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Abstract—The theoretical framework is developed for a new theory of cold rolling thin metallic foil.
Unlike previous theories, the work rolls are allowed to deform to a non-circular profile and finite
regions of no-slip between strip and work rolls are allowed to occur in the roll bite. The theory predicts
that plastic reduction occurs near entry and near exit of the roll bite, separated by a central region
where the strip does not suffer reduction and does not slip relative to the work rolls. As the reduction is
decreased to zero the theory reduces to essentially the Johnson and Bentall theory [J. Mech. Phys.
Solids 17, 253 (1969)] for the onset of plastic reduction in a strip. At large strip thicknesses and finite
reductions the new theory approximates the Bland and Ford theory [ Proc. Inst. Mech. Engrs 159, 144
(1948)] of cold rolling.
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NOTATION

contact width from centre line of rolls to entry or exit location

semi-thickness of strip

reduction in semi-thickness of strip from entry of roll bite to central, elastic no-slip zone

reduction in semi-thickness of strip from entry to exit of roll bite

normal pressure and shear stress, respectively, between strip and work rolls

maximum Hertzian pressure

overall reduction of strip

intermediate reduction of strip

slip velocity

tangential and normal displacements in the x and z directions, respectively

absolute velocity in x direction

Cartesian co-ordinates

location of boundary between zones A and B

location of boundary between zones B and C

location of boundary between zones C and D

location of boundary between zones D and E

location of boundary between zones E and F

location of boundary between zones F and G

Young’s modulus

Plane strain Young’s modulus

(1 =2vp)(1 +vg)
E

vg(l +vg)
E

stiffness constant, where — +

E

R S

non-dimensional inlet thickness of strip

constant of proportionality for pressure in elastic foundation model

constant of proportionality for shear stress in elastic foundation model

unknown constants
rolling torque per work roll, per unit width of strip

non-dimensional rolling torque

radius of undeformed work roll
radius of deformed work roll

dimensionless group

velocity of unstrained strip or rolls in x direction
rolling load per unit width of strip

non-dimensional rolling load
yield stress of strip in uniaxial tension
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a3, 04, Ois, O, ¥ parameters used to define stresses in the elastic, non-slip zone

&, &, tensile strain in longitudinal x direction and normal z direction, respectively
v Poisson’s ratio

g, 6, tensile direct stress in x and z directions, respectively
t shear stress

&= (Vg—Vg)/ Vg creep coefficient

1 coefficient of Coulomb friction
o angular velocity of work rolls

Subscripts
crit  critical
S strip
R work roll
0 quantity at entry of strip into roll bite
1 quantity in the central, elastic no-slip zone
2 quantity at exit of strip from roll bite

1. INTRODUCTION

A large tonnage of aluminium and steel foil is cold rolled each year for the packaging and
electrical industries. There is no satisfactory rolling theory for this process, as conventional
cold rolling models fail when the strip is thinner than about 100 ym. In this paper, the
framework for a new theory of rolling thin foil is developed. The theory is novel in the sense
that it attempts to model seriously the deformation of the work rolls and the frictional
conditions between the work rolls and foil.

2. PREVIOUS THEORIES OF COLD ROLLING

Cold rolling consists of passing a strip of thickness 2b, between two work rolls in order to
reduce the strip thickness to a smaller value of 2b,, see Fig. 1(a). The overall reduction, r, is
given by (b, — b,)/b,. Usually, lubricant is applied between the strip and work rolls in order to
reduce the coefficient of Coulomb friction, u, and thereby to reduce the rolling load.

Conventional theories of cold rolling developed by von Karman [1], Orowan [2] and
Bland and Ford [3] assume that the work rolls remain circular in shape, although the roll
radius may be increased from R to R’ in the arc of contact due to roll deformation, Fig. 1(a).
The theories also assume that limiting Coulomb friction occurs over the whole contact arc
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Fi1G. 1. Cold rolling of (a) thick strip and (b) thin foil.
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between work rolls and strip. At entry the strip moves slower than the rolls, while at exit the
strip moves faster than the rolls. No-slip between the rolls and strip occurs only at a single
section between entry and exit, known as the neutral section. There the strip and rolls have a
common velocity of wR, where w is the angular velocity of the rolls, Fig. 1(a).

These assumptions about the geometry of the rolls and the slip conditions are reasonable
for the case of rolling a thick strip, where the ratio of inlet strip thickness, 2b,, to length of
contact zone, 2a, is of the order of unity. When thin foil is rolled, the ratio a/b, is much greater
than unity, see Fig. 1(b). Then, the rolls are deformed into a non-circular shape and a region of
no-slip (neutral zone) may exist at the centre of the contact zone.

With decreasing strip thickness, the roll load required to achieve a given reduction
increases and there has been speculation that a ‘limiting gauge’ may exist below which
increasing load results in increasing deformation of the rolls without further plastic reduction
in the strip. This behaviour is predicted by the Bland and Ford theory [3] and also by Ford
and Alexander [4], who examined the stresses in an elastic strip to determine the load at
which yield begins. Their conclusion that a limiting gauge exists arose from their erroneous
assumption that slip, and hence limiting friction, exists throughout the contact zone. Johnson
and Bentall [ 5] also examined the problem of first yield and the onset of reduction of thin foil,
but admitted the possibility of a central region of no-slip. They showed that a region of no-
slip would be expected over a substantial fraction of the contact zone and that, in
consequence, no limiting gauge would be reached; a conclusion which is consistent with
practice in rolling aluminium foil.

The new theory of foil rolling presented here seeks to extend the analysis of Johnson and
Bentall [5] for the case of finite reductions of thin strip. This new theory allows for the
existence of a no-slip region, and relaxes the assumption that the deformed work roils remain
circular. It is shown below that the new theory reduces essentially to the Johnson and Bentall
solution [5] in the limit of zero reduction, and approximates the Bland and Ford solution [3]
for finite reduction of thick strip.

