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Abstract: The multi-axial yield strength of metallic foams and lattice materials is reviewed. It is found that metallic
foams have bending-dominated microstructures under all loading states, whereas lattice materials such as the octet-
truss can be designed to be stretching-dominated in their response. Consequently, lattice materials have higher
stiffness and strengths at a given relative density. The yield surface for metallic foams can be approximated by an
ellipse, with isotropic hardening, whereas lattice materials have a series of flats on their yield surface reflecting their
periodic architecture. Collapse calculations are reported for sandwich panels: it is shown that the pyramidal truss
lattice material has a superior response to that of the tetrahedral core under combined shear and normal loading, and

this microstructure is recommended for practical use.
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1. INTRODUCTION

Recently, a number of new architectures of porous
metal has become available: metallic foams with a
stochastic microstructure, and lattice materials, such as
the octet truss, with a periodic microstructure.
Intensive research by a number of international
research groups has culminated in the publication of a
design guide [1], reviewing both material properties
and appropriate design methods. For both archi-
tectures, the typical relative density p is in the range of
about 0.05 to 0.3. Experiments reveal that both closed
and open cell metallic foams deform by local bending
of cell walls and so the Young’s modulus of scales

with p°, while the uniaxial strength scales with p°'*
[I]. In contrast, lattice materials undergo local
stretching of their cell walls, and so the Young's
modulus and uniaxial strength scale linearly with p.
Thus, metallic foams have much lower stiffnesses and
strengths than lattice materials for a given mass, and
are preferable in packaging applications where a low
collapse strength is needed in order to prevent
excessive accelerations on the protected object. In
contrast, lattice materials are preferable in applications
requiring high specific stiffness and strength,

2. YIELD SURFACE FOR METALLIC FOAMS

The multi-axial yield surface of two aluminium
alloy foams Alporas’ and Duocel’ has been measured
by performing axisymmetric triaxial cell tests on
circular cylindrical specimens. Alporas is a closed cell
foam of composition Al-Ca 5 -Ti 4 (wt.%), while the
open cell Duocel foam has composition Al6101-T6. A
series of proportional and non-proportional loading
tests [2] show that the foams are to be approximately
isotropic in response. The measured yield surface is
found to satisfy the relation,

" manufactured by Shinko Wire Company, Amagasaki, Japan
* manufactured by ERG, Oakland, CA, USA.
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elliptical shape in (g, —0,) space, with a uniaxial yield

. This definition gives a yield surface of

strength (in tension and in compression) of &, and a
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hydrostatic  strength  of ’omJ_ ML;,.

= The
parameter ¢ defines the aspect ratio of the ellipse: in the
limit =0, & reducesto o, and a J2 flow theory solid is
recovered. Two material properties are now involved
instead of one: the uniaxial yield strength, VY, and the
pressure-sensitivity coefficient, «. The material preperty
Y is measured by a simple compression test, which can also
be used to measure « in the way described below. A large
amount of data on the yield strength of metallic foams has
been collected by Ashby et al. [1], and a best-it to the
available data shows that Y depends upon the relative
density p according to

y=03p"0, (3)

where oy is the‘yield strength of the cell wall material.

The yield surfaces for Alporas and Duocel for

compressive stress states are shown in Fig. 1.
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Fig. 1. Initial surfaces for Alporas and Duocel foams.
The surfaces are approximately elliptical, and are
described adequately by equations Eqgs.(1) and (2).
The stresses have been normalised by the uniaxial yield
strength (0.5 MPa for Duocel, 1.0 MPa for Alporas of
0=8.4%, and 2.0 MPa for Alporas of p=16%).

