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Microbuckle initiation from a patch of large amplitude fibre waviness in a composite
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Abstract — A finite element couple stress formulation is used to predict microbuckle initiation from a patch of fibre waviness in a unidirectional fibre
composite under remote compression and bending. Attention is focused on the knock-down in strength due to large amplitude waviness, with the effects
of the physical size of the imperfection included by incorporating the fibre bending resistance within the formulation. The predicted streatgths devi
significantly from the simpler kinking theory which neglects the role of fibre bending. Initial imperfections in the form of an infinite band andra circul

wavy patch are considered: when these imperfections are of large spatial extent and possess a large misalignment angle, the compressive strength
approximates the steady state band broadening stress for an infinite band. The effect of an imposed spatial gradient of stress within the composite is
explored by determining the compressive strength of beams of finite heifftthe loading cases of pure bending and axial compression. It is found

that the compressive strength is sensitive to the magnitude of the imposed stress gradient: the compressive strength of the outer fibres of the beam in
bending increases with diminishing height of the beam. This size dependence is much reduced for the case of uniform com@esdi¢ditions
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1. Introduction

Long fibre composites typically fail in compression at lower stress levels than in tension, due to the
phenomenon oimperfection-sensitive plastic microbucklingpmpressive collapse occurs by shearing of the
matrix between fibres at locations of initial fibre misalignment. Early studies of compressive failure (e.qg.
(Rosen, 1965)) suggested that failure occurs by an elastic shear bifurcation at an axial applied stress equal
to the in-plane shear modulus,. However, experiments reveal strengths on the ordeF £f due to matrix
non-linearity and initial fibre misalignment, see for example, Budiansky and Fleck (1993), Fleck(1997), Moran
et al. (1995), Kyriakides et al. (1995), Kyriakides and Ruff (1997) and Schapery (1995).

Analytical formulae for imperfection-sensitive plastic microbuckling have been obtained only for the one-
dimensional case of an infinite band of initial fibre waviness (Budiansky, 1983; Budiansky and Fleck, 1993;
Fleck et al., 1995; Budiansky et al., 1998; Wisnom, 1990). These infinite band solutions can be classified into
two categorieskinking theory where the fibre bending resistance is neglected bamdiing theorywhere the
fibre bending resistance is included. The bending theory of Fleck et al. (1995) includes a material length scale
within the formulation, specified by the fibre diametkrand is capable of predicting the effect of the physical
size of imperfection upon the compressive strength; this theory sits within the framework of couple stress
theory. Fleck et al. (1995) thereby found that the compressive strength is moderately sensitive to the width of
the infinite band of misaligned fibres: when the width exceeds abaiittB® compressive strength according
to bending theory is comparable to that given by the simpler kinking theory.

More recently, finite element methods have been used to predict the compressive strength of a composite,
assuming a two dimensional distribution of initial fibre misalignment. For example, Kyriakides et al. (1995)
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performed a finite element analysis of the initiation and growth of microbuckling from a small region of fibre
misalignment; they modelled the composite as alternating, perfectly bonded layers of fibres and matrix. In
similar fashion, Sutcliffe et al. (1996) modelled microbuckle initiation and early growth from a sharp open
notch under remote compressive loading. This approach is useful when the initial region of fibre waviness
extends over a small number of fibres, but is impractical in terms of computer time when a large number of
fibres is considered. Alternatively, Fleck and Shu (1995) generalised the one-dimensional analysis of Fleck et
al. (1995), and treated the composite as a 2D Cosserat continuum with a bending resistance set by the fibre
diameterd. Fleck and Shu also developed a finite element code to address fibre microbuckling, and thereby
predicted the compressive strength associated with an elliptical region of initial fibre misalignment under multi-
axial loading (Fleck and Shu, 1995; Shu and Fleck, 1997). It was found that the dominant geometrical feature is
the magnitude of initial fibre rotation, and the lengtbf the initial imperfection in the transverse direction. The
compressive strength decreases with increasjagfrom the elastic bifurcation valué at ¢/d = 0 (Rosen,

1965) to the infinite band compressive strength at ldpge The infinite band analysis is adequate provided
exceeds about 400

Scope of paper

To date, the compressive strength of unidirectional composites has been calculated only for wavy patches
of small misalignment angle (on the order of a few degrees). However, the initial fibre waviness in woven
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Figure 1. Geometries of imperfection considered in a unidirectional fibre composite: (a) an infinite band of waviness; (b) a circular patch of waviness,
and (c) a beam containing a parallel-sided band of waviness under bending.
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composites and in through-thickness stitched laminates is often as large &sthGs paper, both kinking and
bending theories of microbuckling are used to predict the compressive strength due to an infinite band of large
fibre misalignmentf{gure 1(a). Bending theory is also used to determine the compressive strength for a finite
circular patch of large fibre wavinestgure 1(b).