Grimble et al. [6, 7] and Quan [8] have also developed new theories of cold rolling. While
Grimble and co-workers assume correctly that the work rolls deform to a non-circular
profile, they assume mistakenly that limiting friction exists throughout the contact zone.
Quan recognizes the existence of a central elastic region but assumes incorrectly that the rolls
remain circular.

3. ASSUMPTIONS OF NEW THEORY

The new theory assumes plane deformations with no lateral spread of the strip. For
simplicity, zero front and back tensions on the strip are considered; non-zero front and back
tensions can be incorporated in a straightforward manner, but make the analysis more
cumbersome.

Detailed assumptions are now given about the behaviour of the strip, rolls and the slip
conditions at the interface between rolls and strip.

3.1 Behaviour of strip

We assume homogeneous deformation of the strip, such that plane sections remain plane.
This is justified by considering the equations of equilibrium in non-dimensional form. The
stresses in the strip and between the strip and rolls are defined in Fig. 1(a), using the Cartesian
co-ordinate system given in the figure. Let the stresses in the strip, 6, o, and 7 be functions of
the Cartesian co-ordinates x and z. Then by equilibrium,

L(L) _ _<ég>_ﬁ_(zf)
0(z/bo) Do B a ) o(x/a)\ po

0 g b 0 T
d Zzy_ (20 .
an 3(z/bo) (,,) < a )a(x/a) <p> ’ @

where p, is a representative pressure given by the maximum pressure on the strip, 2a is the
contact length and 2b, is the strip thickness at entry, see Fig. 1(a).
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The non-dimensional equilibrium equations (1) indicate that the variation of stress across
the thickness of the strip may be neglected when by/a < 1; this condition is met for the case of
rolling thin foil.

Now consider an element of the strip, of height 2b and length dx, Fig. 1(a). It is assumed
that the stresses o, and o, acting on this element are independent of z, and are principal
stresses. Since the interfacial frictional stress on the element, g, is much less than the normal
stress, p, in lubricated contact, and by/a < 1, the assumption that ¢, and o, are principal
stresses (and 7 = 0) is justified.

Vertical equilibrium of forces on the element of the strip shown in Fig. 1(a) gives o, = —p,
since db/dx < 1, while horizontal equilibrium leads to,
do db
= —0,)—+q=0. 2
R A Y @

The strip is assumed to behave in an isotropic, elastic—perfectly plastic manner, with a
Young’s modulus, Eg, and a Poisson’s ratio, v. Yield occurs when Ia, — oxl = Y, where Yis
the uniaxial yield stress of the strip, in accordance with the Tresca yield criterion.

Since the strip is much thinner than the elastic deformation of the rolls, we ignore elastic
and contained plastic compression of the strip in the z direction. In the zone of contained
plastic flow, plastic strains are of elastic order of magnitude, as discussed below.

3.2 Behaviour of rolls

An exact treatment of the elastic deformation of the rolls is difficult since the elastic
displacements (normal and tangential) of a surface point in the nip are integral functions of
the pressure and traction distributions throughout the nip. For the purposes of this
exploratory study the problem was simplified by adopting an elastic foundation or ‘mattress
model’ for the deformation of the rolls. In its simplest form the pressure at location x in the
nip is related to the normal displacement of the surface of the roll at that point w(x) by

p(x) = K,w(x), 3)

where K, is a constant ‘foundation modulus’ whose value is chosen to give a good match with
the true deformation. Similarly in the tangential direction the interfacial shear traction g(x) is
related to the tangential displacement u(x) by

q(x) = Ku(x). @

Such a relationship is sometimes referred to as the ‘wire brush’ model, since individual bristles
deform independently of their neighbours.

However, the use of equation (3) for the normal deformation of the rolls has an obvious
shortcoming. With thin foil the plastic compression of the foil is generally small compared
with the elastic compression of the rolls, so that the overall pressure distribution is
approximately Hertzian (elliptical). In the limit of zero reduction, examined by Johnson and
Bentall [5], it will be exactly so. But the mattress model of equation (3), in the limit of purely
elastic deformation, leads to a parabolic distribution of pressure. This discrepancy was found
to be significant so that the assumed relationship between roll pressure and deformation was
modified to

P(x) = po /1= (x/a0)’ — K, Ab, (32)

where p, is the maximum pressure and a, is the distance from the contact at entry to the
centre-line of the rolls. The mattress model is retained for the perturbation in the pressure at
point x due to the plastic reduction 2Ab(x) of the foil at that point. Note that equation (3a)
reduces to the correct Hertzian form when the plastic reduction is zero.

The choice of values of K, and K, is based on comparison with the exact solution of known
problems and is discussed by Johnson [9]. On this basis we have taken K, = 8E}/3na, and
K,= 2K, where E} is the plane strain modulus of the rolls, E,/(1 —v2).

3.3 Slip behaviour
The Coulomb friction law is assumed, with |g| < pp for no-slip,and g/up = — §/|$| for slip.
Here, § is the slip velocity of the strip relative to the rolls at any location.
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Let the velocity of the unstrained strip be ¥ and the velocity of the unstrained rolls be V.
Then, the velocity of the strained strip, v, is

vg= V(1 + (Es), 5)

where (g,) is the longitudinal strain in the strip. Similarly, the velocity of the surface of the
rolls, vy, is

vp = Vi (14 (ex)p) (©6)

where (¢,), is the longitudinal strain at the surface of the rolls. The slip velocity, § = v, — v, is
R S R
expressed by,
s V—V v
T= SR IS (4 (69 — (14 (e 0

R R R

If we define the creep ratio, £, by (V— V;)/ V5, then equation (7) reduces to our fundamental
equation of slip,

%=wfwﬁ¢ ®)

where we have neglected the second-order quantity ¢ (e,);. In regions of slip |§| >0 and
q/up = —$/|$|, while in regions of no-slip § = 0 and |g| < up.

