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ABSTRACT

THE asymptotic field is determined at the tip of a conical notch and of a rigid cone in an incompressible
power law hardening solid, subjected to axisymmetric loading. For both geometries, no singularity exists
with torsional loading, but singular solutions do exist with torsionless axisymmetric loading. For the
conical notch, the level of strain singularity increases with an increase of the strain hardening exponent n,
and is greatest when the included cone semi-angle « is between 0° and 60° depending upon . For the rigid
cone, the level of strain singularity increases with increasing » and decreasing a. Contours of constant
effective stress and details of the stress components are given over a wide range of « and n, for both
geometries.

1. INTRODUCTION

THE AsYMPTOTIC stress field near the tip of a sharp inhomogeneity of some prescribed
shape in an elastic—plastic body may be singular in form. A well-known example is
the singular field near the tip of a crack in a power law material, as found by
HuTCHINSON (1968a,b), and by RiCE and ROSENGREN (1968).

In this paper, asymptotic solutions are reviewed for the stress field near the tip of
a two-dimensional (2D) notch or rigid wedge in a plane elastic body, and near the tip
of a cone in a three-dimensional (3D) elastic body. A new solution is presented for
the cases of a conical notch and rigid cone in an incompressible elastic body under
torsion ; no singularity is found. Solutions are also given for a conical notch and for
a rigid cone in an incompressible power law material under torsionless axisymmetric
loading ; singular solutions exist, with the level of singularity depending upon the
strain hardening exponent and the included apex angle 2« of the cone.

1.1. The two-dimensional notch and rigid wedge

The singular field at the tip of a stress free notch and of a rigid wedge in a plane
elastic body has been investigated by WILLIAMS (1952) and by KARAL and KaARrpr
(1962, 1964) independently. Consider first the stress-free notch, of included apex
angle 2o and wedge angle f = 180° —a (Fig. 1). The strain ¢,;; varies with distance r
from the apex according to ¢; ~ r*~' where the eigenvalue A is found by solving the
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FiG. 1. Level of singularity, A, for a two-dimensional notch and rigid wedge in a plane elastic body. Plane
deformations are assumed.

equilibrium equations, using an elastic constitutive law, compatibility of strains and
traction-free boundary conditions on the wedge. Two independent solutions exist for
each geometry, . Consider polar co-ordinates r, 6 centred at the apex of the wedge,
as defined in Fig. 1. A symmetric solution exists where the tangential displacement u,
is even in 6 about # = 0, and an anti-symmetric solution exists where u, is odd in 6,
see Fig. 1.

For both solutions, the level of strain singularity (1 — 1) is independent of Poisson’s
ratio v, as expected for plane problems with stress boundary conditions. The symmetric
solution is singular for a wedge angle § > 90°: the level of singularity increases from
A =1to A =0.5, as fis increased from the half space geometry, f = 90°, to the crack
limit, B = 180°. The anti-symmetric solution becomes singular at f# = 129°, and again
the level of singularity increases to the value for a crack, A = 0.5, as f is increased to
180°.

Now consider the rigid wedge with zero displacement on its flanks. Both the
symmetric and anti-symmetric solutions depend on Poisson’s ratio v, and are
therefore different for plane stress and for plane strain conditions. The plane strain
results for v =0 and v = 0.5 are given in Fig. 1. For both symmetries, the solution
becomes increasingly singular (i.e. A decreases) as the wedge angle f is increased from
the clamped half space, f = 90°, to the limit of a rigid wedge of zero thickness,
f = 180°. For B in the range 90°-180°, the singularity becomes stronger as v is
increased from zero to the incompressible limit of 0.5 for anti-symmetric loading,
while the singularity becomes weaker for symmetric loading. It is further noted from
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Fig. 1 that the anti-symmetric solution is more singular than the symmetric solution
for the rigid wedge, while the reverse holds for the stress-free notch.

Little is known about the strain field near the tip of a stress-free notch or rigid
wedge in a rigid-plastic plane body under symmetric or anti-symmetric loading.
HutcHINSON (1968a) considered the specific case of a stress-free notch of included
angle 2o = 90° in a power hardening body with stress exponent #» = 3. He found
&; ~ r~ %7 for the notch under symmetric loading, while ¢;; ~ %7 for a crack in
the same material ; thus, the crack solution is more singular than the notch solution.
Duva (1988) has explored the singular symmetric field at the apex of a square rigid
wedge (2o = 90°), embedded in an incompressible power law solid. For all n, the
singularity is less strong than for the case of a crack.