Compressive failure of a unidirectional fibre composite beam under bending

Wisnom et al. (1997) have conducted bending tests on unidirectional T800/924 beams in order to measure
the effect of beam heighf on the compressive failure strain. They observed that the compressive failure strain
on the outermost fibre of the beam increased by 50% when the higids decreased from 8 mm to 1 mm.
These observations support the notion that the compressive strength of a composite depends upon the imposed
stress gradient. Wisnom (1994) has also made predictions of the effect of beam height upon the microbuckling
strength by performing a non-linear finite element analysis of a unidirectional composite beam under pure
bending. Two-noded beam elements were used to represent the axial and bending stiffness of the fibres, and
four-noded plane stress continuum elements were used to represent the transverse and shear properties of the
matrix. The beam elements were given a sinusoidal misalignment along the sides of the continuum elements
in order to represent pre-existing fibre waviness (the maximum fibre misalignment angle was takemas 2
the wavelength was in the range 0.5-1 mm). Wisnom found that the compressive bending strength increased
by about 50% when the beam height was reduced from 8 mm to 1 mm, in support of his experimental
observations. In the current paper, the effect of a spatial gradient of stress is explored further: predictions
are made for the effect of beam height upon the bending strength and the uniaxial compressive strength
(figure 1(c).

2. Kinking theory

Fleck and Budiansky (1991) have derived the kinematic and equilibrium relations for kinking within a band
of finite width and infinite extent, and oriented at an angléo the overall fibre direction, as shown fig-
ure 2(a) The strain state is derived assuming that the fibres are inextensional and rotate through an additional
angle¢ under load from an initial misalignment angpein the stress-free configuration. Budiansky and Fleck
(1993) made use of these relations for the case of small misaligngemd small additional rotations, and
derived an analytic expression for the compressive strength of a compaosite upon making a number of consti-
tutive assumptions. In the current work, we shall explore the accuracy of the analytical results of Budiansky
and Fleck (1993) by performing full numerical analysis of the governing relations of Budiansky and Fleck
(1993) for the case where small angles are not assumed. We begin by restating the governing kinematic and
equilibrium relations for kinking, and the assumed constitutive response of the composite within the kink band.

2.1. Kinking: equilibrium and kinematics

The kinking theory proposed by Budiansky and Fleck (1993) is in the spirit of an infinite-band one-
dimensional shear-localisation analysis. A uniform imperfection in the form of a finite fibre misalignment
angle is assumed within a barfig(re 2(a) and the evolution of fibre rotation within the band is deduced from
algebraic relations for the continuity of traction and displacement across the band boundary.

Consider the collapse of a kink band inclined at an agglethe main fibre direction, as shownfigure 2(a)
It is assumed that the fibres are inextensional and that the uniform strain within the kink band is associated
with the fibre rotationy additional to the initial fibore misalignment. On application of an axial stresg*
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Figure 2. (a) Stress state within a kink band; (b) Stress state of composite by bending theory. The presence of a couplgigtesse to a difference
between the sliding shear strassand the transverse shear stregs

to the composite, the stress state within the band comprises an axialsstralesmg the local fibre direction,
a transverse stress and a longitudinal shear stress shear stresss defined irfigure 2(a) Continuity of
traction across the band boundary provides

—06°c0Spcos¢ + ¢) =0 COIB — ¢ — ¢) COP + ¢) + T SINB — P — ¢) (2.1)

and

—o° cosBsin(g + ¢) =orsin(B — ¢ — @) + T COLB — ¢ — ). (2.2)
During collapse, it is assumed that fibres within the band rotate at & r#tereby inducing a shear strain rate
y, given by

y =6 (2.3a)
and a transverse strain ratg given by
ér = ¢tanp - —¢). (2.3b)

These relations can be integrated immediately, to give,

y=¢ (2.42)
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and

cosp —¢ —¢)
cosf—¢) |

It is assumed that deformation is limited to the kink band and that the kink band is of infinite length (and

finite width); consequently the band inclinatigh remains fixed during collapse. It is reasonable to make

the assumption that material outside the kink band remains rigid for the case of a unidirectional composite

comprising stiff fibores and subjected to remote axial loading; the cases of in-plane remote shear loading or
transverse tension are not considered in the present study.