It is known from industrial practice that the roll speed, ¥, has a large influence on the foil
rolling process. Usually, an increase of roll speed at a fixed rolling load leads to an increase of
the amount of plastic reduction. Unfortunately, the effect of speed is not modelled explicitly
by the Coulomb friction law. As a first approximation, an empirical relation between y and
Vx could be determined by matching the new rolling model to mill data. This is not pursued
here.

4. GENERAL FEATURES OF THE SOLUTION

The analysis predicts that a number of different zones exist in the roll bite, where the stress
state in the strip may be elastic or plastic, and there may be slip or no-slip. Equations for the
stresses and deformations of the rolls and strip in each region are given in Appendix 1, while
the method of solution is outlined in Appendix 2.

The general form of the solution is shown in Fig. 2. Seven distinct zones exist in the roll bite,
labelled A—G. We shall consider the behaviour of the strip in each zone in turn.

Zone A (see Fig. 2)

Atentry, zone A, the strip is elastic and travels more slowly than the rolls. Limiting friction
acts on the strip, pulling it into the nip. The thickness of the strip remains equal to 2b, since
normal elastic compression of the strip is ignored. The normal pressure on the strip, p(x),
equals p, \/ 1 —(x/ay)* by equation (3a), and the longitudinal stress o,(x) is derived by
integrating equation (2) with g = up. The pressure, p, builds up much more quickly with
increasing x than does o,, and the strip yields at the end of zone A.

Zone B

In zone B, the strip experiences plastic reduction and the thickness decreases by a total
amount of 2Ab; . Since the strip experiences large tensile plastic strains in the x direction while
the rolls remain elastic, it is impossible for the slip velocity, s, to be uniformly at zero from
equation (8). Therefore, slip occurs in zone B with § < Oand g = up. The variation in pressure
p(x) through zone B is found by integrating equation (2) numerically, with the aid of equation
(3a) and o, given by 0, = Y +0,.

Zone B ends when there is no more plastic reduction of the strip, that is when db/dx = 0. If
plastic flow with slip were allowed to continue beyond this point the strip thickness would
increase again, which violates the plastic flow rule. Thus, a central region exists where the strip
does not experience appreciable plastic reduction. This central region consists of zones C-E.

There, the normal pressure is given by p(x) = po /1 — (x/a)* — K pAbl , where 2Ab, is the
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STRESSES IN STRIP
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FIG. 2. General solution for stresses in strip and deformation of strip.

reduction of strip thickness in zone B. This pressure distribution is elliptical in shape but is
reduced in magnitude by an amount K_Ab; from the Hertzian solution.

Before further examination of the central zones C-E, we shall consider the deformation
state in zones F and G near the exit of the contact region.

Zones F and G

Zone G is adjacent to the exit of the bite. In this zone, the strip is moving faster than
the rolls and ¢ = — up. The strip behaves elastically and experiences a normal pressure,
P = Do \/ 1 — (x/a,)® — K_Ab,, where 2Ab, = r2b, is the total plastic reduction of the
strip thickness in the roﬁ bite. The size of the contact region at exit, a,, is determined by
putting p = 0, x = a, and Ab, = rb, in equation (3a) and solving for a,.

We compute the longitudinal stress, o,, in zone G by integrating equation (2), with the
boundary condition that ¢, = 0 at x = a,. Since elastic compression in the z direction is
neglected for the strip, db/dx equals zero in equation (2). The start of zone G and the end of
zone F is found by locating the point in zone G where the yield criterion |o,—0,| = Y is
satisfied.

In zone F, the strip experiences plastic reduction and slips in a forward direction relative to
the rolls. The interfacial shear stress q is given by — up, while the longitudinal stress, o, equals
0.+ 7Y, in accordance with the yield criterion. The normal pressure, p, is computed by
integrating equation (2) numerically, while making use of the assumption g, = — p, the yield
condition and of equation (3a). The boundary between zones E and F is determined by
determining the point of intersection of the pressure profile in zone F with the pressure

distribution p = py /1 — (x/ap)* — K, Ab, in zone E.

Zones C, D and E

We now consider the central zones C, D and E where no significant plastic reduction
occurs. We have already argued that a slip region with plastic reduction of the strip cannot
occur in zone C, adjacent to zone B. Let us consider a number of alternatives to show that the
strip suffers contained plastic flow with no slip in zone C, as shown in Fig. 2.

(1) Suppose the strip is elastic, and slip occurs with g = up in zone C. This leads to the
rapid build up of a large compressive longitudinal stress o, with increasing x, until the strip
yields in reverse and thickens! This is incorrect on physical grounds.
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(2) Suppose the strip is elastic, but does not slip in zone C. The longitudinal stress o, is
calculated from equations (2), (3a) and (8). The solution for o, indicates that yield is exceeded,
violating the yield condition.

(3) Suppose, correctly, that the strip is at yield and no-slip occurs in zone C. The strip
experiences further tensile plastic strain in the x direction of elastic order of magnitude, in
order to maintain no-slip with the elastically deforming rolls according to equation (8). The
longitudinal stress o, in the strip is given by the yield condition, o, = Y+ 0, and the shear
stress g is derived from the equilibrium equation (2). Since the plastic strains in the strip are of
elastic order of magnitude in this zone, compression of the strip in the z direction is neglected
and db/dx = 0 in equation (2). The deformation in this zone may be described as ‘contained
plastic flow’.

Zone C cannot exist for x > 0, since for x > 0 equation (8) dictates that additional small
compressive longitudinal plastic strains are required in order to maintain the no-slip
condition. Such compressive plastic strains violate the plastic flow rule. Therefore, zone Cis
followed by a region D of elastic unloading. In zone D no slip occurs until g/u reaches — p,
whereupon the strip slips while remaining elastic. This is zone E.

In region E, the strip moves faster than the rolls and ¢ = — up. The longitudinal stress, o,,
is computed by integrating equation (2), with db/dx = 0.

