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Abstract. Crack growth initiation and subsequent resistance to propagation are explored numerically for regular
and irregular hexagonal honeycomb structures made from ductile cell walls. The elasto-plastic response of the
cell walls is described by a bilinear uniaxial stress-strain law, with fracture of the cell walls characterised by
the fracture energy per unit area. Estimates for the macroscopic toughness and the associated plastic zone shape
are derived analytically on the basis of simple considerations. Crack propagation is simulated numerically by
fracturing elements within a finite element model and K -resistance curves are calculated under the assumption of
small-scale yielding. The dependence of the crack growth behaviour upon the cell wall material parameters and
geometric imperfections of the structure is investigated.
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1. Introduction

Cellular materials have unique property profiles, with potential for engineering use in a num-
ber of structural, thermal and acoustic applications. For example, aluminium foams are consid-
ered for structural components such as sandwich cores and for the cores of energy-absorbing
tubes in automobile suspensions. Recently, the mechanical properties of cellular materials
have been reviewed in the monographs of Gibson and Ashby (1998) and Ashby et al. (2000).

Regarding the fracture properties of these low density materials, previous theoretical stud-
ies have been confined to brittle cellular solids and to the prediction of a critical stress-intensity
factor. Estimates of K, for brittle foams and hexagonal honeycombs have been derived by
Gibson and Ashby (1998) by calculating the bending moment in a cell wall adjacent to the
macroscopic crack tip from the asymptotic singular stress field of linear elasticity-theory. The
local stresses associated with bending of the cell walls can then be expressed in terms of the
applied K, and the fracture strength of the cell wall determines K. In similar fashion, the
fracture toughness of brittle foams with a negative Poisson ratio has been calculated and has
been reported to be higher than that of conventional foams (Choi and Lakes, 1996). Chen
and Huang (1998) have proposed a micro-polar continuum theory for 2d cellular structures
with elastic cell walls and calculated the local stresses from the asymptotic crack tip fields of
this strain gradient theory. Mode-II and mixed-mode loading are addressed in Hallstrom and
Grenestedt (1997); they derived a fracture criterion in terms of the local stresses associated
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Figure 1. Cellular structure with a macroscopic crack under small scale yielding conditions. The nodal
displacements and rotations are prescribed on the outer boundary.

with a continuum solution. The knock-down in strength due to the presence of cracks of length
below a few cell sizes has been studied by Huang and Gibson (1991a,b).

While the macroscopic elastic-plastic deformation behaviour of metal foams has received
some attention (e.g., Deshpande and Fleck, 2000; Miller, 2000), the authors are unaware of
any micromechanical studies on the influence of the cell walls’ ductility upon the macroscopic
fracture properties of a cellular solid. This is the objective of the present paper. To assess the
role of microstructural imperfections upon the toughness of an elastic-plastic honeycomb, we
consider two-dimensional regular and irregular cellular structures containing a macroscopic
crack under mode-I loading and employ the assumption of small scale yielding. By introduc-
ing a local failure criterion, the initiation toughness, crack resistance curves and associated
plastic zone evolution are then calculated numerically. Section 1 describes the model in detail.
In Section 2, appropriate nondimensional parameters are introduced and some estimates are
derived. The numerical model is described in Section 3, followed by the presentation of results
in Section 4, and a discussion and concluding remarks in Sections 5 and 6, respectively.

2. Specification of the model

We consider a macroscopic crack in a two-dimensional regular or irregular hexagonal hon-
eycomb as depicted in Figure 1. The building elements of the structure are beams of average
length [ which are assumed to be sufficiently slender so that their shear-compliance can be
neglected compared to their bending compliance. For simplicity, the beams are taken to be of
rectangular cross section with thickness 7. The cell wall material is described by the uniaxial
bilinear stress-strain relation

e=0/E 0 < 0y,

1)
€e=0,/E+(~0,)/H o >o0,,

in terms of the true stress o, true strain €, Young’s modulus E, yield strength o, and constant
hardening modulus H. This relation holds for stresses below the fracture strength o ¢, which
marks the beginning of fracture of the cell wall material. The fracture event is not modelled in
detail; rather, we assume that it affects the macroscopic fracture response of the structure only
through the amount of work that is dissipated due to the fracture of a beam. This means that
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the fracture properties of the cell wall material are taken to be described sufficiently through
the fracture energy per unit area of beam cross-section, I'y.

