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Abstract. Standard effective properties of heterogenous materials can no longer be used when strain gradients become
large with respect to the scale of heterogeneity. The effective modelling can be improved in such cases by including
higher-order deformation gradients. For the case of a periodic, linear elastic medium effective relations are derived
directly from the properties of the microstructure. The coefficients in these relations can be computed by solving a set
of boundary value problems for the periodic cell. This has been done numerically for a fibre-reinforced composite,
showing that higher-order terms become more important as the stiffness contrast between fibre and matrix increases.

1. INTRODUCTION

Damage and fracture processes in engineering materials are accompanied by highly localised deformations
and stresses. In these circumstances, standard continuum models cease to be meaningful representations of
the actual material behaviour. Not only do they become inaccurate when the scale at which the continuum
fields vary approaches that of the microstructure, but they may also suffer from mathematical difficulties
and cease to be physically meaningful. Continuum models which remain mathematically and physically
consistent for high strain gradients can be obtained if nonlocal or gradient terms are included in the con-
stitutive modelling. These terms represent the influence of microstructure and microstructural processes on
the effective behaviour of the material.

Although often motivated from specific physical processes, most of the existing nonlocal and gradient
models are largely phenomenological. The parameters featuring in them would therefore have to be deter-
mined from experiments. A more appealing way to arrive at enriched effective relations is to derive these
relations directly from the behaviour of the microstructural constituents and their geometric arrangement.
Such direct relations between microstructure and macroscopic behaviour, however, are generally difficult
to obtain. A class for which this direct link can be made is purely elastic behaviour. A nonlocal effective
representation of random, linear elastic composites has been developed by Willis and co-workers [1-3] by
formally solving the equilibrium equations in terms of a stress polarisation and subsequent ensemble av-
eraging. For a random composite, statistical properties of the microstructure are needed, but the method
can also be applied to deterministic problems, where this information is readily available. Higher-order
gradient theories have been developed by Boutin [4] and Triantafyllidis & Bardenhagen [5] for periodic,
linear elastic media using an asymptotic solution of the microstructural problem. Based on the properties
and morphology of the phases, effective moduli can be determined up to an arbitrary order. Smyshlyaev
& Cherednichenko [6] have refined this approach by introducing variational arguments, which ensures that
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the difference between real and homogenised behaviour is minimised and that the homogenised equilibrium
equations are elliptic. The same authors have also extended the theory to the case of nonlinear elasticity [7].

Applications of the higher-order homogenisation methods have been limited to relatively simple mor-
phologies. Boutin [4] has derived closed-form expressions for higher-order moduli (up to order two) for a
two-phase laminate. The slightly further simplified case where forces vary only in the direction on lamina-
tion has been considered by Luciano & Willis [3], resulting in a local effective stress-strain relation. For
the full three-dimensional problem, i.e., with force variations also in the plane of the laminae, the relevant
equations cannot be solved analytically. For this case bounds have been obtained for the Fourier transform
of the effective nonlocal elasticity operator [3]. In order to obtain estimates of the effective relations for this
and more complex arrangements, a numerical approach is necessary.

In the present paper such a computational strategy for higher-order homogenisation is developed on
the basis of Smyshlyaev & Cherednichenko’s method for periodic, linear elastic media [6]. This theory is
first extended to the full three-dimensional case. It requires a set of boundary value problems to be solved
on the periodic cell. For this purpose, the boundary value problems are cast in a weak form and solved
by the finite element method. Effective higher-order moduli can be computed as weighted averages of the
resulting functions and their derivatives. The method has been applied to a fibre-matrix system, for which
the influence of the ratio of the elastic moduli of the fibre and matrix on the effective behaviour has been
examined.