The stresses in zone D are determined by solving equations (2) and (8), assuming no-slip.
Full details are given in Appendix 1. The boundaries of zone D are located by matching the
stresses in zone D to the stresses in zones C and E, as described in Appendix 2.

The solution illustrated in Fig. 2 is significantly different from previous solutions by Bland
and Ford [3]. In the present analysis, the rolls are deformed to a flat profile with a Hertzian
pressure distribution, except where significant plastic reduction occurs. The zones of plastic
reduction B and F occupy a small fraction of the contact region compared with the central,
no-slip zones.

5. CALCULATION OF ROLLING LOAD AND ROLLING TORQUE

The rolling load, W, per unit width of strip and the rolling torque, Q, per work roll, per unit
width of strip are calculated by considering the stresses acting on the centre-plane of the strip.
Thus,

W=J‘ p(x)dx 9)

and 0= Jaz —p(x)xdx. (10)

The pressure distribution, size of contact region and the slip distribution (s/ V) associated
with plastic reduction of the strip can be determined from a knowledge of the solution in
zones A, B, F and G. An examination of the equations for these stresses and the slip
distribution, as summarized in Appendix 1, shows that only three independent non-
dimensional groups, pag/bo, r and U = pE¥ /Y, are required in order to determine the non-
dimensional rolling load W = WE¥/RY 2, non-dimensional rolling torque Q = QE}*/R*Y 3,
non-dimensional inlet thickness H = 2bE*/uRY, total slip at entry ((vg— vg)/Vy) and

A 8 A entry’
the total slip at exit ((vg— vg)/Vg).y- We write this symbolically as,

_ _ _ (v—v v—V Uag
W, Q, H,< § R) ,< 3 R> =f<—,r, U). (11)
VR entry VR exit bO

For most engineering purposes, equation (11) provides adequate information and the details
of the stress distribution within zones C, D and E are not required. Equation (11) can be re-
arranged to express W, Q and the slips at entry and exit in terms of H rather than uao/b,,

—  — [Us—0 Vo—0 o
W, Q, <¥> , <%> = f(H,r, U). (12)
R entry R exit
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We complete the solution by finding the stresses and slip distribution in the central zones
C, D and E. For this purpose, two further non-dimensional groups are required, uE¥/E}
and E¥/E', where E¥= Eg/(1 —v}) is the plane strain Young’s modulus of the strip and
1/E = (1 = 2v)(1 +vp)/Eg) + (vg(1 + vg)/Ey).

5.1 Regimes of operation

A typical plot of W vs H is given in Fig. 3 for a range of plastic reductions and U = 30
(typical for rolling aluminium alloy with steel rolls). Several regimes, corresponding to
different stress states in the roll bite, are predicted by the new theory, and are displayed in
Fig. 3. The general solution shown in Fig. 2 and discussed above attains limiting states at zero
reduction, large reductions and at large strip thicknesses. We shall consider first the solution
as r is increased from zero to a high value, and then the solution for large H and finite r.

5.2 Effect of t on the stress state in the nip

Consider a fixed inlet strip thickness, H = 7.5, and an increasing rolling load, W, as shown
in Fig. 3.

At operating point P, in Fig. 3, W is sufficiently large to initiate plastic reduction. The
plastic zones B and F are of zero width, and the other zones are of finite size. The stress
distribution within the nip is given in Fig. 4, for the case where the non-dimensional groups
LEY/ E¥ and E¥/E are given the values 0.01 and 0.683, respectively. These values are
representative for rolling aluminium and its alloys between steel rolls.

An increase in rolling load leads to an increase in plastic reduction until r = 10 % and point
P, is reached in Fig. 3. The stresses in the strip and the slip velocity of the strip relative to the
rolls (vg— vg)/ Vyare given in Fig. 4. The slip is calculated from the plastic-strain distribution
in the strip; details are given in Appendix 1. Figure 4 shows that the size of the plastic zone, the
amount of plastic reduction and the magnitude of slip are all greater at entry than at exit.
Difficulty was encountered at finding a satisfactory solution for zone D at small reductions. It
appears that the model of roll deformation adopted here is unable to predict rapidly changing
local distributions of ¢, and gq.

When W is increased further, point Pj is reached in Fig. 3 and r = 30 %. Again, most of this
reduction occurs at entry, which is reflected by the fact that slip at entry is much greater than
at exit, Fig. 4.

When the rolling load is increased further a critical value of reduction, r_, is attained at
point P, in Fig. 3. This is associated with no yield near the exit of the contact region and zone

1000

New theory
—-— Bland & Ford (3]
-------- Johnson & Bentall[5]

u=30

| No yield
\ , ,near exit

100f-

ikwn: N
=z |

=

Plastic zones
meet

10F
.'-‘..‘..,.‘O%
r=0%

i 10 100 00

FIG. 3. Predicted rolling load, W, as a function of inlet strip thickness, H, and reduction, r. The
predictions are compared with previous work of Bland and Ford [3] and Johnson and Bentall [5]. As
r is increased at H = 7.5, the operating points P;, P,, P; and P, are reached.
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F1G. 4. Distribution of stresses in strip, and slip of strip relative to work rolls. The rolling load, W, is
increased from 8.6 to 89, while keeping H constant at 7.5. The operating points P,, P,, P; and P, are
defined previously in Fig. 3.

F disappears. Figure 4 shows the stress and slip distributions forr = r_; = 359/ and H=15.
Zones E and G become the same zone, and plastic reduction occurs only at entry.

A further increase in rolling load leads to greater reductions at entry, with no yield near the
exit of the contact region. The stress and slip distributions are qualitatively the same as for
r =r,, but no precise calculations have been made.

It is clear from Figs 3 and 4 that for a fixed value of H, an increase of W leads to a

monotonic increase of r and of the size of the contact region.