The *data have been normalised by the uniaxial
compressive yield strength, so that ¢,=1 and
0,, =1/3 for the case of uniaxial compression. We
note that the aspect ratio @ of the ellipse lies in the
range 1.35 to 2.08. The ratio of hydrostatic strength to
shear strength is given by /3 /a, according to Eq.(2),
with a typical value of 0.9 for o =2; thus, metallic
foams are highly pressure sensitive in their yield
behaviour. The effect of yield surface shape is reflected
in the measured plastic Poisson's ratio in a uniaxial
compression test: the ratio of transverse strain to axial
strain vP depends upon ¢« . The yield surface shape
is sufficiently simple for an analytical expression to be

derivable for v in terms of «, giving

1 (2)2
2 3
vi=t oo (4)
1+ (%)
with the inversion
112

Thus, measurement of v¥ in a uniaxial compression
test offers a quick and simple method for estimation of
the value for o, and thereby the shape of the yield
surface.  Preliminary experience suggests that the

measurement of vF is best done by compressing a
sample, with suitably lubricated loading platens, to a
uniaxial strain of 20-30%. Typical values of v’ are in
the range O to 0.25.

Having defined the yield surface shape, it remains to
stipulate how the yield surface evolves with strain. For
simplicity, we shall assume that isotropic hardening occurs:
the yield surface grows in a geometrically self-similar
manner with strain; the limited measurements of the yield
surface for metallic foams approximate this [2]. We assume
that the strain-hardening rate scales with the uniaxial
compression response as follows. The plastic strain-rate is
taken to be normal to the yield surface Eq.(1), and specified
by

. 2 0D
&f = e=— (6)
Oij

where the equivalent strain-rate £ is

£=51h(5) (7)

and A is the slope of the true stress versus logarithmic
plastic strain curve in uniaxial compression at a stress level
0 =0. For the case of uniaxial compression (or tension),

~the above definitions of & and of & have been so

normalised that & is the uniaxial stress and & is the uniaxial

plastic strain-rate. An explicit expression for £ in terms of
the effective strain-rate and mean strain-rate:

8= (1+(oe/3)2)[¢::e2 +—&1—2—ém2] (8)

It is emphasised that the model assumes a unique strain
hardening response, characterised by the evolution of ¢ and
its work-conjugate £. Unless otherwise stated, the uni-
axial compressive stress-strain response is used to define
the 6—~£ relation. Some checks on the accuracy of this
approach are given in Fig. 2: The measured tensile,
compressive and shear stress-strain curves for 3 densities of
Alporas are shown in terms of & versus £: the curves
almost collapse unto a unique curve up to peak strength.
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Fig. 2. Demonstration of the ability of the equivalent stress

0 and the equivalent strain £ to define uniquely the stress-
strain response of Alporas foams. The tension, compression

and shear response are plotted in terms of & and €.
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The underlying reason why metallic foams have a
hydrostatic strength comparable to their shear strength
is the presence of various imperfections within the
microstructure; these include cell wall waviness,
fractured and missing cell walls, and cell wall mis-
alignment. Whilst the perfect foam would exhibit a
hydrostatic strength an order of magnitude greater than
the shear strength (with collapse by the stretching of
cell walls under hydrostatic loading, and bending under
shear loading), only a small degree of imperfection
results in the foam deforming by the same mechanism
of cell wall bending under all loading states [3], and so
the hydrostatic and shear strengths are comparable.
The above constitutive model for metallic foams has
been implemented within the ABAQUS finite element
code, and used with success to predict the structural
collapse response of foam-cores sandwich panels [4].

3. MULTI-AXIAL YIELD OF LATTICE
MATERIALS

Lattice materials, such as the Buckminster Fuller
octet-truss, possess a periodic microstructure in
contrast to stochastic foams. Deshpande et al. [5] have
recently analysed the criteria for the construction of
stretching dominated cellular microstructures, with
similarly situated nodes: nodes are said to be similarly
situated if the remainder of the structure appears the
same and in the same orientation when viewed from
any of the nodes. For such a structure, a necessary and
sufficient condition for the structure to be stretching-
dominated is that the connectivity at each node is 12
for a 3D structure and 6 for a 2D structure. The octet-
truss structure, as shown in Figure 3, has a connectivity
of 12 and therefore behaves as a stretching dominated
structure, with a stiffness and strength which scales
linearly with the relative density.