Under conditions of small-scale yielding, the displacements on a boundary remote from
the crack tip are specified by the mode-1 K -field. These displacements serve as boundary data
with the applied K acting as a loading parameter. Macroscopic crack propagation is simulated
by first incrementally increasing the displacements of the remote boundary (which is taken to
be of circular shape) until the stress in one of the beams near the crack tip attains the fracture
strength. Since there is no transverse distributed loading on the beams, the bending moment
is linear over each beam and fracture occurs at one of the end points. Subsequently, this beam
is disconnected from the respective joint in such a way that the energy dissipated during that
process equals the energy dissipated through plastic deformation in the whole structure plus
the work of fracture, I'g A, required to drive a crack through the beam’s cross section A. Within
the finite element model, this local fracture process is simulated by removing an element
from the discretised structure using an internal ABAQUS routine. This routine replaces the
respective element with the axial- and transverse forces and the bending moment it exerts on
its neighbouring nodes, and then ramps down these forces to zero; the applied K is increased
during this fracture event so that the work of fracture at the failed joint equals the desired
value ' A.

3. Non-dimensionalisation and estimates

Dimensional analysis reveals that the dimensionless crack growth resistance, to be made
precise shortly, depends upon the following set of dimensionless parameters

p=t/l, oy/E, oy/o,, H/E, To=T.E/(@]]), (2)

where p = 1/, up to a factor of proportionality, can be interpreted as the relative density
of the honeycomb; Ty is, up to a constant factor, the work required to break a beam divided
by the elastic strain energy contained in a beam under pure bending when the yield strain is
attained at the outer fibres.

3.1. ESTIMATE OF THE FRACTURE TOUGHNESS

In order to obtain a dimensionless measure of K, we derive a characteristic fracture toughness
of the honeycomb as follows'. An order-of-magnitude estimate for the transverse deflection w
of a representative beam end-point at a distance / from the macroscopic crack tip is obtained
from the asymptotic K-field for a homogeneous elastic solid, giving

woc%«/i, (3)

where E* is the effective Young’s modulus of the honeycomb. According to Euler—Bernoulli
beam theory, this displacement scales with the bending moment M, the length [ of the beam
and its cross-sectional dimensions b and ¢ via

MI?

X o @

w

I'The following derivation is similar that given by Gibson and Ashby (1998).
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Figure 2. Regular honeycomb: macroscopic stresses and internal section forces.

where E is Young’s modulus of the cell wall material. Further, the maximum stress in a beam

Omax 18 related to the bending moment M via
M
Omax X W . (5)

Upon combining (3), (4), (5), we arrive at
K o V1 omax(1/t)E* JE . (6)

Now, the ratio of Young’s modulus of the honeycomb E* to that of the cell walls E scales
with the relative density as E*/E o< (¢/1)? (Gibson and Ashby, 1998), and so

K o V1 omax (/D)7 . @)

A characteristic toughness Ky is then obtained by equating oy« to the yield strength of the
cell wall material o, to give

Ky = rloy(t/1)?, (8)

where the factor /7 has been introduced for convenience. This quantity is an estimate for the
stress intensity factor that causes initial yielding. An estimate for the initiation toughness could
likewise be obtained by setting opmax equal to the fracture strength o to give Ky = 0¢/0,Ky.
Clearly, the proportionality relations (4) and (5) assume a linear elastic response and cease
to hold once yielding has begun. Moreover, the starting point (3) is questionable even in the
elastic case. However, we may still choose Ky to make the applied K dimensionless,

K = K/Ky ©)
and the results presented later will show that this choice is appropriate.
3.2. ESTIMATE OF THE PLASTIC ZONE SIZE AND SHAPE

3.2.1. Regular honeycomb
For a fully dense elastic-plastic solid, a simple estimate for the size and shape of the plastic
zone around the crack tip can be obtained by checking for the satisfaction of yield using
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the asymptotic elastic stress field and thereby defining a contour inside of which the stresses
exceed the yield value. The same approach can be adopted for a regular honeycomb since
an expression for the yield function can be easily derived, as follows. Consider the bending
moment M and axial force N in a cell wall of a regular hexagonal structure subjected to
macroscopic principal stresses o and o, (Figure 2). From elementary considerations it follows
, that

M(oy, 03) = £3bl*(0) — 02),
5 (10)
N(o1,02) = Lbl(30o) + o).

If we assume that the deformation of a representative is bending dominated, the maximum
stresses in the beam are given by

6M
bt?

and yielding occurs when this stress reaches the yield strength of the material, which, using
(10), leads to the yield function

; (1)

Omax

f(01,02)=|<71—021—302%:0- (12)

Relation (12) is a good approximation to the yield function derived by Gibson and Ashby
(1998): they argued that hydrostatic loading leads to cell wall stretching and to a much higher
strength than that associated with cell wall bending under deviatoric loading.