5.3 Case of large H

Consider the case where H approaches 100 and r is finite in Fig. 3. The analysis suggests
that the plastic zones B and F meet and the neutral region containing zones C, D and E
reduces to a neutral section between zones Band F. For these values of H, the assumption that
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bo/ao < 1is no longer valid and conventional strip rolling theories are at least as accurate as
the present analysis.

6. COMPARISON OF NEW THEORY WITH PREVIOUS WORK

6.1 Comparison of new theory with the Bland and Ford model

The predictions of the Bland and Ford model [3] are compared with the new theory in
Fig. 3. For H in the range 40100, the two theories show reasonable agreement. This is not
surprising since the new theory predicts the existence of a neutral section at high H values,
while the Bland and Ford model assumes the existence of a neutral section. The two theories
predict slightly different rolling loads as Bland and Ford assume that the deformed rolls
remain circular in shape, while we use a hybrid elastic foundation model to account for roll
deformations.

At smaller values of H the Bland and Ford model fails, since it predicts erroneously high
rolling loads and a limiting gauge, Fig. 3.

6.2 Comparison of new theory with Johnson and Bentall solution for onset of plastic reduction

The new theory is compared with the Johnson and Bentall solution [5] for the onset of
plastic reduction in Fig. 3. The difference in behaviours at large H is due to the fact that
Johnson and Bentall include the effect of normal elastic deformation of the strip on the
contact width, while the new theory ignores this. Both analyses predict that as H tends to zero
the rolling load W is given by W = 81n/H?, independent of U.

7. PRESENTATION OF ROLLING LOAD, TORQUE AND SLIP CURVES

The optimum way of presenting the predicted rolling load, torque and slips at entry and at
exit is now discussed. Examination of the dependence of W, Q, ((vs—vR)/(VR)entry and of
(05— vR)/VR)exie UPON H, r and U, equation (12), shows that the influence of U upon the
dependent variables can be reduced if equation (12) is re-written as

WU, Q/U, <vs;”"> , <"S; ”") =f(H JU,r, U). (13)
R entry R exit

Figures 5-7 demonstrate that the non-dimensional groups on the left-hand side of equation
(13) depend little upon the independent variable U on the right-hand side of equation (13).

Consider first the plot of W/U vs H |/ U shown in Fig. 5, for varying r and U. For r = 0, W
approaches 817/H?2 as H — 0 for all U. Hence, W/U approaches 81/(H \/U)*as H \/U -0

No yield — U=30
10F  near exit, —— U=60
U=60
,f \\\\500/
2 = . X \o\\..\‘.
" \\’/\
(=) 10%—__ 7/ /
S~L/
! I Plastic zones
I\\meet,
U=60
0.1+ AN U= 30
1 | |
10 100 1000
2b EXd
R0 = Ry &)

FIG. 5. Effect of inlet strip thickness and reduction on rolling load.
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for all U. This suggests that the correct way to combine W, H and U is in the form /U and
H \/U.1tis clear from Fig. 5 that /U is strongly dependent upon H /U and r, and little
influenced by U. Similarly, the rolling torque Q/U is sensitive to H \/ U and r, and only
weakly dependent upon U, as shown in Fig. 6.

Consider the predicted rolling torque, Q, in more detail. When r is zero, the pressure
distribution is symmetrical about the centre-line through the roll centres and Q is zero. When

H \/Zf— is less than about 100, Q increases to a maximum with increasing r and then decreases
again, see Fig. 6. At higher values of H /U, Q increases monotonically with increasing r,and
the new theory gives similar predictions to those of the Bland and Ford model [3]. This
agreement with the Bland and Ford model is due to the fact that at high H /U the two
models predict similar deformations of the strip.

The slip velocities predicted by the new theory are given in Fig. 7. It is apparent that the
slips (vg— vy )/ ¥z at entry and at exit are strong functions of r,and weaker functions of H \/ U
and U. Always, the slip at entry is greater in magnitude than at exit, reflecting the fact that
greater plastic reduction occurs at entry than at exit.

Consider the effect of varying H /U on the slip at exit for fixed values of rand U, Fig. 7. As
H /U decreases the slip at exit drops to zero when there is no longer a yield zone at exit. The
slip at exit also decays towards zero at large H ,/U. This happens when the plastic zone B
extends to the exit.

The slips at entry and exit are compared with the Bland and Ford solution [3] in Fig. 8, for
the case U = 30. There is good agreement between the two models, implying that they predict

Ve
7
P
,'/
. 750% "
10+
30°%
‘ mt‘}w r=10%
Wwia
G+
. L—Plastic zones
o meet, U =30
No yield
near exit,
U=30 \ /
o1k ::' /
/
I/
:,-// — — Present theory U=60
v —— Present theory U= 30
—-—Bland and Ford [3]
U=30
| I
0.01]0 100 1000
b, [EXV?
Ao - 2o (&)
/U NS (v

F1G. 6. Comparison of rolling torque predicted by new theory and by Bland and Ford [3].
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F1G. 7. Slip of strip relative to work rolls at entry and at exit.
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F1G. 8. Comparison of slip behaviour predicted by new theory and by Bland and Ford [3].

similar proportions of plastic reduction near entry and near exit. This agreement over a wide
range of H /U is probably fortuitous.

8. CONCLUDING DISCUSSION

A new theoretical framework has been developed with which to analyse the foil rolling
problem. The analysis suggests that a neutral region of no-slip exists in the roll bite, for finite
reductions of the strip. This was suggested by Johnson and Bentall [S] for the case of zero
reduction. Previous theories of strip rolling, such as the Bland and Ford solution [3], assume
full slip throughout the contact region and predict incorrectly the existence of a limiting
gauge. For the case of thick strip, the new theory and the Bland and Ford model suggest
similar behaviours.

It is thought that the new model provides a physical picture of the foil rolling process which
is qualitatively correct. We express caution with regard to the quantitative results, as the
location of plastic deformation in the roll bite and the rolling loads and torques are sensitive
to the model chosen for deformation of the rolls. A more realistic treatment of the rolls is
required in order to determine the accuracy of the present results.

