stress o;; and
electric field E; which can give rise to transformation on a particular slip
svstem o, The following vield criterion is proposed:

o7 + Eist DY = G° (14)

Here G is a dissipated energy per unit volume: it is the magnitude of
the plastic dissipation for full switching on slip syvstem «. Addition of
the electrical and mechanical terms on the left hand side of equation 14
may be justificd in the following way. Suppose that vield occurs at some
combination of stress and electric field o;;. E;. and that the entire volume
of the crvstal transforms from variant 1 to variant 2 by slip system «. The
work « done per unit volume by the combined stress and electric field
during transformation is:

w = oy + Est D (13)

which is the left hand side of the vield criterion. Equation 14 states that
the work done in transforming the crystal from variant 1 to variant 2 is
independent of the tvpe of loading which causes the transformation. For
present purposes. equation 14 is insufficient to specifv whether or not a
slip svstem is active. If the Ith variant is depleted by a transformation,
and has volume-fraction ¢! = 0, then the transformation cannot occur.
Consequently.

vl >0 (16)

is also required for vield. A slip svstem which satisfies both equations 16
and 14 will be described as “potentially-active™. For an active slip svstem:

fe>0 (17)

Hardening

Hardening behaviour is included in this model to stabilize numerical com-
putations of the increments ;. ¢€;;. [:, and D, The hardening rate is
chosen to be small enough to give several cveles of hysteresis without a
noticeable increase in GG°. For simplicity. the hardening law adopted is
independent hardening. with a constant. positive hardening rate h such
that:

;= hfe (18)
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Following Hill ! a hardening matrix h*® (or h) is defined so that equa-
tion 18 may be rewritten as

',vn — Z hu.iif'ii (19)
3

The chosen hardening law has h = AI where I is the identity matrix. Note
that. since f" > 0 the hardening rate is never negative.

The specification of equations 2 to 3 and equations 9 to 19 suffices
to define the tangent properties of equation 1 for a cryvstal. given a set
of potentially active svstems. The method is analogous to that used by
Hutchinson ™ to find the tangent properties of metal crystals; details are
given separately (5]

SINGLE CRYSTAL AND POLYCRYSTAL RESPONSES

Consider a tetragonal ferroelectric material in which the elastic modulus.
piezoelectric tensor and dielectric permittivity of each crystal variant are
given by:

Lijge = Ao 4 p1(0ixd s + 0,00 4) (20)
dey = pe(Bpip; — 0i;)d/2 (21)
Kok = KO (22)

Here A and jr are the Lamé elastic parameters (p being the shear modulus
of the crvstal). d is the axial piezoelectric coefficient and x is the dielectric
permittivity: p, represents a unit vector parallel to the remanent polariza-
tion vector of the crvstal variant. This material has isotropic elastic and
dielectric behaviour. and a simple form of piezoelectricity. Let the starting
state for the crvstal be that in which there is an equal volume fraction of
cach of the six crvstal variants:

vl =1/6 (I =1...6) (23)

The orientation of the crvstal is chosen such that its cryvstallographic axes
lie parallel to the +1. +2 and +3 axes of the coordinate syvstem in which
the caleulations are done. For computation. it is convenient to normalize
all physical quantities in such a way that their values are of order unity.
This can be achieved by choosing four normalizing quantities  a shear
strain ~° to normalize all strains. a shear stress 7¥ to normalize stresses.
an electric field EY and an electric polarization DY, Here. a normalization
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1s chosen such that in a plane strain, pure shear test in the 1-2 plane, vield
occurs when o,,/7° = 1 and 2¢,,/4° = 1. In pure electric field loading
along the 1 axis. vield is chosen to occur at E;/E® = 1 and D,;/D° = 1.
The model is chosen to have “lock-up” strains and polarizations about
5 times the values at vield. so that an extensive plastic regime exists.
Consequently. the values of 7® and D® on various slip svstems o are as
follows:

180° slip svstems:  ~* =0 D* =5DY
90° slip svstems: " =530 D* =35D/\/2

Note that the kinematics of the slip svstemns demands that for a 180°
slip svstem ~® = 0. and that D®(180°) = v/2D"(90°).

Now consider loading this crystal with slowly cveling electric field E|
as shown in figure 3. A normalized graph of D, against E'| in pure electric
ficld loading is shown in figure 1. The corresponding graph of strain ¢,
against electric field is shown in figure 5. In both figures the loading is
one and a half full cyveles of electric field E; of amplitude 4EY. with the
loading initially proceeding in the positive 1 direction. The initial transient
response is labelled A-B-C-D in figure .