The asymptotic principal stresses for mode-I loading in plane stress are given by

o1(r, ) = \/fn—r(l + sin(p/2)) cos(p/2), .
K
oy (r, @) = m(l — sin(¢@/2)) cos(¢/2),

in terms of the polar co-ordinates (r, ¢) centred on the crack tip. Upon inserting these expres-
sions into (12) and using the definition (8), we deduce that the contour of the plastic zone is
estimated by

rp(@)/1 =2.53K* sin? ¢ . (14)

The graph of (14) is shown in Figure 3 (innermost contour, labelled @ = 0 and k = 1)?; its
extent in the x- and y-directions are
/1) = 0.97K* |y™X /]| = 2.53K? . (15)

p

3.2.2. Irregular honeycomb

Consider an irregular honeycomb as generated by displacing the vertices of a regular hon-
eycomb by a fixed amount in random directions. The macroscopic yield function for this
microstructure cannot be derived analytically. However, numerical studies show that the yield
function is elliptical in deviatoric stress versus mean stress space, to a good approximation
(Chen et al., 1999). In 2D, the mean stress o,, and deviatoric stress o; can be expressed in
terms of the principal stresses (o, 07) as

2The parameters w and « are defined in the following section.



332 [ Schmidt and N. A. Fleck

Figure 3. Estimated plastic zone shape for irregular honeycombs with ratio of uniaxial to hydrostatic yield strength
of w=10.,0.7,0.8,0.9.

om = 3(01 4+ 02) , 0d=\/75|01—02 ; (16)

and the yield function f (o) has the form
flon, o) =0j+ B0, —Y =0, (17)

where B describes the shape of the yield surface and Y is its overall size. This functional form
with 8 ~ 1 reflects the fact that, in an irregular honeycomb of sufficiently low relative density,
cell wall bending dominates stretching under all loading states (see, e.g., Chen et al., 1999).
The strength Y is related to the uniaxial yield strength of the irregular honeycomb o, by

Y =12+ g, , (18)

and the parameter f is related to the ratio of uniaxial to hydrostatic yield strength w = o0, /o),
via

20?
2
= . 19
B=1 (19)
Proceeding as before, we arrive at the following estimate for the contour of the plastic zone:
/1= 228 K i) + 820+ cosp (20)
r = ————[sin cos )],
P (p 2 + ﬂz K2 §0 (p

in which « denotes the ratio of uniaxial yield strength for the irregular and regular honey-
combs. Figure 3 depicts the shape given by (20) for selected values of w in the range 0 to
0.9; for a typical metallic foam w =~ 0.9 (cf., Deshpande and Fleck, 2000). Increasing
corresponds to a reduced hydrostatic yield strength; this causes the plastic zone to extend
directly ahead of the crack tip where the stress state is purely hydrostatic while the overall
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dimensions of the plastic zone are essentially left unchanged. For the limiting case w = 8 = 0
and «k = 1, the result (14) is recovered.

4. Numerical technique

For the numerical evaluation of the model described in Section 2, a finite element method is
used to calculate stresses and strains in the cell walls of a honeycomb bounded by a circle
of radius R ~ 85/. This value has been found to give converged results. The cell walls are
modelled by Euler-Bernoulli beams which are discretised with up to 7 cubic beam elements
whose material behaviour is defined by (1). The displacements u; and rotations \r of the beam
ends are prescribed on the outer boundary (see Figure 1) according to the asymptotic field

Kr
221
K\r . (21)
—————sing/2(a¢ — cos @) ,
SN @/ @

Y(r @)= 32y —ur)

ui(r,¢) = cos ¢/2(a — cos ¢)

ux(r, @) =

where o = (3 — v*)/(1 + v*) for plane stress and u*, v* are the effective shear modulus and
Poisson ratio of the honeycomb, given in terms of the relative density measure p = t// by
(cf., Gibson and Ashby, 1998)

E* 4 p’ 1 —p?

* * *

-~ P =E_ . v = .
2(1 + v¥) V314 3p? 1+ 303

The structure is loaded up to the point where the fracture strength o is reached in one of
the beams; the respective element is then removed from the model, thereby disconnecting the
fractured beam from a vertex. As mentioned earlier, this element removal is performed with
a built-in routine of the finite element code ABAQUS which first replaces the element with
the forces and moments it exerts on its neighbouring nodes and subsequently reduces these
section forces to zero over a prescribed load-parameter interval. This interval, i.e. the change
in the applied stress-intensity factor AK, determines a posteriori the work of fracture per unit
area I'y of the removed beam, which is evaluated numerically. By choosing A K appropriately,
"y can be adjusted to the desired value. This includes the possibility of negative values of AK,
corresponding to an unloading of the structure, and therefore allows also for R-curves with
a negative slope. The crack extension Aa is then defined as the x co-ordinate of the vertex
to which the failing end of the beam was connected, or the previous value of Aa, depending
upon the larger of the two.