Recently, ORE and DURBAN (1988) and ATKINSON and CHAMPION (1984) have
considered a stress-free notch in an incompressible power law deformation solid under
anti-plane shear. They found that the level of strain singularity increases as the
included notch angle 2« is decreased to the crack limit, « = 0. For a given «, the strain
field becomes more singular as # increases to the rigid perfectly-plastic limit, # = oo.

1.2. The conical notch and rigid cone

BazaNT and KEER (1974) have examined the local field near the tip of a conical
notch and of a rigid cone in a compressible elastic body. They found that no singularity
exists for either inhomogeneity under torsion, but a singularity does exist for tor-
sionless axisymmetric loading.

Bazant and Keer suggested a separation of variables solution in terms of spherical
polar co-ordinates (r, 6, ¢) centred on the cone tip, and considered axisymmetric
loadings such that the solution is independent of the circumferential angle, ¢. The co-
ordinates (r, 0) are defined on a meridian plane in the insert of Fig. 2. Bazant and

90° 135° 180°
B

Fi1G. 2. Level of singularity, A, for a conical notch and a rigid cone in an elastic body, under torsionless
axisymmetric loading.
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Keer assumed that the strain field near the apex of the cone behaves as ¢; ~ r* ™,
where the eigenvalue A is less than unity for singular behaviour.

Consider their results for a conical notch under torsionless axisymmetric loading,
see Fig. 2. As the apex angle f is increased from 90° to 180°, the cone evolves in shape
from a half plane to a needle cavity of zero width. For both limits no singularity exists
and A = 1, while at intermediate values of f the solution is singular. In contrast with
the two-dimensional wedge case (Fig. 1), the strength of the singularity increases to
a maximum at § =~ 120° and then decreases again as f§ increases to the needle limit of
p = 180°. For any given B between 90° and 180°, A decreases as Poisson’s ratio v
increases from 0 to 0.499. This contrasts with the solution for a 2D notch where 4 is
independent of v. Bazant and Keer did not examine the incompressible limit v = 0.5.

Now consider a rigid cone under torsionless axisymmetric loading (Fig. 2). As 8
increases from 90° to 180°, the solution becomes increasingly singular and A decreases
from unity to zero. Since A equals 0.5 for the case of a crack, we deduce that the
solution is more singular than the crack case for f = 145°. We refer to this condition
as “‘supercritical”’ because there is a strong tendency for a crack to develop from such
"an inhomogeneity. The level of singularity decreases (i.e. A increases) as v is increased
from zero to 0.499. This differs from the solution for the conical notch but agrees
with the symmetric solution for a 2D rigid wedge.

2. CoNICAL INHOMOGENEITY IN A POWER LAW INCOMPRESSIBLE
MATERIAL UNDER TORSION

We now examine the asymptotic field at the tip of a conical notch and of a rigid
cone, under remote torsion about the axis of the cone. First, an eigenvalue problem
is set up for a conical notch and for a rigid cone, in an incompressible power law
material under remote torsion. The equations are then specialised and solved for the
linear case.

Consider an incompressible power law solid, which obeys the small strain defor-
mation theory of plasticity, such that the strain ¢; is related to the stress o,; according

to
3(og\ S;;
gy == (—“) =y 2.1)
2 () Ocft
Here, S;; = 0,,—30,/04 is the deviatoric stress, g,z = +/(3/2)S;;S; is the effective
stress, and o, and the strain hardening exponent » are material constants.

The cone geometry, with spherical polar co-ordinates (r, 8, ¢) centred at the apex
of the cone, is given in Fig. 3. Remote torsion is applied about the 8 = 0 centre line,
inducing the displacement u, = w(r, 0) in the ¢ direction. By symmetry there is no
warping and u, = us = 0. The non-vanishing strains associated with these dis-

placements are
1
o =5 <w,, - %) (2.22)

1(1
gy =15 (; Wo— % cot 0), (2.2b)
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F1G. 3. Solution for conical notch and rigid cone in an incompressible elastic body under remote torsion.
Typical contour of effective stress is included for each geometry.

where the comma subscript denotes differentiation with respect to the subscript
variable. The strain—displacement relations reduce to the compatibility equation,

rege,— (sin 0) (ﬁ%)g =0. (2.2¢)

The coaxiality of ¢; and ¢;; in (2.1) implies that only ¢,, and gy are active. The
equilibrium equation

ro‘,¢,,+3cr,¢ +0'g¢.,g+20'3¢ cotd =0 (23)
is satisfied if a stress function F(r, 0) is introduced, where
1
O = T2 0 Fy, (2.4a)
—1
0'9¢ = F (2.4b)

r?sin?@ "
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Now make the assumption that the near tip field is governed asymptotically as
r — 0 by a separation of variables solution of the form