(2.4b)

er =

2.2. Deformation theory constitutive law

It remains to stipulate a constitutive law to relate the stress and strain measures within the kink band. Here,
we shall employ a deformation theory constitutive law as proposed by Budiansky and Fleck (1993), and as
justified by the experiments of Fleck and Jelf (1995). The transverse stresgl shear stregssdepend upon
(e1, y) according to

o1 = R?Gs(te)er (2.5a)
and
T =Gs(Te)Y, (2.5b)

where the material constait is defined byR? = E1/G, Er is the transverse Young's modulus aéds the
in-plane longitudinal shear modulus of the composite. The effective stgemsd the effective strai. are
defined by

Te={/T2+ (%) (2.6a)
and
Ye=1\/y2+ R2e% (2.6b)
respectively, and are related by
Te
= 2.7
Ve Go(to) (2.7)

such thatG4(te) is the secant shear modulus in a simple shear test at a shear stress. levelconvenient to
use the empirical Ramberg—Osgood law to describe the shape of the shear stress versus strain curve for typical
engineering composites,

E=E+§<E)n, 2.8)
wootv [\t
where (1y, yv, n) are taken as material constants. (For polymer matrix compositess, in the range 40—
60 MPa,yy equals approximately 1% and the strain-hardening exponenin the range 3-10, as collated by
Fleck and Jelf (1995).) The shear yield stregsnd shear yield straipy are related viay = Gyy. This gives
a secant modulu§s = te/ye Of

-1

Gs(te) =G <1+ ;(Z—j)_l> . (2.9)
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Role of volumetric lock-up

The volumetric strain within the kink band equals the transverse stfragince the fibres are taken to be
inextensional and plane strain conditions apply. Experimental evidence (for example, Fleck and Jelf (1995))
suggests that a tensile transverse stegins accommodated by microcracking of the matrix. As the fibres
rotate andp increases during collapse; first increases, attains a maximumyet g — ¢ and then decreases
through zero ap = 2(8 — ¢). Thus, we anticipate that the microcracks close and ‘volumetric lock-up’ occurs
whenert vanishes ap = 2(8 — ¢). The subsequent transverse response-fer 0 is taken to be linear elastic,

oT = E-|-e-|- (210)
while the shear response continues to be non-linear, such that
Te=|t| and ye=|y|, (2.12)

and there — y, relation is specified by (2.8). This state is labelled the ‘locked-up state’. In the current study, the
significance of lock-up is explored by also considering the ‘no lock-up’ case wherein (2.5)—(2.6) are maintained
for et <O.

Itis emphasised that the focus of the current study is the initiation of fibre microbuckling by small additional
fibre rotationsp from large initial waviness, and not the precise details of fibre lock-up at large fibre rotations.
Itis envisaged that, as the fibres rotate from the initial stress free but wavy configuration, tensile microcracking
of the matrix occurs; this is supported by the recent experimental and theoretical study of Harte and Fleck
(1999) on the mechanics of fibre rotation withint& braid. Harte and Fleck (1999) subjected a glass-epoxy
braid to axial tension, in order to measure the evolution of matrix microcracking as the fibres scissor; the
underlying mechanics are very similar to that observed in fibre microbuckling. On extension of the braid, the
fibres rotated, with associated tensile microcracking of the matrix. With further rotation of the fibres the matrix
underwent continued shearing parallel to the local fibre direction and compressive transverse straining causing
the microcracks to coalesce and form a rubble layer. No sudden point of volumetric lock-up was observed, but
large compressive transverse stresses developed when the net volumetric strain within the composite became
negative (at a fibre rotatiog of about 23).

The phenomenon of lock-up is included implicitly in the analyses of Jensen (1999) and Hsu et al. (1999):
they assume an elastic-incompressible plastic composite response, so that as the fibres rotatesthinengh 2
is a build-up of compressive stress transverse to the current fibre direction within the band. The studies of
Budiansky and Fleck (1993), Fleck (1997) and that given here assume a plastically dilatant matrix (due to
microcracking) and so it is necessary to include the lock-up behaviour explicitly.