w (22)

5. Results

The current study is aimed at gaining some insight into the fracture properties of metallic
foams — rather than real honeycombs — and so the following cell wall material parameters are
chosen as representative of those for aluminium alloy foams:

o,/JE =0.1%, o;/0, =20, H/E=0.1, T[,=30. (23)
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Figure 4. Predicted crack path in a regular honeycomb for the material parameters given in (23) and p = 5%.

5.1. CRACK PATH IN REGULAR HONEYCOMB

A typical prediction of crack path is shown in Figure 4 for the case p = 5% with loading
taken to the point where 9 cell walls have failed. The cell wall in which the fracture strength
is reached first is not the one directly ahead of the ‘crack tip’; rather, the highest bending
moments are attained above and below the crack tip. As a result of the structure’s regularity,
the crack follows a tortuous path®. The beams which fail do not lay on a continuous path: they
break the structure into a multiply connected domain. Consequently, some traction can still be
transmitted across the zone of cracking, and the disconnected crack advance can be viewed as
a bridging zone.

Figure 5 shows the plastic zones around the crack tip at initiation and at Aa = 7/ for the
choice p = 5%. The distribution of the plastic strains is illustrated by marking with crosses
those vertices where at least one of the adjoining beams has undergone plastic yielding; the
two different intensities of the crosses correspond to plastic strains between 0.5¢, and 5S¢, and
greater than 5S¢, respectively. It can be seen that appreciable plastic strains are confined to a
narrow region around the crack path. The dashed lines in these figures represent the estimate
(14) for the plastic zones. While these estimates appear to be somewhat too large, this picture
changes when one would mark all vertices with non-zero plastic strain — no matter how small.
In this case the coincidence is very good (not shown).

3The initial symmetry about the line of the macroscopic crack is broken by disconnecting only one of the two
beams in which the stress reaches the fracture strength for the first time.
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Figure 5. Plastic zones for the regular honeycomb at initiation (left) and for Aa = 7/ (right).
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Figure 6. K-resistance curve for the regular honeycomb at two values of relative density.

The corresponding crack resistance curves for p = 5% and 10% are presented in Figure 6.
Despite the large difference in the corresponding values of p, the curves differ negligibly.
The absolute values of the crack resistance, however, are very different because p enters the
non-dimensionalisation (9) for the stress intensity factor. This implies that the influence of
the relative density of the honeycomb is essentially captured in (9). Moreover, the initiation
toughness is approximately K, = 2.3Ky which is remarkably close to the estimate K. =
or/oyKy = 2.0Ky derived earlier. The crack resistance has not attained a steady-state value
over the range considered here.
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Figure 7. Predicted crack path in an irregular honeycomb.

5.2. CRACK PATH IN IRREGULAR HONEYCOMB

Next, consider the case of an irregular honeycomb. This structure is generated by randomly
perturbing the vertex positions of a regular hexagonal honeycomb, the amount of perturbation
being uniformly distributed between —15% and +15% of the average beam length. In order
to obtain crack resistance curves a set of 5 different realisations of such structures has been
analysed. The Ky values at each stage of the crack propagation are then averaged over the 5
realisations to give an averaged crack resistance. While five realisations are insufficient to give
an accurate averaged response, it is believed that they provide a useful qualitative picture.

A typical pattern of crack propagation in an irregular honeycomb with the set of parameters
(23) is shown in Figure 7 (p = 5%). No oscillation of the crack path can be observed; the
crack extends more or less in a self-similar direction. Also, the degree of crack bridging is less
significant.

The plastic zones at initiation and at Aa = 8/ are shown in Figure 8 together with the
estimate (20), in which @ = 0.7 and ¥ = 0.8 have been used*. These plots have been obtained
by marking with a cross the plastic vertices of the 5 realisations in the same plot. Thus, the
intensity of the markers can be viewed as the ensemble average for the magnitude of the plastic
strain around the crack tip. As in the case of regular honeycombs, the estimate (20) for the
plastic zone is in reasonable agreement with the numerical results with regard to both shape
and size.

The crack resistance curves for regular and irregular honeycombs are compared in Fig-
ure 9. The error bars indicate the standard deviation from the corresponding mean value of the

4These values have been extrapolated from the calculations in Chen et al. (1999) for the chosen level of
imperfection in the foam.
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Figure 8. Plastic zones for the irregular honeycomb at initiation (left) and for Aa = 8/ (right).
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Figure 9. Comparison of the predicted K -resistance curves for regular and irregular honeycombs.

irregular structures. It is evident that the toughness is considerably reduced by the irregularity
in microstructure.