F=r¢@), (2.5

where s and ¢(6) remain to be determined. From Egs (2.1), (2.4a,b) and (2.5) the
strains are

1 -
321, @) T
— = u(s=3)n ’ 2
= Gnor (2.62)
nil n—1
_ 3 2 1 (¢/2 +S2¢2) 2
= o p(s—=3)n

0= Gnor P (2.65)

where the prime denotes differentiation with respect to 8. When these expressions for
¢;; are substituted into the compatibility equation (2.2c), a non-linear second order,
ordinary differential equation results in ¢,

(n—1) (" +5*P)p"* +[¢" — (2n+1)(cot O)¢’ +s(s—3)nd] (¢ +s5*¢p?) = 0. (2.7)

2.1. Homogeneous case

It may easily be verified that for s = 34 (1/n), Eq. (2.7) has the solution

¢ (0) = C(sin )3+, (2.8)
where C is a constant. The stresses associated with this solution are
1 1/ : 1
o,s = C| 3+ o) " (sin 0) " cos 0, (2.92)
1 1 : 1+(1/n)
o9 = —C| 3+ L) I (sin )1+, (2.9b)

This solution describes torsion of a circular bar (KACHANOV, 1971).

2.2. Torsion of a circular conical bar

For the case s = 0, Eq. (2.7) has the solution
2n+1
¢ =C(sin) n , (2.10)

where C is a constant. The associated stresses are
C .
Trp =3 (sin 0) '/, (2.11a)

G4y = 0. (2.11b)
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This is the solution for torsion by a torque 7" about the axis of a conical cylindrical
shaft, of apex angle 2a. The constant C is fixed by 7 and «.

2.3. Solution for conical notch and rigid cone in a linear elastic material

For the case of a conical notch, the stress component oy, equals zero on the face
of the cone, giving the boundary condition

$=0 onf=4§. (2.12a)

For the rigid cone, the displacement u, = w equals zero on the face of the cone. It
follows from (2.2a) that
d
w=2r sz &

r

and by (2.6a),
nt1 n-1
32 -+l (2 4-529?) 2
W= —n o Y

This implies that on the wall of the rigid cone,
¢"=0 onb=24. (2.12b)

By now we have a homogeneous second order differential equation (2.7) with
one boundary condition (2.12a) or (2.12b). An additional homogeneous boundary
condition is required to solve the system for the eigenvalues s and the eigenfunctions
¢.

Here, we consider the simpler problem of the linear material, » = 1, whereby
Eq. (2.7) simplifies to,

¢"—3 (cot 0)¢’ +s(s—3)p = 0. 2.13)

This has the two linearly independent solutions (Section 8.7, GRADSHTEYN and
RyzHIK, 1980),

¢ = (sin O)P2_, (cos ), (2.142)
¢ = (sin? 0)Q2 , (cos 0). (2.14b)

where P2 , and Q2 , are associated Legendre functions of order 2 and degree s—2.
As 0 tends to zero, 0,4 = (r >¢’/sin* §) must tend to zero, hence

p=0¢'=¢"=¢"=0 atfd=0 2.15)

and solution (2.14b) is excluded. The first of (2.15) provides the second homogeneous
boundary condition for (2.7) or (2.13). The associated Legendre functions are a
subclass of the Hypergeometric function, for which a power series expansion exists,
sce GRADSHTEYN and RyzHIK (1980) for details. Accordingly, the solution (2.14a)
may be expressed as
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¢ = Csin* 6(1 + > a,sin*?=? g), (2.16a)
p=3
where
_2p(p—1) P
= H (—s+1i) ]_[ (s+)). (2.16b)
S plpt A

The lowest eigenvalue s and associated eigenfunction ¢ (0) which satisfy the bound-
ary conditions (2.12a) or (2.12b) are found from (2.16a) using a Newton—Raphson
iteration scheme. For f approaching 180°, the infinite series (2.16a,b) converges slowly
and the first 10® terms are needed. Only non-singular solutions with s > 3 are found,
Fig. 3, as commented by BAZANT and KEER (1974) for the linear, compressible solid.

For both the rigid cone and the conical notch, as f§ increases the eigenvalue s
decreases. At any given f, s is smaller for the rigid cone than for the conical notch,
implying that the stress increases more rapidly with increasing r for the rigid cone
than for the conical notch.