Fig. 3. Structure of the octet-truss lattice material. The
darkened struts represent an octahedral cell while the
nodes labelled p1-p4 form a tetrahedral cell.

The octet-truss structure has a FCC microstructure,
and can be constructed by packing either octahedra or
regular tetrahedra, as shown in Fig. 4. Note that the 1-
2 plane of Fig. 4 is a close-packed plane of the FCC

structure, and constitutes a fully triangulated layer in the
lattice material. Thus, the octet-truss material can be
constructed by the successive packing of the triangulated
layers in the ‘ABCABC..." positions with each layer
separated by a tetrahedral core.

z

p4

p!l

p2 2
p3

Octahedral cell Tetrahedral cell

Fig. 4. Isometric sketches of the octahedral and tetrahedral
cells with the associated co-ordinate systems.

Consider an octet-truss constructed from identical circular
cylindrical struts, each of radius a and length /. Then, the
relative density of the octet-truss lattice material (defined by
the ratio of the density of the lattice material to the density
of the solid material from which it is made) is given by

2
5= 6@{%) | ©)

The yield surface for the octet-truss can be calculated by
performing a number of upper bound calculations for the
competing collapse modes, see [6]. The microstructure has
orthotropic symmetry (x,y,z) as sketched in Fig. 4, and the
yield surface can be approximated by the following
quadratic expression,

0=3(0,-0,'+(0,-0.)' (0,07

2
+4[oxy2+oy22+ ou2]+ O - [Zﬁn(—%}cy] =0 (10

where oy is the uniaxial strength of the fully dense solid,

and Zﬁn(%)oy is the uniaxial yield strength of the octet-

truss in a principal direction of orthotropy [6]. Detailed
calculations reported in [6] for a large number of collapse
modes show that Eq.(10) may over-estimate the collapse
strength by as much as a factor of two for certain stress
states; however, no improved analytical formula for multi-
axial yield of lattice materials is available at present.
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4. COMPARISON OF SANDWICH PANEL
YIELD FOR A FOAM CORE AND LATTICE
MATERIAL CORE

A promising application for both metallic foams
and lattice materials is in the core of a sandwich panel.
For example, two fully dense face sheets made from
high strength aluminium alloy are separated by a foam
core in order to achieve high bending stiffness and
strength at low mass. The core of such sandwich panels
is usually loaded by a combination of transverse shear
7 and normal tension o, as sketched in Figure 5, and
it is instructive to determine the collapse locus for an
arbitrary combination of loading (5 ,,7).

033=0,

O13=1 T’“
L7l P77 77,

VOIS I I IS SIS X

Fig. 5. Sketch of sandwich panel subjected to through
thickness shear and to through-thickness direct loading.

This may be done in straightforward manner for the
case of a metallic foam, with yield surface given by
Egs.(1) and (2), upon assuming that the face sheets
remain elastic and the plastic strains in the core greatly
exceed the elastic strains. The in-plane plastic strains
vanish due to the constraint of the face-sheets, and
normality of plastic flow dictates that the direct in-
plane stresses 0, = 05, within the core satisfies

9-20?

Cu=on= 9+40?

o, (1n

The collapse surface for the foam core follows by
substitution of Eq.(11) into Egs.(1) and (2) to give,

4ot ,
302423952 y? (12)

(9+4a2)2

with Y given by Eq.(3). The quadratic yield surface
Eq.(12) displays a shear yield strength almost equal to
the normal tensile (or compressive) strength for the
typical value o = 2.