2.3. Solution strategy

The collapse response is obtained in the forna®f as a function of fibre rotatiog, for a uniform initial
wavinessp = ¢o within a band of inclination. In general, a maximum in> occurs after an additional fibre
rotation ¢ of only a few degrees: the compressive strength is obtained by solving the system of non-linear
equations (2.1)—(2.11) by the Newton—Raphson method.

3. 2D couple stress theory and the finite element model

In addition to the use of kinking theory, a couple stress formulation is used to predict the compressive strength
due to microbuckling from an infinite band of wavine§gire 1(a) and from regions of fibre misalignment
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(figure 1(b),(c). The linear elastic fibres are assumed to carry couple stress, whilst the matrix is assumed
to deform in a non-linear manner under shear and transverse stress, as measured directly by Fleck and Jelf
(1995). A representative material element in the deformed configuration is shdigarm2(b) The element is
subjected to a longitudinal compressive stress companeatigned with the fibre direction, and a transverse
tensile stressT. The stress tensor is no longer symmetric, due to the presence of a bending mopent

unit current area (couple stress) borne by the fibres, and so the sheat sifé@sking theory is replaced by a

sliding shear stress; along the fibre direction, and a shear stress the transverse direction.

The fibres are modelled as Timoshenko beams and deform in bending and in shear. Thus, the cross-section
of each fibre is assumed to rotate by an argglevhich in general is different from the rotation of the neutral
axis of the fibrep. A Lagrangian formulation is employed to describe the deformed configuration in terms of
the initial reference configuration. In the following section, we shall briefly summarise the deformation theory
and flow theory constitutive laws of Fleck and Shu (1995) and Shu and Fleck (1997), respectively, and then
describe how the finite element method is implemented to investigate the two-dimensional response of a fibre
composite. Full details are given in Fleck and Shu (1995) and in Shu and Fleck (1997).

3.1. Constitutive law

The couple stresa within a representative material element is related to the fibre curvatgrdd; /ds by

_ E.d?

T

K, (3.1)

wheres is the arc-length along the fibre in the deformed configuration, &ani the longitudinal modulus of
the composite. Likewise, the longitudinal stress in the composite is given by the linear elastic relation

oL = E|_€|_, (32)

wheree, is the longitudinal elastic strain of the composite.

It is assumed that the composite deforms in a plane strain manner, and has a non-linear shear and transverse
response, in accordance with a deformation theory version of plasticity (Shu and Fleck, 1997). Some additional
calculations are performed using a flow theory version of plasticity, as laid down by Fleck and Shu (1995). The
main details of these plasticity laws are summarised below. With axes aligned with the current fibre direction,
the composite suffers a sliding shear strain sat@nd a transverse strain ratge associated with the rates of
sliding shear stresi; and transverse stress.

For both the deformation and flow theory versions of the theory, an effective sheargtiestefined in
terms of the shear stress and the transverse strassby an alternative version of (2.6a),

Te= \/ré—l— <%)2, (3.3)

where R is again the ratio of transverse yield strength to shear yield strength of the composite. For the
deformation theory version, the effective strareads

Ye=1\/ V4 + R%& (3.4)
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whilst for the flow theory version the effective strain rgtas specified by

Ve=1\/7E + R (3.5)

For both the deformation and flow theory versions, the effective stress is related to the effective strain by the
generalised Ramberg—Osgood law (2.8). After lock-up, the constitutive relations (2.10)—(2.11) are enforced,
with the role ofz replaced byrs, andy by ys.

3.2. Finite element implementation

The finite element procedure requires an expression for the global tangent stiffness matrix of the structure.
This stiffness matrix is obtained from the rate form of virtual work for the governing field relations; the full
expression for the rate virtual work is given in (Fleck and Shu, 1995), and is omitted here for the sake of brevity.
It is derived from the following virtual work statement,

/ o181 + ovder + tsdys + Trdyr +mdk]dV = / [1:5u; + ¢86,]dS, (3.6)
1% S

where the internal virtual work is calculated over the current volumeand the external virtual work on
the right hand side is integrated over the current boundanf the solid. The stress tractian (i = 1, 2)

and the couple stress tractignare in equilibrium with the interior stress field and perform work through
the displacement incremenis; (i = 1, 2) and the rotation incremenit;, respectively. The relation (3.6) is a
statement of general Cosserat theory, and the rotatiohthe fibre cross-section is treated as an independent
kinematic degree of freedom in addition to the two in-plane displacemeriis= 1, 2).