Typical contours of constant effective stress from the apex of the conical in-
homogeneity are included in Fig. 3 for a selection of geometries. The effective stress
Oot = \/5 (62 +034)"* has the asymptotic representation from (2.4) and (2.5),

\/grs_3 ’2 2 12v1/2
O = g (¢ +579H) .

It is thought that this contour of constant o gives an indication of the shape of
the elastic—plastic boundary between the elastic region near the axis § = 0, and the
outer plastic region. For s > 4, a region of low stress (i.e. small o.4) extends along the
face of the conical notch and of the rigid cone. When f is greater than 90° for the
rigid cone, the solution is s < 4 and the region of low stress extends ahead of the cone
rather than flanking the faces of the cone, see Fig. 3.

For the needle-shaped cavity (conical notch, f = 180°) and for the rigid half space
(rigid cone, f = 90°) the homogeneous solution (2.9a,b) applies, and s = 4. Then, the
solution is

0,4 = 4Crsin 0 cos 0, (2.17a)
Ggp = —4Cr Sin2 0 (217b)

and contours of constant effective stress are parallel to the axis 6 = 0.
Analytic solutions for ¢(0) also exist for s = 3 and 5. For s = 3,

¢ = C(cos 0)(2+sin? 6) (2.18a)
and fors = 5,
¢ = Csin* 0 cos 6. (2.18b)

The solution for s = 3, Eq. (2.18a), is discounted as it predicts unbounded strain
energy near 6 = (. For the limiting case of a rigid needle (f — 180°), the homogeneous
solution given by Egs (2.9a,b) applies and s = 4. This is expected since the stresses
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and displacements on # = 0 are zero for the homogeneous case, prior to introduction
of an inhomogeneity in the form of a rigid needle or of a needle-shaped cavity.

The observation of no singularity for conical inhomogeneities in torsion is consistent
with the fact that the energy release rate ¥ at the tip of a propagating circular
cylindrical cavity in a bar under torsion is zero. See Appendix A for details.

3. TORSIONLESS AXISYMMETRIC CASE

We now examine the asymptotic field near the tip of a conical notch and of a rigid
cone, in an incompressible power law material under torsionless axisymmetric loading.
As for the torsion case, an eigenvalue problem is posed, where the eigenvalue s denotes
the level of singularity. We shall find singular solutions for a range of § and strain
hardening exponent #, for both the rigid cone and the conical notch.

First, the field equations are given, then the problem is solved analytically for the
linear case n = 1, and solved numerically in Section 4 for the non-linear case.

3.1. Field equations

Spherical polar co-ordinates (r, 6, ¢) are used as before, with the geometry specified
in Fig. 3. By symmetry, the radial displacement #, and tangential displacement u,
depend only on r, 8, and u, = 0. The strain—displacement relations are

Er = Uy, (313)
g = 00, (3.1b)
r
t0
Eop = ————u’wi = (3.10)
6 = (g, — 0 4 12) (3.1d)
T2\ oy r

From these relations and the constitutive law (2.1), it follows that the active stresses
are 0,,, 0y, 0,44 and o,,. Equilibrium in the radial direction reduces to

0., +20,,—0pgg— 044+ 0,99+ 0,5c0t0 =0, (3.2a)
while equilibrium in the tangential direction gives
7'0',.‘9,,.-*‘30',0‘!‘0'99,9“"(0'09—0'¢¢) cot 0=0. (32b)

Substitution of Egs (3.1a—) into the incompressibility condition &, = 0 yields a
differential equation in u,, uy, which is satisfied identically by introducing a stream
function ¥ (r, ) defined by
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" r’sin@ (3.3a)
¥,

We try a separation of variables solution for the asymptotic form of y as r — 0,

¥ = r*(sin 0)$(6). (3.4)

This results in an eigenvalue problem where we seek the lowest eigenvalue s > 2
and associated eigenfunction ¢. The condition s > 2 enforces the condition that
displacements are zero at the tip of the cone. The solution is singular for s < 3.