The analysis suggests that more plastic reduction occurs near entry than near exit of the roll
bite. If strain hardening of the strip were to be included in the rolling model then the plastic
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zone near exit would shrink in size, and an even larger proportion of plastic reduction would
occur near entry.

The application of front tension to the strip would increase the size of the plastic zone near
exit, while back tension would increase the plastic zone size near entry. Equal front and back
tensile stresses effectively reduce the yield stress of the strip by an amount equal to this
tension while leaving all other features of the model unchanged.

The model of foil rolling presented here can be modified in a straightforward manner to
include strain hardening of the strip and different front and back tensions. Work is in
progress to incorporate a more realistic treatment of roll deformation and to determine a
more appropriate friction law than the Coulomb law used here.
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APPENDIX 1

STRESSES IN STRIP AND SLIP EQUATIONS

First, the indentation condition is considered in order to determine a,/a,, where a, is the contact size at exit and ao
is the contact size at entry, defined in Fig. 2.
The normal pressure distribution has already been given by

p(x) = po/1— (x/ac) — K, Ab, 3)

where 2Ab is the reduction of strip thickness. The maximum Hertzian pressure p, = E{ao/2R may be expressed in
dimensionless form as,
Po Ao

L _y (A1)
Y,  2uR

where U = uE}/Ys.
The contact size at exit a, may be related to the contact size at entry a, by substituting into equation (3a) the
condition that p = 0 and Ab = Ab, = rb, at x = a,. This gives,

<ai>z =1 _<a°K" 21R ﬁ,)z . (A2)
ag EX ay pa,
Here r = (bg — b,)/by = Ab,/b, is the overall reduction of the strip.

The strip thickness, 2b,, in the central zones C, D and E equals 2b, — 2Ab, , where 2Ab, is the reduction of strip
thickness due to passage of the strip through the plastic zone B. The intermediate reduction, r,, defined by
b, —b,

b,

(A3)

ry =

is related to Ab, by,

1_
Ab, = by—b, = bo(l N ) (A%)
1—r,
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Equations are now given for the stresses in the strip and the slip distribution in each of the deformation zones
A-G. Stresses are defined in terms of the cartesian co-ordinates x, z, shown in Fig. 1(a).

Zone A (refer to Fig. 2)
In zone A, the strip is elastic and has a lower velocity than the work rolls. Elastic compression of the strip is
neglected in the thickness, z direction. By equation (3a), the strip experiences a normal stress o, of

= 1= ey (AS)
0 0

and a shear stress g = up, so that

q p U YR
=2 = /1 - (x/a,). (A6)
HPo Do
The longitudinal stress o, is derived by integrating the equilibrium equation (2) with the assumption db/dx = 0,
giving

-0, lpag\ x ——=5 . _ X
=——)—1- 2 t— 2. A7
Po 3 by I:ao\/ (x/ap)* + sin a0+7t/ ] (A7)

Zone B
The strip experiences plastic reduction and slips relative to the work rolls. The yield condition gives,
o, 0, Y,
x_Z=, 8

= (A8)
Po Po Po

and the slip condition gives
== (A9)

The pressure gradient, — do,/dx, is derived from equations (A1), (A8) and (A9) and the equilibrium equation (2). We
obtain,

(a,) 1 E} x/ay
_d(e/po) _ po/ U aoK, /1—(x/ap)
d(x/a0) b, E} ao \/1 <x)2 E% a, o, 1| E}

(A10)

ua, aoK,2uR

ao

aoK, 2uR po U aoK,

The pressure distribution — o, is determined by integrating equation (A10) from the boundary of zone A using the
Runge-Kutta numerical procedure. The stresses o, and g then follow directly from equations (A8) and (A9).

The strip thickness 2b at any location is calculated by equating the normal pressure distribution —o, to the
formula (3a) governing roll deformation. Thus,

L:ﬁ_ ER a0 1_<i)2_ Ek G0 %= (All)
uay  uap aoK, 2uR ay agK, 2uR p,

We calculate the slip distributions (vg—vg)/ ¥y throughout the contact region from the distribution of plastic
strain in the strip. The contribution to slip from the elastic longitudinal strains in the strip and rolls is neglected in our
presentation of slip behaviour. This is reasonable, since the elastic strains are usually much less than the plastic
reduction of the strip.

Thus, the slip distribution (vg—vg)/Vy in zone B is determined with the aid of the continuity equation

vgb = Vgb,, and equation (A4), giving
vs—vr _ 17 bo pag 1 (A12)
Vr 1—rypay b ’

An explicit expression for (vg—vg)/Vg is found by substituting equation (A11) into equation (A12).

Zone C
The strip suffers contained plastic deformation with no slip in zone C. The normal pressure is given by equation
(3a), with Ab = Ab, defined by equation (A4). We obtain,

- 1- by 2uR aoK
% 1—(x/ao)2—<1——-r >_°L oz, (A13)
Po Ex

Hao ao

The longitudinal stress o, is found from equation (A13), using the yield criterion,

Y
O _9:, Ts , (Al4)
Po Po Do
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and the shear stress g is derived from equations (2), (A13) and (A14) and the assumption that db/dx = 0. Thus,

4 _ _<1">_bi X/ao (A15)

HPo 1=ri/pao /1= (x/ag)?
Zone D

The strip behaves elastically and experiences no slip with respect to the work rolls.

The normal stress g, is given by equation (A13), while o, and g are found from the no slip condition and from the
equilibrium equation, as follows.

For the case of no-slip, equation (8) reduces to

0= (e)s— (er+ ¢ (A16)

where the creep ratio, &, is an unknown constant determined by the analysis. For convenience, ¢ is defined in terms of
the elastically unstrained velocity of the strip in this no-slip zone. Hence, the strain (¢,)g in equation (A16) does not
include a plastic component due to plastic reduction which occurs near the entry of the roll bite.