2. ASYMPTOTICS OF THE HETEROGENEOUS PROBLEM

Following Smyshlyaev & Cherednichenko [6], we assume the elasticity problem to be doubly periodic;
see Figure 1 for a one-dimensional graphical representation. The microstructure is constructed from a unit
cell Q = [0, 1] x [0, 1] x [0, 1] by re-scaling by a small parameter ¢ and repetition. As a result, the
microstructure is periodic with period £Q and the small parameter € appears as the natural length scale of
the material. The body force vector f(x) is periodic with period T = [0, T] x [0, T'] x [0, T'], where T is of
the order of 1 and T /¢ is an integer. Assuming this periodicity of the body force, and therefore of the entire
problem, allows us to concentrate on the behaviour of the bulk material, without any influence of boundary
conditions or conditions at infinity. It also implies that the displacement u(x) is T-periodic. As a result, the
elasticity problem need only be solved on one period T, after which the solution on the entire domain can
be obtained by repetition.
The three-dimensional equilibrium problem on the period T can be written as

d0;;
— 4+ =0 =123, "
3)(,'
where the Cauchy stress tensor is given by
1 (Ouy  Ou
oij = Ciju(X/€) e, en =3 (a—xf + 3_)(;) ®

and summation is implied over the repeated indices i, k, [ = 1, 2, 3. The elasticity tensor C;;;;(§) satisfies
the usual symmetries Cjji; = Cjixy = Cijix = Cuij and is assumed to be positive-definite and piecewise
smooth; the appropriate weak conditions must be applied at discontinuity surfaces. Substitution of rela-
tions (2) in the set of equilibrium equations (1) results in a set of partial differential equations in terms of
the displacement components u. It proves to be useful to rewrite this set of equations in the vector form

a du
— (A.‘I(X/S)—- +f(x) =0, (3)
8xi 8x1

where the matrix-valued functions A;;(§) are defined by A',-/,k (&) = Cijwi(&). In addition to the requirement
of periodicity of the displacement field u(x), the mean displacement on the period T is required to be zero
in order to guarantee a unique solution of the equilibrium problem.
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Figure 1. One-dimensional heterogeneous elasticity problem with double periodicity.

An asymptotic solution of equation (3) is now sought by separating the influence of the microscopic
and macroscopic coordinates:

ux) = Y & un(x, x/¢), )

m=1

where the functions u,,(x, &) are Q-periodic with respect to the microstructural coordinates & and T-
periodic with respect to the macroscopic coordinates x. Straightforward substitution of (4) in (3) and
requiring that the resulting equation is satisfied at each order of & shows that the asymptotic expansion
(4) must be of the form [4, 8]:

O
ux) =v(x) + Y &" Y Ny(x/e) D"V(X). 5)
m=1 Inl=m
Here n = nyny...ny, is a multi-index with ‘length’ [n| = m in which each of ny, ny, ... , n, adopts

the values 1, 2, 3. D" denotes differentiation with respect to x,,, Xxp,, etc.: D" = 9™ /3x,,0Xp, ... 0Xy,.
Reference is made to Bakhvalov & Panasenko [8] for the formal justification of (5).

The matrix-valued functions N, (£§) in (5) are the solutions of the following problems on the periodic
cell:

3‘1( = )+Tn<§)=H,., ml=m=1,23.., ©)
where
T, (§) = s m=1, )
Ty, (8) = Z (A,,.,N,,z)+An.13‘,lfs +Apny, m=2, (8)
T.(§) = ag (AinNouy..nn) + Ayt N;; " 4 AwynoNogomy, M >3 ©)
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and

H, = (Tn) = /Tn(E)dE- (10)
Q

Note that H,, = 0 because of periodicity. The functions N,(§) are uniquely defined by the additional
requirements that they are Q-periodic and that their mean on the periodic cell vanishes, i.e., (N,) = 0.
Problems (6) depend only on the microstructural stiffness distribution given by A;;(§) and can therefore
be solved independently of the macroscopic problem (in particular: independently of the distribution of
body force f(x)). Since for values of m > 2 equations (6) depend on functions N, (§) with |n| < m, these
problems have to be solved sequentially, for increasing m and starting at m = 1.

The vector-valued function v(x) in (5) formally satisfies

Z gm—2 Z H, D"v(x) + f(x) = 0, (11

m=2 |nl=m

where H,, are the constant matrices defined by (10). Only macroscopic quantities appear in equation (11),
the connection with the microstructure being provided by the matrices H,. This equation is therefore
referred to as ‘homogenised equation of infinite order’ [8]; this nomenclature will be further substantiated
in the next section.