3.2. Linear material

An analytic expression for ¢(6) can be found for the linear case, n = 1. The
displacements u,, u, follow directly from (3.3a,b) and (3.4),

u, = r-*(¢’+ ¢ cot 0) (3.5a)
and
Uy = —r'"(sd), (3.5b)

where the prime denotes differentiation with respect to 8. The strain components, via
(3.1a—d), are

&r =12 (s—2)(¢'+ ¢ cot 0), (3.6a)
g0 = r°[(1—5)@’ + ¢ cot 6], (3.6b)
Epp =1 [¢"+(1—15)¢ cot 0] (3.6¢)
and
& = 3" [L()+5(3—15)P], (3.6d)
where
L(P) = (¢"+ ¢ cot ). (3.6e)

The constitutive relations for a linear elastic incompressible material are
Op—0p = &y, Ogg—O0p = Epp, O'¢¢ —0p = 8¢¢, O = €9, (37)

where 6, = 3(0,,+0g9+044) is the hydrostatic stress and all stress components have
been non-dimensionalised with respect to 26, = %E, where E is Young’s modulus.
The equilibrium equations (3.2a,b) become

Y04, + 18, + 26, —Egg —Epp +Erpp+EgCOt O =0 (3.82)

and
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Opno + 00,0 + (899 — 8¢.¢) cot 0+ réq, + 38,9 =0 (38b)

or, after eliminating o,

28, —€p—6py  Epp+EpcoOt O
Erryr +
r r 0

— (00,0 + (€09 —€pg) COL O+ 180, +3,), = 0. (3.9)
Inserting the strains (3.6a—d) into (3.9) and observing (3.6¢), gives

LHP)+2(s* —35+3)L(P) +5(s— 1) (s—2)(s—3)p = 0. (3.10a)
Two independent solutions to Eq. (3.10a) are found by factorising (3.10a) into
(L —k)(&L—ky)dp =0, (3.10b)
where k| = —s(s—1) and k, = — (s—2)(s—3) are the roots of the equation
k> 4+2(s? =35+ 3)k+s(s—1)(s—2)(s—3) = 0. (3.10¢)

The equation
(¥ —-k)yp=0 (3.11a)
is an associated Legendre equation, with the solution (GRADSHTEYN and RYZzHIK,
1980),

¢ =P,(cos)+Q;(cos ), v(v+1l) = —k, (3.11b)
where P, and Q, are Legendre functions of degree v. The solution of Eq. (3.10b)

follows immediately as
¢@) = C,P;_,(cos )+ C,P;_3(cos 0), (3.12a)

where C, and C, are arbitrary constants, and the functions Q;_, (cos 8), Q_; (cos 0)
have been neglected on physical grounds as they are unbounded at § = 0.

The first derivatives of the Legendre functions in (3.12a) may be expressed as an
infinite power series (GRADSHTEYN and RyzHIK, 1980), as

— —1 0 0
1 (cos 0) = —“—(j-—)sin 9(1+ S g, sin?- §>,

n=2

a, =

il n (—s+1i) H (s+Jj) (3.12b)

n'(n

and

— ._3 __2 o 6
Pl (cos ) = ~07 )sin0(1+2bnsin2(”“)5>,

1 2+n —3+n
b, = D1 L H( s+z)j_I]] (s+)). (3.12¢)

The solution for ¢(0) in (3.12a) is fully specified, once the eigenvalue s and the ratio
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C,/C, are found from the boundary conditions at the surface of the conical notch or
of the rigid cone.

3.3. Boundary conditions, linear material

3.3.1. Conical notch. The surfaces of the conical notch are traction free, hence gy
and g,, are zero at § = . Note that from (3.7) g4 = 0),+ € S0 We need to evaluate
o, in order to apply the boundary condition o4 = 0. Integration of (3.8a) with respect
to r, using (3.6a—¢), gives (s # 3)

o) = r*—{ls-(s_—l) (¢’ + ¢ cot 6) — (L($)+Z($) cot 9)]. (3.13)

1
2(s—3) 2(s—3)

The stress oy follows from (3.6b), (3.7) and (3.13),

ooy = ,3_3[____— (f(s‘f;;f %) (¢ + cot 6) —s — 2(31_3) (L/($)+L($) cot e)].
(3.14)
By (3.11a,b) we have the identities
L(P,_,(cos 0)) = —s(s—1)P;_, (cos 0) (3.15a)
and
P(P,_5(cos0)) = —(s—2)(s—3)P;_3(cos 0) (3.15b)

and Z(¢) reduces to
L(P) = —Cs(s—1)P;_, (cos ) —C,(s—2)(s—3)P;_5 (cos 0). (3.16)
Further, note that the Legendre function P, (cos 6) satisfies the Legendre equation
P+ P, cot0+v(v+1)P, = 0. (3.17)

Thus, the condition g4 = 0 in (3.14) may be rewritten via (3.12a), (3.16) and (3.17)
as

C\[P}_ (cos )+ (s—1)P,_, (cos 0)]
+C,[PY_5(cos0) —(s—2)P,_3(cos0)] =0 atfd=p. (3.18)