It is assumed that the tangential strain at the surface of the rolls is composed of a shear contribution
du/dx = — (1/K,) (dg/dx), from equation (4) and also of a normal pressure contribution. When an elastic half-space
is loaded in plane strain by an arbitrary pressure distribution p(x), a material element at the surface of the half-space
suffers a direct stress normal to the surface o, = — p, a direct stress tangential to the surface 6, = — p, and no shear
stresses. The associated tangential tensile strain ¢, equals —[(1 —2vg) (1 4+ vg)/Eg]p(x). Hence, in the present
problem the longitudinal strain in the rolls, (¢,)g, is assumed to be,

1 dg (1—2vg)(1+vg)

(EJr = —fa‘TP(X)- (A17)

The longitudinal strain in the strip (g,)g is,

1—v 1+
e = 85, 2sUEYS) (A18)

Eg Eg
Equations (A4) and (A16)-(A18) may be combined with the equilibrium equation (2) and the assumption that
db/dx = 0 to give,

bo 1or doy_ox_, o (A19)
K, 1-ry dx* E§ E
where
1 (1—2vR)(1+vR)+vS(l+vS). (A20)

E Eg Es
We can reduce equations (A13) and (A19) to a dimensionless, second-order differential equation,
dz(ax/pﬁ) zax _ 1 -r aOKq ZRé

d/a? " po 1-r Ek by

+§ﬁaqul—rl @[\/1_<i>2..<1_ 1—r >£0_2I‘R aOKp]’ (A21)
E pE§ E§ 1—r b a, 1—ry ) pay ay E}

_1—rl ao K, E}x pao

T 1—r E% pE§ by

2

where b (A22)

In order to find the particular integral of this differential equation the term \/ 1 — (x/a,)* on the right-hand side is
expanded as a power series. The solution of the differential equation to within a few per cent is,

-0, X X
=L+ Lsexp|— )+ Lsexp| ——
Po Ao do

E% E%pa,aoK,1—r x )2 x \* x\°
_ Bk éufu_l[aﬁ%(_) +a5<4> +oz(,<4> . (A23)
UEY E by ER 1-—r a, a, ao

where L, and Ls are unknown constants and,

L 1 1—ry K, 2RE  E§aoK, 2uR by <1 1—r>
y=—m 1 20e 2 SR T O (e

T 1—r E} b, E E% ap pa,\ 1-r,
45 3+1 1
o A
3 ya ys y4 yz
p=b, 3,1 (A24)
290 9% 2y?
15 1
> T8yt 8y
1
273
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The interfacial shear stress g is deduced from o, via the equilibrium equation (2), giving

I—-r b
4 - 4 iy(L“exp(E)—Ls exp(-—E>)
upo 1—ry pag ao ao
E} Efa.K 3 ’
_Er E8a q[za4<i)+4a5(i> + 60 <i) ] (A25)
UEY E' E} ao a, ao
Zone E

In zone E, the strip behaves elastically and travels more quickly than the work rolls.
The normal pressure on the strip — o, is given by equation (A13), and the interfacial shear stress g is

4 __P_° (A26)

HPo Po Po '

We integrate the equilibrium equation (2) using equation (A26) and the assumption that db/dx = 0 in order to
determine the longitudinal stress o,,

. lpagl—r, [ x x\* . x
L 1[—\/1—(—) +sm”—]
Po 2by 1-r |ag a, a

1- 2uR aoK
_< r‘_l)_"_f_"__li.,_LG, (A27)
1—r a, E} a

where Lg is an arbitrary constant of integration.

Zone F

The strip experiences plastic reduction and has a greater velocity than the work rolls.

The equations governing the stresses and slip distribution are similar to those in zone B with the shear stress q
given by equation (A26) rather than equation (A9). The longitudinal stress o, is deduced from the yield condition,
equation (A8). The pressure gradient —dg,/dx is derived in an analogous manner to equation (A10), giving
o, 1 E x/a

LBk x/a

_d(Uz/Po) _ po UaK, /1— (x/ao)
d(x/a0) b, E% ao 1_<x )2 E% a o, 1 E}

(A28)

aoK, 2uR py U aoK,

uag  aok, ﬁ do

We determine — o, by integrating equation (A28) numerically with respect to decreasing x from the boundary of

zone G, using the Runge-Kutta procedure.
The slip velocity of the strip relative to the rolls is calculated using equations (A11) and (A12), as before.

Zone G
The strip suffers elastic unloading and travels faster than the rolls in the final zone, G.

We compute the normal pressure —o, from equation (3a) which governs deformation of the rolls, and the
condition that Ab = rb, for the strip, hence

2
- 2
s =\/1_(i> _rk‘l“_R%. (A29)
Po o uay a, ER

The interfacial shear stress q is given by equation (A26), and the longitudinal stress o, is deduced by integration of the
equilibrium equation (2) with the condition that b = b, = (1 —r)b,, giving

- 1 1 2 2uR aoK
L Y B R N
Do 2 by 1—rla, a, do 1—r ay E} ao

where L, is an arbitrary constant of integration.

APPENDIX 2

METHOD OF SOLUTION

The pressure distribution, — g, rolling load and torque, and slip distribution associated with plastic reduction are
functions only of pay/by, rand U = puE%/Y . If the stress distributions o, and g are required in the central elastic, no
slip zone D, then two further non-dimensional groups uE%/E} and E%/E’ are required. In this study uE¥/E% and
E%/E' are given the values of 0.01 and 0.683, respectively; these are typical values for foil rolling of aluminium and its
alloys with steel work rolls. The non-dimensional groups a,K,/E} and aoK,/E} are assumed to equal 8/3n and
16/9m, respectively, as discussed in Section 3.2.

Consider the general case of a finite reduction r, with pao/b,, U, uE¥%/E} and E§/E’ given. The stresses in the roll
bite are found as follows.