Six-noded triangular elements are employed, with 3 degrees of freedom at each node (two displacements
and one rotation). The finite element procedure is based upon a Lagrangian formulation of the general finite
deformation of the composite, and can deal with both geometrical and material non-linearities. A version of
the modified Riks algorithm is adopted to handle the snap-back behaviour associated with the microbuckling
response (Crisfield, 1991). An imperfection in the form of a spatial distribution of initial fibre misaligngnent
is included within the formulation.

Specification of composite properties

In subsequent sections we focus on the compressive strength of unidirectional carbon fibre reinforced epoxy.
Unless otherwise stated, we assume that the fibre volume fraci®nniform withc = 0.6 and the ratio of
transverse strength to shear strengtiRis- v/2. The longitudinal elastic modulug, equals 2000 times the
shear yield strengthy ; the transverse modulus & = 200zy, the shear modulus of the fibresGs = 200ry
and the shear modulus of the composit&is- 100y . The strain hardening indexis ascribed the value 3 or
10.

4. Results for imperfections of large misalignment amplitude under uniaxial compression

Consider a composite plate with axis aligned with the fibre direction, and axis aligned with the
transverse direction. Unless otherwise stated, the material properties are taken to be those specified at the
end of section 3.2. We first examine the compressive strength associated with microbuckling from an infinite
band and from a finite patch of waviness of large misalignment amplitude under remote compression. Second,
we examine the effect of fibre misalignment on the compressive strength of a composite beam in bending.
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4.1. Microbuckle initiation from an infinite band of waviness

We begin by examining the compressive strength of a unidirectional composite containing an infinite band
of initial misalignment. The strength is predicted using the deformation theory version of both kinking and
bending theories, and the significance of volumetric lock-up is assessed. Consider first kinking theory.

It is recalled that kinking theory contains no material length scale, and so the compressive strength depends
only upon the magnitude of the initial fibre misalignmegtwithin the infinite band, in addition to the band
orientationg and the constitutive parameters,, yy, n) as defined in (2.8). Unless otherwise stated, we shall
assumes = 0, with yy = 1% andn = 3. Outside the kink band, the fibre misalignment is assumed to vanish.
Typical predictions of thes™ versus¢ collapse response are given figure 3(a) for the selected values
$o =1°, 2> and 6. The occurrence of lock-up is included in the analysis, and it is noted that lock-up occurs
immediately for all values oy since 8 = 0°. For small values o, (= 1° and 2) the remote axial stress
o* attains a local maximum valug. after an additional fibre rotatiopp of a few degrees; in contrast, at
larger values offy no such peak in stress is evident ant increases monotonically with increasiggto
the maximum achievable value of the Rosen elastic bifurcation sif€ss G = 100ry. This prediction is
unrealistic, and we need bending theory to model the collapse response at large fibre rotations.

The peak strength is replotted as a functioy@in figure 4 for the cases where lock-up is included and is
ignored. For the case of kinking theory and sngglithe compressive strength denotes the first local maximum
in the stress versus fibre rotation response. The plateau valugdafkinking give the asymptotic strength
oc = G, since no local maximum in collapse response is predicted. For small valggs affless than about
3.5°, lock-up has only a minor effect upon the response,arid given to good accuracy by the small-rotation
analytic result of Budiansky and Fleck (1993),
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Figure 3. Collapse response due to an infinite band of fibre misalignment according to (a) kinking theory and (b) bending theory. The results for kinking

theory are plotted in the form of axial stregS° versus additional fibre rotatiap within the band, whereas for bending theet¥ is plotted against the

axial shorteninge, for a width of imperfectionw = 40Q4. In both figures, the deformation theory version of the constitutive law is used, with a strain
hardening exponent = 3; the band is transverse to the overall fibre directj®g; 0.
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Figure 4. Effect of the amplitude of fibre misalignmeg on compressive strength due to an infinite band of fibre waviness by both bending and
kinking theories. Deformation theory with= 3, w = 400/ and = 0°. For the case of kinking theory and sm@y, the compressive strength denotes
the first local maximum in the stress versus fibre rotation response. The plateau valydsrdfinking give the asymptotic strengtl = G, since no

local maximum in collapse response is predicted.

whereG* = [1+ R?tar? 8]1G andyy = yy//1+ R2tar? S.