Now consider the boundary condition ¢,y = 0 at @ = f. The constitutivelaw ¢, = &,
and (3.6d) provide the condition in terms of ¢,

L(P)+s3—s5)p=0 atf=p. (3.19)
Substitution of (3.16) for #(¢) leads to the condition
Cils(s—2)P;_; (cos Bl + Col(s— (s —3)P5_; (cos f)] = 0. (3.20)

The two equations (3.18) and (3.20) are satisfied at the surface of the conical notch
0 = B by an appropriate choice of s and C,/C,. On writing the equations in matrix
form AX =0,
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Fi1G. 4. Level of singularity, s, for a conical notch in an incompressible power law material under torsionless
axisymmetric loading. The crack singularities are expressed by s = 3—n/(n+1).

(Py_1+(—1DP,_y) (Pi_3—(s—2)P;_3) || C, 0
[ (s(s—2)P{_)) ((S—l)(s—3)P;_3):|[C2:| = [0] at 6 =f, (3.21)

it is clear that a solution is found when the determinant of the matrix A is zero. For
a given B, the equation det A = 0 is solved iteratively using the Newton—Raphson
method. Series expansions are used to evaluate expressions of the form P,, P, and P,
as givenin (3.12b) and by GRADSHTEYN and RYZHIK (1980). The Newton correction on
each iteration is calculated using numerical differentiation.

Computed values of s are plotted against § in Fig. 4. The results are indistinguishable
from those given by BAzZANT and KEER (1974) for v = 0.499. Stresses are singular
(s < 3) for 90° < B < 180°, and the singularity is strongest at f = 120°.

3.3.2. Rigid cone. At the surface of the rigid cone, the displacements u, and u, are
zero. These conditions may be rewritten via (3.5ab) and (3.12a) as

[P;,l (cos f)  Pi- (cos ﬁ)][cl} [O] 399
Py (cosp) Pls(eos pJLC,] ™ Lo G2
Again, this system of 2 linear equations is solved for s and C,/C, by putting the
determinant of the matrix equal to zero. The same Newton—Raphson procedure and
series expansions for P, and P are used as for the conical notch case. Results are
given in Fig. 5.

For f < 120°, stresses are non-singular (s > 3), while for 120° < f < 180° stresses
are singular (s < 3). The level of the singularity increases (s decreases) as f is increased
to the limit of a rigid needle, f = 180°. The Bazant and Keer solution for v = 0.499
lies close to the present solution for v = 0.5, for g > 120°, but deviates for smaller
values of . Whereas the Bazant and Keer solution for s asymptotes to s = 3 as f is
decreased from 120° to 90°, s increases to s = 4 at § = 90° for the incompressible
solid.
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Fi1G. 5. Level of singularity, s, for a rigid cone in an incompressible power law material under torsionless
axisymmetric loading. The crack singularities are expressed by s = 3—n/(n+1).

3.4. Analytic solution for linear material, s = 3

When s = 3, ¢ is independent of r, and (3.10a) may be solved analytically to give
the eigenfunction ¢(6),

0
$(0) = Cysin20+C tan 7. (3.23)

This solution applies to the case of a rigid cone of angle f = 120°; a similar devel-
opment to that leading to (3.22) gives C;, = 2C,, and ¢ varies with 8 but not r. This
analytic solution is in agreement with the numerical solution for v = 0.5, and differs
from the Bazant and Keer solution for v = 0.499.

For the conical notch, (3.23) with s = 3 applies to the case of a half space (f = 90°),
and to the limiting case of a needle-shaped cavity (f — 180°). For the half space, the
solution is homogeneous since ¢ is independent of » and 6 ; substitution of (3.23) into
(3.6a—d), together with the constitutive law (3.7), the equilibrium equation (3.8b),
and the boundary condition ¢,y = g4 = 0 at 8 = 90° gives C, = 0. The stress com-
ponents are

o, = —6C, sin* 6, (3.24a)
Ogg = —6C1 COS2 9, (3.24b)
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O'¢¢ = —6C1, _ (3.240)
o, = —3C, sin 20, (3.244)
g, = —4C1, (3.246)

which represents the case of equibiaxial tension tangential to the free surface of the
half space.

The solution for the needle-shaped cavity is derived in a similar manner. The result
is

6, = 6C; cos? 0, (3.25a)
Gos = 6C, sin? 6, (3.25b)
G5 =0, (3.25¢)
6,0 = —3C, sin 26, (3.25d)
6, = 2C,. (3.25¢)

This stress state is uniaxial tension in the direction § = 0. Again the stress state is
homogeneous, independent of r and 6.