Calculation of stresses
An iterative procedure is used to deduce po/Ys, ao/uR and a,/a,. From an initial guessed value of po/Y of unity,
ao/uR is calculated from equation (A1), and a,/a, from equation (A2). A new value for py/Yg is found from the
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condition that o, — 6, = Ygat the boundary of zone G with zone F. Denote the location of this boundary by xg.
Then, equations (A29) and (A30) for the stresses in the elastic zone G give,

Ysa

x by 2uR aoK
____\/1 1— (xp/ao)? —r— i
Po  Po uao a, E}

1 1 pag|{xg ———= | _ X
+51—b—|: 0\/1—(xF/a0)2+sm IZ

— e, (B1)
where L, is deduced from equation (A30) and the boundary condition o, = 0 at x = a,,

1 1 pagla, ——mm— a r 2uR ayK, a
L= 21_, bo[z\/l (az/aq)* +sin”~ 1;(2;]___ 02p %2 (B2)

In order to calculate po/Yg from equations (B1) and (B2) xy is determined, as follows.

At the end of the plastic zone F, x equals x, db/dx equals zero and q is continuous. Equation (2) implies that
do,/dx is continuous and equation (3a) that do,/dx is continuous. Since ¢, — 6, = Ygthroughout zone F, we deduce
that d(o, — 0,)/dx equals zero throughout zone F. By continuity, d(o, — ¢.)/dx equals zero in the elastic zone G at
x = xp. Substitution of equations (A29) and (A30) into the condition that d(o, —0.)/dx = 0 at x = x leads to,

1 2 R
@<1 _<ﬁ> >‘E‘L 2—”5%1(" /1= (xg/agy* = 0. (B3)

1—r b, ag

Equation (B3) is solved by the Newton-Raphson method in order to determine xg and p,/Yg is calculated from
equations (B1) and (B2).
From this improved estimate of p,/Ycorresponding values of ao/uR and a,/a, are computed via equations (A1)
and (A2), respectively. The above procedure to find p,/Y is then repeated until sufficient accuracy is attained.
Next, the boundary x = x , between zones A and B is calculated from the condition that yield occurs at the end of
the elastic zone A. Substitution of equations (AS) and (A7) into the yield criterion ¢, — 0, = Yg leads to

21 2 Y,
\/1—("—") ——@[ﬂ\/l—<ﬂ> +sin*1<ﬂ>+f]—ﬁ=0. (B4)
ag 2 by Lao ao ao 2 Do

We solve for x,/a, by the Newton-Raphson method.
“ae end of the plastic zone B, x = xj, is determined by integrating equation (A10) through the plastic zone by the
Kunge-Kutta method, until db/dx = 0. This condition may be rewritten in terms of do,/dx with the aid of equation

(3a), giving
(d(oz/Po) > — xp/ao
d(x/a0) Jx=x, /1= (xp/a0)®

We calculate the intermediate reduction, r, = (b, — b,)/b,, by matching the known pressure — g, at x = xg with the
pressure distribution in zone C, equation (A13).

In order to compute the stress distribution in the elastic zones D and E, we first determine the pressure distribution
in the plastic reduction zone F. Equation (A28) is integrated numerically with respect to decreasing x from the known
conditions at x = xg. The start of the plastic zone F at x = x is deduced from the point of intersection of the
integrated pressure curve in zone F and the pressure distribution in zone E, equation (A13). Continuity of g, at
x = xg is used to find L in equation (A27). The stresses in region E are then fully specified.

Last, we determine the stresses in zone D, and the locations of its boundaries with zones C and E, x = xc and
x = xp, respectively. The boundary conditions at both x-and xpare continuity of gand ¢... Also, we have continuity
of dg/dx at x in order to satisfy continuity of no-slip; this is deduced from equations (A16)—(A18). These five
boundary conditions are used to solve for the five unknowns L, L, and Ls inequations (A23)and (A25), and xcand
Xp using an iterative method.

Calculation of H, W, Q and (vg—vg)/Vg

The dependent variables H, W and @ and the slip distribution (vg—vg)Vg are calculated from the independent
groups r, pao/by, and U as follows.

The non-dimensional inlet strip thickness, H, can be expressed in terms of by/ua, and p,/Ys,

(BS)

2§ b
A="0R g0 P (B6)
HRYs — pao Ys

with the aid of equation (A1). Here, po/Y is known for any set of values of r, uao/bo and U.
The rolling load, W, is found by integrating the pressure p(x) over the contact region, as defined in equation (9).
With the aid of equation (A1), this may be re-expressed in non-dimensional terms as,

WE 2 (ax/ag __
_WER _ z("i) j L d<i>. (B7)
RY S YS -1 Po ao

Thus W may be found for a given r, puao/b, and U. The integral of equation (B7) is evaluated numerically by
Simpson’s rule for the plastic zones B and F. Analytical expressions are derived for the other zones.

I
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The rolling torque per work roll, @, is determined by integrating the moment of the roll pressure about the point
x = 0, equation (10). We obtain the non-dimensional rolling torque @ by combining equations (10) and (A1),

QER® _ ,(po)’ (%o, x (x
=i =45 ——d{—). (B8)
R*Yg Yg -1 Po Qo o

The contribution to the integral of equation (B8) from the plastic zones B and F is determined numerically using
Simpson’s rule. Analytical expressions are derived for the contribution to the integral from the other zones.

The slip distribution (vg—vg)/ Vg in zones B and F is given by equation (A12), with the aid of equation (A11). By
conservation of mass flow rate, the slip at entry ((vg— vg)/ Vg Jentry> @nd at exit ((vg— vg)/ Vg Jexic 2N be expressed in
terms of r and r; alone,

— 1—
(”S "“) =" (B9a)
Vr entry I-r

- 1
(M) = 1 (BYb)
VR Jeit 11

The intermediate reduction, ry, is known for given values of r, ua/b, and U.

[\
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