The collapse locus for a sandwich core comprising
tetrahedral struts or pyramidal struts can be calculated
by plastic collapse theory; the geometry of these lattice
materials is sketched in Fig. 6. We suppose that the
face sheets of the sandwich panel are separated by
circular cylindrical struts of radius a and length £, with
each strut inclined at an angle w to the face sheet. For
the case of an octet-truss architecture the angle w is

given by cosw =1/~/3. The nodes of the face sheets
are arranged on a hexagonal grid for the tetrahedral

core, and on a square grid for the pyramidal core. In
contrast to the metallic foam core, the lattice core is not
transversely isotropic and the transverse shear strength
varies with orientation. Collapse calculations [7] reveal that
the minimum transverse shear strength is achieved for the
macroscopic loading direction o, for both architectures,
in the axes shown in Fig. 6.

rigid
face-sheet

(a) ®)

Fig. 6. Geometry of the (a) tetrahedral core and (b)
pyramidal core. (S, 7,V) are the bar tensions of the
tetrahedral truss and (S,7,V,W) are the bar tensions of the
pyramidal truss due to a nodal load F applied to node A of
each assembly.

Consequently, we explore here the collapse state for the
combined loading (0'33,0,3) on the faces of the sandwich
panel. Consider first the tetrahedral core. The collapse
locus consists of a series of straight lines in (033,03)

loading space, corresponding to yield of the bar AB, or
combined yield of bars AC and AD of Fig. 6a. The yield
surface is defined by

2 O 1 ©
13+ 33

—— —= =%psinw (13a)
cCosw Oy sinw Oy
1 o 1 o — .
and - el TR - —33—=i~psmw (13b)
COSW Gy sinw Oy

where p is again the relative density of the core. For the
case of the pyramidal core, plastic collapse is either by bars
AB and AD undergoing simultaneous yield, or bars AC and
AE undergoing simultaneous yield, giving

|G’3| =—psin2o (14a)
Oy

and IZ—”‘:ﬁsinzw (14b)
Y
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These yield surfaces are sketched in Fig. 7. We note
that the shear yield strength and transverse strength for
the tetrahedral lattice have identical respective values
to those for the pyramidal lattice. However, the shapes
of the yield surface are different, with the pyramidal
geometry giving the greater strengths in the first and
third quadrants. We conclude that the pyramidal
microstructure is preferred, with a maximum value of
specific shear strength achieved at @ =m /4. As noted
above, the multi-axial strength of the lattice core is
significantly greater than that of the metallic foam core
since the strength of the lattice material scales linearly
with p, while the strength of the metallic foam scales

=32
as poT.
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Fig. 7. "Sketch of the collapse surface for lattice cores
of tetrahedral and pyramidal architectures.

5. CONCLUSIONS

Periodic lattice materials can be designed to possess
higher stiffnesses and strengths than stochastic foams by
selecting a topology of adequate connectivity (at least 12 for
a similarly situated 3D structure). A simple but adequate
phenomenological model has been developed for the
yielding of metallic foams, and isotropic hardening appears
to be an adequate description of the hardening behaviour.
The lattice material of octet truss architecture is a redundant
structure, and fails by a number of competing collapse
modes under multi-axial loading.

Acknowledgements — The author is grateful for continued
collaborations with V. S. Deshpande, C. Chen, T. J. Lu and
M. F. Ashby at Cambridge University, with A. G. Evans at
Princeton University and J. W. Hutchinson at Harvard
University.

REFERENCES

1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W.
Hutchinson and H.N.G. Wadley, Metal Foams - A Design Guide,
Butterworth-Heinemann Boston, USA (2000).

2. V.S. Deshpande, N.A. Fleck, J. Mech. Phys. Solids, 48 (2000)
1253.

3. C. Chen, T.J. Lu and N.A. Fleck, J. Mech. Phys. Solids, 47
(1999) 2235.

4. C. Chen, Technical Report CUED /C-MICROMECH/ TR.20,
April 1999, Cambridge University Engineering Department,
Trumpington Street, Cambridge CB2 1PZ, UK.

5. V.S. Deshpande, M.F. Ashby and N.A. Fleck, to appear in
Acta Materialia (2001).

6. V.S. Deshpande, N.A. Fleck and M.F. Ashby, to appear in J.
Mech. Phys. Solids (2001).

7. V.S. Deshpande and N.A. Fleck, submitted to Int. J. Solids and
Structures (2001).

340



	
	
	
	
	