4. NON-LINEAR CASE

The asymptotic stress field near the tip of a conical notch and of a rigid cone is now
given, for torsionless axisymmetric loading and the incompressible power law material
specified by (2.1). The equilibrium equations (3.2a,b), and strain—displacement
relations (3.1a—d) apply as before. Since the material is incompressible, the dis-
placements u,, u, are related to the stream function y(r, 6) by (3.3a,b). Again Y/(r, 0)
is assumed to have the asymptotic form y = r’(sin 6)¢(0), Eq. (3.4), for small r.

We seek the lowest eigenvalue s > 2 and associated eigenfunction ¢(0) as functions
of B and n, for the conical notch and the rigid cone. To solve the eigenvalue problem,
the governing fourth order non-linear differential equation for ¢ is written as a system
of four first order ordinary differential equations of the form

y:=ﬁ(9’{yl})a [ = 13 2’ 3: 43 (41)

where the first derivatives y; = dy,/d0 (i = 1, 2, 3, 4) of the dependent variables y; are
known functions f; of 6 and { y;}. This system of equations is integrated numerically
and the boundary conditions at # = 0,  are used to find s.

4.1. Governing system of ordinary differential equations

The governing system of first order differential equations follows naturally from
the incompressibility requirement, the strain—displacement relations and from equi-
librium.

The displacements u,, uy are expressed via (3.3a,b) in terms of the stream function

Y = r’(sin 0)¢(0),
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W,G _ -2
b= Tng T
v,
= — - = — rs~2 s
“e rsin 0 5 ¢
where
X=¢ +¢cot.

The strain components are derived from these displacements using (3.1a—d),

&y = U, =r (s—2)X,

fgp = T 100 +r”9"" = P=3((1—8)X+s¢ cot 6),
u,+uy cot 0 s
gpp = —————— =1 "(X—s¢ cot 0),

1 Uy U, g
& =75 uﬂ,r_7+ r =r?Y,

= 3(X" +5(3—25)9).

where

A measure I of the effective strain ¢ is defined by

2 3
et = —1r°T.

f

(4.22)

(4.2b)

(4.2¢)

(4.3a)

(4.3b)

(4.3¢)

(4.3d)

(4.3¢)

(4.4a)

Substitution of the strain components (4.3a—d) into (4.4a) gives I' in terms of ¢, X

and Y,
= (s> =35+3)X*—s*(X—¢ cot )¢ cot 6+ Y>.

(4.4b)

The stress components o;; = .S;;+ 7,0;; follow from inversion of the constitutive law

2.1),

S, 2 L=
P 3(«€eﬂ~)"8

together with (4.3a—d), giving

Oy —0p =

2\, $=3 1-n
(———)" n I n (s—2)X,

5\
2

13 -
Uee—ffh——(—>"r n FT((I—S)X+S¢COt9) '

VINY

4.5)

(4.62)

(4.6b)
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oo 2 1 i:g 1—n
—0, = (—)” n T n (X—s¢cotb) (4.6¢)

AN

and
1
2\, =% 1=
6o =ﬂ<—>"r "L 7w Y. (4.6d)

The equilibrium equation (3.2a) suggests that a suitable representation of the hydro-
static stress o,(r, 0) is

o 2 1 s—3 1—n
o) =—0<—>”[r n T n Z(0)+g(6) Inr+D,], (4.7)

NERVE

where the non-dimensional functions Z(6) and g(0) remain to be found, and D, is a
scaling constant. Equations (4.6a—d) and (4.7) are substituted into the equilibrium
equations (3.2a and b), giving

~1\. T _3 _3 3-s n-1
Y'—<L>Y+Ycot9+(s—2)<3+s )X+<S >Z+r " T ng=0
n r n n

(4.82)

and

1— I’ -3
Z'+(1—85)X" +s¢" cot 0+ ~n—n(Z+(1 —5)X +s¢ cot B)F +<ST +3>Y
n—1 3—s

+sp(cot?’0—1)—sXcotO+gT n r » Inr=0. (4.8b)

For (4.8b) to remain valid for all r, g’(0) vanishes, giving g(0) = D, a constant. If
s =3 or n = o0, the exponent in r in (4.8a) vanishes, and the last term in (4.8a)
becomes DI'"~ D" Then, for the rigid cone, D forms an unknown eigenvalue of the
problem ; for the conical notch, the boundary condition g4 = 0 on 8 = f implies via
(4.6b) and (4.7) that the constant D vanishes.