The effect of lock-up upor. becomes significant fop, exceeding about 35then, the local peak in
collapse strength is absent asgd= G = 100ry. When lock-up is ignored, the kinking strength is in close
agreement with (4.1) up to a much larger value of initial misalignnggrt 14°; at largerg, values than this
critical value, the finite rotation theory displays no local maximum in collapse stf€sand the peak strength
is againo. = G = 100cy .

We can interpret the above observations as follows. For small valugs(@h < 3.5°), the transverse strain
et within the kink band scales witlh? whereas the shear stragnincreases linearly witlp; consequentlyer
remains negligibly small up to the peak axial stress, and the solution assuming lock-up is in close agreement
with the case where lock-up is neglected. In contrast for larger valugg, tifie transverse strairy increases
linearly with the fibre rotationp, and lock-up occurs immediately; then, the compressive strength in the
presence of lock-up diverges from that in the absence of lock-up. It is recognised that the predictions of the
kinking analysis are misleading at large valuegpgkince the phenomenon of band broadening at low values
of o is neglected by this approach. For the effects of band broadening to be included, we turn to bending
theory.

In order to predict the compressive strength using bending theory, we need to specify the band width in
terms of the fibre diametet. The effect of band width has already been addressed by Fleck et al. (1995); it was
found that the compressive strength for any prescribed valgg décreases with increasimuntil it attains a
plateau value ab > 40Qd/. Observed wavelengths of fibre misalignment in practical unidirectional (and multi-
directional) composites are of this order of magnitude (Creighton et al., 2000). Therefore, we shall consider
the case of an infinite band of width = 40Q4, with the band oriented transverse to the fibre directg:-0).
Following Fleck and Shu (1995), the distribution of fibre misalignmgmwithin the infinite band follows a
cosine variation with co-ordinate, from the centre of the band, such that

¢ =do COS%,O, wherep = 2x;/w and|p| < 1. 4.2)
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Elsewhere, the initial fibre misalignment vanishes. For the one dimensional infinite band problem, a finite
element mesh of width one element and of length 408Qused, and periodic boundary conditions are applied
along the sides of the mesh to enforce the infinite band assumption; the reader is referred to Fleck and Shu
(1995) for full detalils.

The predicted collapse response is showfigare 3(b)for the lock-up case, witkp = 1°, 2° and 6. Here
the response is displayed in terms of axial stigdsversus end shortening. A local peak ino™ followed
by a strong snap-back in load is evident for the cages 1° and 2. This behaviour closely resembles that
displayed by kinking theory. In contrast, fgs = 6°, the applied stresg™ increases monotonically to a plateau
value, known as thseteady state band broadening streatthis stress level, the microbuckle band broadens
with fibre rotation occurring near the boundaries of the broadening band. This phenomenon was first recognised
by Moran et al. (1995) and Moran and Shih (1998), and has been analysed recently by Budiansky et al. (1998).
Additional in-depth studies on band broadening include those of Vogler and Kyriakides (1999a, 1999b), Hsu
et al. (1999) and Jensen (1999). The magnitude of the band broadening stress is of the order afi®Gs
much below the maximum stress = G = 100y as predicted by kinking theory for large valuesggf

The compressive strength by bending theory is plotted against the amplitude of fibre misalignggint
figure 4 for the casev = 40Qd. Results are shown for both cases where lock-up is included and is neglected.
As for the case of kinking theory, we note that the peak streagtis sensitive to the misalignment angle
¢o, providedgy is on the order of a few degrees; in this regime, the effects of lock-up are negligible, and the
strength is adequately predicted by (4.1). At larger valugs ahe strength asymptotes to the band broadening
stress level, which is somewhat sensitive to the details of lock-up, but is always much less than the Rosen
bifurcation values, = G = 100ry. We conclude that the compressive strength is given by (4.1) for small
fibre misalignments and by the band broadening stress at large fibre misalignments. The compressive strength
switches from the initiation strength, as given approximately by (4.1), to the steady state band broadening
strength at a value af, which depends upon the assumed value of band inclingtidnis clear fromfigure 4
that the transition value a, is about 3 when lock-up is included andl = 0. But what about the cage> 0?
The formula (4.1) for the initiation strength remains valid for finite values,@nd we recall the simple formula
of Budiansky et al. (1998),