The equilibrium problem (3) can be rephrased in a variational form by considering the energy func-

tional
X 1 /auw\"  ou o,
E[u]_/[E(BXi) Ajy o —f u}dx, (12)
T

where u*(x) is T-periodic and has average zero. The equilibrium solution u, the asymptotics of which are
given by (5), minimises this functional. The elastic energy in one period T is therefore given by

I = E[u] = m(lrg E[u*]. (13)

3. HOMOGENISATION BY ENSEMBLE AVERAGING

The averaged behaviour of the heterogeneous material is now determined based on the argument that the
‘phase’ of the microstructure with respect to the macroscopic body force is unknown. A family of problems
is therefore considered, in which the microstructure is translated by a vector ¢, while the body force is
kept fixed:

e
2 (Af, (x/e)al) 1) =0, (14)
ox; 0x;

with Af, (&) = Ayy(§ +¢) and ¢ € Q. The homogenised equilibrium equations should provide the best
possible fit to the ensemble average of the solutions to each of these problems [6].

Following the same arguments that led to relation (5), it can easily be seen that the solution to each of
the problems (14) is given by

v =vE+ Y " Y NE(x/e) D"v(x), (15)

m=1 |nl=m
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with N} (&) = N, (& + ¢). The ensemble average of the family of solutions ué follows as

(%) = ] ul (x) d¢ = v(x). (16)
Q

As a result of the fact that (N,) = 0, the higher-order contributions vanish and only v(x) survives the
averaging. The true homogenised solution therefore follows as the solution of the ‘homogenised equation
of infinite order’ (11).

For practical applications, the infinite-order homogenised equation (11) must somehow be approxi-
mated by an equation of finite order. It has been argued by Smyshlyaev & Cherednichenko [6] that simply
truncating (11) at some order of ¢ may not be a good idea because ellipticity of the resulting equation can-
not be guaranteed. Instead, they propose to derive the finite-order homogenised equation from a variational
formulation of the averaged problem. In this way, ellipticity of the resulting equation is guaranteed in a
natural way. Moreover, the resulting homogenised solution is the best possible fit to u(x) in terms of elastic
energy.

The energy in one realisation of the translated problem is given by (cf. (13))

1% = E%[u®] = min E¢[u*], (17)
u*(x)
with E¢[u*] defined analogous to (12). The ensemble average of the energy can therefore be written as

1‘=/1<d; =/min E%[u*]d¢ = min /E‘F[u"]d; = min E[u*], (18)
u*(x) u**(x,¢) u**(x,¢)

Q Q Q

where the average energy functional E[u**] has been defined as

E[u™] = / Ef[u™]d¢ (19)
Q

and the test function u**(x, ¢) must be T-periodic in its first argument and Q-periodic in its second argu-
ment. The minimiser of E[u**] is u*™(x, ¢) = ué(x), the asymptotics of which are given by (15). The crux
of the method proposed by Smyshlyaev & Cherednichenko [6] is now to restrict the set of test functions
u**(x, ¢) by truncating (15) after a finite number of terms. In the present three-dimensional case this means
that we consider a class U of test functions that can be written as

K
X =viX) + Y e Y Ni(x/e) D'V (x), (20)

m=1 |n|=m

where K > 1. A higher value of K implies that more detail of the microstructural fields is included and
will result in a higher order of the resulting homogenised equations.

Straightforward substitution of (20) shows that the variational problem of order K can now be written
as:

[= min E[u*]=minE[v*]. @21
u*(x,¢)el v*(x)

Here the functional £ [v*] has been defined as

K+1
Evi= [ | Y 2 3 L(pwv) i, DIV — Ty | dx, (22)
T Lrs=1 Ipl=r.lql=s
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with

., N, T /8N,
Hp:q = / (—a—; + 5iple2---Pr) Ay (-E + 6[(“Nq2,,,q5 dé, r,s=2,...,K. (23)
For r = 1 or s = 1 the factors N, ,, or Ny, 4 in (23) must be replaced by the identity matrix I; for
r =K+ 1lors =K + | the terms N, /9x; or N, /0x;, respectively, must be dropped.