5.3. EFFECT OF CELL WALL PROPERTIES UPON MACROSCOPIC TOUGHNESS

It has already been shown in Figure 6 that the effect of the relative density measure p upon the
R-curve of the regular honeycomb is adequately captured through the choice of the normal-
isation K. Numerical experimentation confirmed that this also holds in the case of irregular
honeycombs. Next, we explore the effect of the remaining non-dimensional cell wall proper-
tiesos/oy, H/E, o,/E and Iy upon the crack resistance curve for the irregular honeycomb,
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Figure 11. K -resistance curves for altered hardening modulus.

at p = 5%. Figures 10, 11 and 12 show the crack resistance curves (in the average sense
described before) for altered fracture strength (oy/0, = 2.0 — 2.65), hardening modu-
lus (H/E = 0.11 — 0.059) and yield strain (0,/E = 0.1% — 0.2%), respectively.
For comparison, the baseline curve from Figure 9 is included as a dashed line in each of
Figures 10-12.

We note that the curves are qualitatively similar and differ essentially through a constant
shift along the Ky axis. That is, the slope of the resistance curve is much less affected by the
cell wall properties than is its absolute value.

An increase of the fracture strength ratio o /o, leads to higher Ky values (Figure 10): as
might be expected, a larger applied K is needed to break the first beam. Likewise, decreasing
the normalised hardening modulus H/E leads to elevated K values: the physical interpreta-
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Figure 13. Plastic zones for af/o.\- = 2.65 at initiation (left) and for Aa = 7! (right).

tion is that a reduced hardening modulus requires a larger deformation of the mesh boundary
for the stresses to reach the unaltered fracture strength (Figure 11). The response is only mildly
sensitive to a change in yield strain, in contrast to the effect of H/E and of o4 /o, (Figure 12).

The plastic zones corresponding to the altered values of fracture strength and hardening
modulus are shown in Figures 13 and 14, together with the estimate based on (20). The same
values w = 0.7 and k¥ = 0.8 have been used here as in Figure 8 and the accuracy of the
analytical estimate of the plastic zone size remains high.

Since the shape of the resistance curves remains practically unchanged upon altering the
cell wall material parameters, their influence may be characterised by calculating only the
initiation toughness as a function of these parameters. Figure 15 shows that K. increases
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Figure 15. Initiation toughness as a function of fracture strength.

linearly with the normalised fracture strength o ¢ /o, with a slope of about unity; this is in line
with the dependence predicted by the estimate K ; = 07Ky /o, mentioned earlier. Figure 16
depicts K. as a function of the hardening modulus in a log-scale representation and shows a
power law dependence with an exponent of approximately —%. The simple estimate K =
oy Ky /oy has no dependence upon H/E because its derivation ignores plasticity altogether.

6. Concluding remarks

Crack growth under mode-I loading and small scale yielding conditions in 2d cellular struc-
tures has been simulated numerically using a finite element method in conjunction with an
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Figure 16. Initiation toughness as a function of hardening modulus.

element-removal technique. The method allows for the calculation of crack growth resistance
curves, including the associated evolution of plastic zones, and their dependence on the cell
wall material parameters. It is found that the crack growth resistance scales quadratically
with relative density and linearly with the ratio of fracture to yield strength of the cell wall
material. No significant effect of these parameters on the slope of the resistance curves was
detected. Throughout this study, the fracture energy I'y has been kept constant. Numerical
experimentation revealed that an increase in I'y leads to large changes in the applied stress
intensity factor during the process of removing an element (i.e., fracture of a beam) — with the
effect that, at the end of a particular removal step, the stress may have attained the fracture
strength in several other elements. In this case, the proposed method fails to describe the
process adequately since it does not allow for the sequential fracture of beams at the crack tip.
Nevertheless, we conclude that the slope of the R-curve will increase with increasing I'y. The
proposed method can in principle be applied to the three-dimensional case too. However, this
would lead to very large computation times, chiefly because of the iterative computation of the
change in the applied K during the fracture of a beam. It would be desirable to have a method
that allows one to simulate the fracture of a beam without interrupting the computation and
without the necessity to adjust AK so as to match the prescribed value of I'y. Work in this
direction is underway.

The numerical results support an analytic estimate for the plastic zone size at fracture initi-
ation: the size scales with the square of the stress intensity factor and is inversely proportional
to the 4th power of the relative density.
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