2
sin28
for the steady state band broadening stegsfor the case > 0. This formula was derived on the basis of
negligible transverse stresses within the broadening microbuckle band, and negligible strain hatdeming,

The transition value opg at which the strength switches from the initiation value to the band broadening value
is obtained by equating (4.1) and (4.3) for the case oo, giving

Op = (4% (43)

- sin28
0~ 5
In order to assess the significancefofipon the transition waviness value, let us assumeghsitin the range
15° to 30C°. Then, the transition value @f, is in the range 1%4to 24 (assumingyy = 0.01). We conclude that

the compressive strength is given by (4.1) for practical composites progiglsdless than about *4this is
the case for composites processed via the pre-preg route, but is not necessarily the case for woven laminates.

- M. (4.4)

4.2. Microbuckle initiation from a finite wavy patch

Practical composites contain misaligned fibres within finite patches, rather than the mathematical idealisation
of an infinite band of waviness. In this subsection we report the predicted compressive strength of a
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unidirectional lamina containing a circular region of waviness, of diam@terthe range of 20 < D < 4004.
Previous studies of this type have been limited to small values of fibre misalignment, on the order of a few
degrees. Here, we explore the effect of large fibre misalignments upon strength. The distribytisittih

the wavy patch is taken as

- - T
¢ = boCOS7 P, p <1, (4.5)

p=2y/x2+ yZ/D (4.6)

in terms of the local Cartesian axes y) at the mid-point of the lamina, as showrfigure 5(a) Predictions are

made using the bending theory of section 3, with a square mesh of side lenddh TBE material properties

have already been stated at the end of section 3; unless otherwise stated, deformation theory is used and the
effect of volumetric lock-up is included in the analysis. The predicted compressive strength is plotted as a
function of ¢ in figure 5(a)for selected values ob/d, andn = 3 and 10. The strength predictions for

D =400 andn = 3 are compared ifigure 5(b)with the infinite band results for band inclinatios= 0°

and 30, with w = 40Q/ andn = 3; again, lock-up is assumed and the deformation theory version of plasticity

is adopted. We can make the following deductions ffagures 5(a)and5(b), taken together.

() The compressive strength for both the circular patch of waviness and the infinite band decreases with
increasingpo, for ¢ less than about LOAt larger values of initial misalignment, the strength asymptotes to a
constant value.

(if) The strength for a circular patch of waviness increases with decreasamgl with decreasing diameter
D of patch. Similar findings have already been reported for collapse from an infinite band and from circular
patches of small initial waviness, see Fleck et al. (1995) and Shu and Fleck (1997). The sensitivity of strength
to the strain hardening indexis greatest at large values ¢f§: this is supported by the observation that the
initiation strength as given by (4.1) for smal is relatively insensitive ta:, whereas the band broadening
stress increases strongly with decreasings discussed by Budiansky et al. (1998).

wherep is defined by

80 [ 1 | | 70 T T T T
60 A circular wavy patch of diameter D
n=3 — — — - An infinite wavy band of width
n=10 50 w and band inclination 8 i

20 30
O, (degrees)
(a)

50

ao(degrees)
(b)

Figure 5. (a) Compressive strength versus amplitude of fiore misalign@gfur a circular patch of fibre misalignment, for selected values of diameter
D and strain hardening index (b) Comparison of compressive strength for a circular imperfection of dianPeted0Q7/ and an infinite band of width
w =40, for n = 3. In both figures, bending theory with lock-up is assumed, and the deformation theory version of plasticity is adopted.
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Figure 6. Effect of diameterD of circular wavy patch upon compressive strength, according to bending theory for an amggjted@d® andn = 3.
The effect of lock-up and the choice of constitutive relation (deformation theory versus flow theory) is explored.

(iif) The compressive strength due to a circular patch of waviness lies between the strengths for an infinite
band atg = 0° and 30, for ¢, greater than about’5This is consistent with our observation that, at peak load,
microbuckling from a circular patch of waviness is activated mostly along an orientatjpr=df0°; contours
of fibre rotation are omitted for the sake of brevity.