Electric
Field
1

™~
Y
~
(¢

Figure 3: Electric field loading path

The model predicts a simple form of dielectric hyvsteresis and butterfly
hysteresis in the single ervstal. After one half evele of loading. the single
crvstal settles into a stable cvelie response. Ferroelectric switching occurs
at a constant magnitude of electric field. giving rise to sudden “switching”
behaviour in the ervstal. and sharp corners on the hysteresis curves,
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crystal with simple piezoelectricity
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Ferroelectric polverystal

Using a polvervstal homogenization scheme it is possible to estimate the
response of a ferroelectric polvervstal to the electric field loading shown
in figure 3. The homogenization scheme used here is the incremental
self-consistent scheme. Each crvstal in the polvervstal is modelled as a
spherical inclusion embedded in an infinite matrix of surrounding material
which has the current tangent properties of the whole polverystal. So-
lutions of the Eshelby inclusion problem for a ferroelectric medium are
needed to relate the local stress and electric field conditions in each crys-
tal to the remote applied loads on the polverystal. Expressions derived
by Deeg and others B0 allow for numerical solution of the constrained
inclusion problem. The incremental self-consistent scheme is described in
detail clsewhere ™ % This paper gives some results calculated using the
self-consistent scheme to illustrate the differences between the response of
the single crystal and that of the polvervstal.

Let the remote stress and electric fields in the polyverystal be 7;; and
E; respectively. Similarlv. let the total strain and electric displacement
of the polyverystal be €, and D;. Note that Tij- E.. €. and D; mav be
written as the volume averages of the corresponding quantities o;;. E;. ¢;;
and D; over the set of ervstals which make up the polvervstal. The self
consistent scheme produces an estimate of the overall tangent properties
LYy ay;- by and \§ defined by:

= 0 0 =
- = B ’ — 2
E; bivi Xk Dy

Using the overall tangent properties. the response to any path of loading
applied to the polyvervstal can be simulated by breaking up the path into
a series of short steps. At each step. the overall tangent properties of the
polyvcvstal are estimated. and the increments &;; and D, are calculated by
inverting equation 24.

The response of a polvervstal consisting of 100 randomly oriented crvs-
tals with the properties defined by equations 20. 21 and 22 was estimated
using the incremental self-consistent scheme. The electrical loading was as
shown in figure 3. except that five full cveles were applied. The resulting
hvsteresis in electric polarization versus electric field is shown in figure 6.
The corresponding butterfly hysteresis is shown in figure 7.

The dielectric hysteresis and butterfly hvsteresis for the polvervstal
show a smooth transition from linear behaviour (without ferroelectric trans-
formation) to non-linear behaviour (with ferroelectric transformation). This
contrasts with the single cryvstal simulations which show sharp corners at
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Figure 6: Simulated electric polarization D, /D" versus electric field E, /E°
for a polycrystal with piezoelectricity
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Figure 7: Simulated strain €, /4% versus electric field E,/E® for a poly-
crystal with piezoelectricity
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the onset of non-linearity. In the polverystal, each crystal transforms grad-
ually, over a range of values of the remotely applied load E,. When a crvstal
begins to transform. it produces remanent strain and polarization states
which are different from its surroundings. This gives rise to local residual
stresses and electric fields which oppose the transformation. The result is
that transformation is spread over a range of values of E;: domain walls
sweep gradually through the crvstal as the remote loading is increased.

The presence of residual stresses and electric fields gives rise to a mem-
orv effect which means that the response of the polvervstal is strongly de-
pendent on its loading history. The butterfly hysteresis curve settles into
a stable shape only after several full eveles of applied loading. The stable
shapes of the hysteresis curves are gualitatively similar to those found in
ferroelectric polvervstals.

CONCLUSION

A crvstal plasticity approach to modelling ferroelectric materials has been
developed. The basis of this approach is the observation that the rema-
nent strains and polarizations produced by ferroelectric switching may be
treated as if they were slip increments on erystal slip svstems. Expressions
for the instantaneous tangent properties of a ferroelectric crvstal follow-
ing a simple constitutive law have been derived. The incremental self-
consistent homogenization scheme has been used to estimate the response
of a polverystal composed of randomly oriented single crystals following
this constitutive model. The results show smooth dielectric and butterfly
hvsteresis loops. similar to those observed in ferroelectric polyerystals of
tetragonal perovskite structure. The constitutive model may thus have
applications in modelling the isothermal behaviour of ferroelectrics under
low frequency loading with stresses and electric fields.
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