The minimiser ¥(x) of E [v*] satisfies the Euler-Lagrange equation associated to E[v*]. Grouping
terms of equal order this equation can be written as:

2K+2
Z gm2 Z H, D"v(x) +f(x) = 0, (24)
m=2 |ni=m
with
min(K+1,m—1)
H, = Z _% ((_l)r + (_l)m—r) H;,...nl:n,+|...n,,,' (25)

r=max(l,m—K—1)

Equation (24) is referred to as homogenised equation of order 2K + 2. It can be rewritten in the classical
strain-gradient format of a set of higher-order equilibrium equations involving higher-order stresses [6].
Alternatively, it can be regarded as a set of equilibrium equations of the standard type (1) where the stress
tensor depends not only on the (first-order) strains associated to the average displacement ¥(x), but also on
(higher-order) gradients of these strains. The latter view will be taken here, because the influence of higher-
order deformation gradients is slightly more transparent in it. The interpretation in terms of strain-gradient
theory will be elaborated elsewhere. If we define the average stresses 6;; which must satisfy the equilibrium
equations

3&,‘]

3;+fj(x)=0 (26)
and average strains
. 1 (aﬁk + 8ﬁ1> 27)
en==—+—1»,
72 \on T ax (

equation (24) can be recovered from (26) by defining the constitutive relations

K
6ij = Cijul ékH-Zszr Z Cijpki DPéys, (28)
r=t lpl=2r
with
G = BF and Gyt = — Ak 2
ijkl = 1y an ijpki = W Z il (29)
q=(p)

where & (p) denotes permutation of the indices p. Note that the constitutive relations have been sym-
metrised with respect to p and that use has been made of the fact that ﬂ,-q[ vanishes for odd |q| (cf. (25)).
The stresses 6;; thus depend on é;; and gradients of &; of even order up to 2K. The influence of these
higher-order gradients, however, decreases as 2.
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4. PRELIMINARY RESULTS

The moduli (:‘,- jk and C‘,- pki Which appear in the averaged constitutive relations (28) depend on the mi-
crostructural functions N, (§) via (23), (25) and (29). In order to obtain these moduli, the boundary value
problems (6) on the periodic cell must therefore be solved for all n for which |#n} < K. This has been done
numerically for a microstructure consisting of regularly stacked circular fibres embedded in a homogeneous
matrix. The periodic cell which has been used in these analyses is shown in Figure 2(a). The diameter of
the fibre has been selected such that the fibre volume fraction equals 0.25. Isotropic linear elastic behaviour
is assumed for the fibre and matrix material, with respective Young’s moduli Ef, Ey, and Poisson’s ratios
vt, - Only in-plane deformations are considered and a plane strain state is assumed in the fibre direction.
Equations (6) have been cast in a weak form and discretised by finite elements (Figure 2(b)). Higher-order
terms up to order K = 3 have been taken into account. Effective moduli which have thus been obtained
have been plotted versus the contrast in elastic moduli E¢/Ey, in Figure 3; a value of vy = v, = % was used
for Poisson’s ratio of the fibre as well as the matrix.

Figure 3(a) shows the moduli é‘,— ik of the standard order. Only the components C 1111, ¢ 1122, C 1212
are given; the other components follow from symmetry properties of ¢ i and of the periodic cell. For
increasing stiffness of the fibre, the moduli increase from the homogeneous values at Er = Ey, to horizontal
asymptotes in the limit of a rigid fibre. The second-order moduli C‘,- jp1pakl» the unique values of which
have been plotted in Figure 3(b), vanish for the homogeneous material (Er = Ep). As the degree of
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Figure 2. Periodic cell of the fibre-matrix system: (a) geometry and (b) finite element discretisation.
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Figure 3. Effective moduli: (a) standard, zeroth-order ((:’,- i) and (b) second-order (C‘,- i py paki) versus Young’s modulus of the
fibre; both axes have been normalised by Young’s modulus of the matrix.
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heterogeneity increases, however, these higher-order terms become more important. It is interesting to note
that the second-order moduli asymptote to a finite value for a rigid fibre. The same trend is observed for
terms of order higher than two.

5. CONCLUDING REMARKS

The higher-order moduli computed for the fibre-matrix system largely show the behaviour that would be
expected on the basis of heuristic arguments. The advantage of the method followed here, however, is
that the effective behaviour is computed directly from the properties of the microstructure without any
assumptions a priori about the form of the average constitutive relations. It is emphasised that, although a
periodic body force has been assumed in deriving the effective constitutive model, its application is by no
means limited to this case. The effective moduli are properties of the material and can therefore also be used
for non-periodic problems. Periodicity of the microstructure, on the other hand, is an essential condition,
which often will not be met for real materials. It is believed, however, that the method may still provide
valuable insight and estimates in such cases.
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