The sensitivity of the compressive strength to the wavy patch size, to the lock-up assumption and to the choice
of a constitutive law (deformation theory versus flow theory) is showigure 6for the case of a circular patch
of large misalignmentp, = 30°. A clear size effect is evident, with the compressive strength doubling as the
imperfection sizeD is reduced from 400 to 2. As D/d is reduced to zero, the strength increases to the
elastic bifurcation strength, = G, while the strength levels off to a constant valueogf~ 20ty at large
D/d values on the order of 400. Relaxation of the lock-up assumption, or the use of flow theory rather than
deformation theory have only minor effects upon the compressive strength.

5. Compressive strength of a composite beam in bending

Composite structures such as beams are often subjected to bending. Bend tests are also used to measure the
stiffness and strength of composites. Thus, it is important to determine whether the size effect on compressive
strength is present in bending in addition to uniaxial compression. Here, we consider the highly idealised case
of a unidirectional composite beam, of heigtit containing a transverse band of waviness, of widtithe
fibre misalignment within the infinite band follows the cosine variation as defined by (4.2). The deformation
theory version of bending theory of section 3 is used to predict the compressive swgmgtlthe outermost
fibre of the beam under pure bending, and the compressive strengtider uniaxial compression.

Predictions are shown iiigure 7for the choicew = 20d, n = 3, ¢ = 2°, 4°, 30° and with lock-up included
in the analysis. There is a dramatic difference in the severity of the size effect for bending and for uniaxial
compression: in uniaxial compression the free surface has a minor influence on the compressive strength and
o. is almost independent of the /d ratio (as discussed previously by Fleck et al. (1998)). In contrast, the
bending strengthy, increases by a factor of about three whirid is reduced from 1000 to 20; this may
be interpreted as follows. In the bending case, the outermost fibres of the beam are supported by adjacent
stiff material, and so microbuckling of the surface layers is delayed. The effect is most pronounced when the
stress gradient across the height of the beam is large, which is the case for thin beams. As the beath height
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Figure 7. Effect of beam height/ on the bending strengih, and the uniaxial compressive strengthfor a parallel-sided band of fibre waviness of
width 207 and amplitudepg = 2°, 4° and 30. The deformation theory version of bending theory is employed, mwith3 and lock-up included.

increases, the maximum compressive stress under besglaqggproaches the uniaxial compressive streagth

The difference in strengths for a beam in bending and a beam under direct compression is significant for beams
of height H less than about 10d0 Typically, the diameter of carbon fibres is abaut 5 um, and so we

expect size effects to be present in beams of height up to 5 mm. Further experiments along the lines of Wisnom
(1992, 1994) would be welcomed to quantify the effect fully.

6. Concluding remarks

We conclude from the results of this study that a one-dimensional infinite band analysis in the form of
kinking theory is adequate for predicting the microbuckling strength of a fibre composite, provided the region
of fibre misalignment is large in relation to the fibre diameter, and provided the amplitude of the misalignment
is on the order of a few degrees. For larger values of initial waviness, a local maximum in peak strength is
not attained; instead, the effect of fibre bending is to lead to band broadening at constant applied stress, and
bending theory is needed in order to predict the compressive strength. Fibre bending theory is also useful for
characterising the effect of the initial widih of the band of misaligned fibres upon the compressive strength.
Narrow imperfections are less deleterious than wide imperfections due to the stabilising effects of fibre bending.

The predicted compressive strength for a circular patch of waviness has been obtained as a function of
misalignment amplitude, and imperfection size using bending theory. Proviggiexceeds about t0the
compressive strength. is in the range 10-3§, depending upon the strain hardening exponent, and upon the
diameterD of imperfection. Typical polymer matrix composites have a shear yield strepgthabout 50 MPa,
and so the predicted compressive strength is in the range 500-1500 MPa for a wide range of imperfection
geometry. Observed strength values for unidirectional and woven composites lie in this range, as reviewed by
Fleck (1997).

Finally, this study supports the findings of Wisnom (1992, 1994) that the bend strength of composites is
particularly sensitive to the magnitude of the imposed stress-gradient: the bend strength of the outermost fibre
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of the beam increases with diminishing heightof the beam. In contrast, the uniaxial compressive strength of
a composite panel is hardly influenced by the panel width.
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