Consider the general case, s # 3 and n # co. For (4.8a) to remain valid for all r,
g = D vanishes. We have now a system of 4 first order differential equations in ¢, X,
Y, Z, from (4.2¢), (4.3¢), (4.8a) and (4.8b), rewritten as

¢’ =X—¢cot, (4.92)
X' =2Y—-s5(3—s5)0, (4.9b)
Y = —X<£S_—2)n(iﬂ +3(s—2)>— (S—;§>Z— Y cot f— (%)Y—l;: (4.9¢)

Z =s(s—2)*p+ (23—5— %)Y—- (1 ;n>(Z+ (1—5)X+s¢ cot 0)1%. (4.9d)
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Here, I'” is expressible in terms of ¢’, X’ and Y’ by differentiation of (4.4b) with
respect to 8. The system of 4 equations (4.9a—d) may be written symbolically as,

¢/

X/

v | =£0.6,X Y,2Z), i=1,23,4, (4.10)
VA |

in accordance with (4.1).

We find the lowest eigenvalue s > 2 by integrating the system of equations (4.10)
from the pole 0 = 0 to the boundary 6 = . The correct value of s satisfies the
boundary conditions. ’

4.1.1. Behaviour near pole. As 0 — 0, uy — 0 because of material continuity. By
symmetry g, — 0 as § — 0, and by the equilibrium equation (3.2b) we must have
(0gs—044) — 0 in order for the term (ogp— 04,) cot 0 to remain bounded.

The presence of cot 0 in the governing system of equations (4.9a—d) means that the
numerical solution is ill-conditioned at 8 = 0. Accordingly, the equations are inte-
grated from a small positive value of 6 = 1°, using asymptotic approximations for ¢,
X, Y, Z at small 6. These analytic approximations are obtained as follows.

The dependent variables ¢ and Z are analytic for small 6,

¢ =ap+0+a0*°+a0%+---, (4.11a)
Z=>b+b,0+b0>+b,0°+--", (4.11b)

where we put arbitrarily the coefficient in front of the 8 term for ¢ to unity, since the
governing equations and boundary conditions are homogeneous. Expressions for
X=¢ +¢cotfand Y = (X’ +5(3—s5)¢) are generated directly from (4.11a).

The behaviour at the pole 8 = 0, and the equilibrium equations impose conditions
on the coefficients a;, b; of (4.11a,b). As § — 0, ug = —sr'~%¢ — 0, which implies that
ay = 0 in (4.11a). Further, as § - 0, g, > 0, hence Y — 0 by (4.6d) and a, = 0 from
examination of the power series expansion of Y (). The condition (g4 —04,) — 0 as
0 — 0 is satisfied identically when o4 and 0,4 are expressed as power series in 0 via
(4.6b,c) and (4.11a).

The power series for ¢, X, Y and Z are substituted into the equilibrium equations
(4.8a,b) where we consider the general case s # 3 and n # oo, such that g(6) = D
vanishes. Collected terms in successive powers in 0 are put equal to zero in order to
satisfy equilibrium. This gives

2n 1 1 s—3
b, =E(4a2——3~+58(3—8)+(s—2)(3+ 7)) (4.12a)
and

b, =0, (4.12b)
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where a, is unknown from the behaviour near 6 = 0 and becomes one of the unknown
parameters to be determined. Near 6 = 0, the series (4.11a) and (4.11b) reduce to

¢ (0) = 0+a,0°+0(0°), (4.13a)
X(6) = 2+ (4a, — )62+ 0(0"), (4.13b)
Y(6) = (S(32— 9 +da,— %)9+0(93), (4.13¢)

Z(0) = 32—_"3 <4a2— % + %s(3—s)+(s—2)<3+ i;—3>>+0(02). (4.13d)

Thus, for small 6, the dependent variables ¢, X, Y, Z can be expressed in terms of
the two unknown parameters s and a,. At 8 = § the traction boundary condition
g0 = 0, =0 for the conical notch, or the displacement boundary condition
u, = uy = 0 for the rigid cone, imposes 2 constraints on ¢(f), X(f), Y(B), and Z(p).
This leaves 2 of the 4 dependent variables at 8 = f as unknown parameters, 4, and
A,. We have, therefore, a two point boundary value problem consisting of 4 first
order differential equations with 4 unknown parameters s, a,, A, and A4,. The
numerical procedure for solution of this eigenvalue problem is now given, first for the
conical notch and then for the rigid cone.

4.2. Solution for conical notch

At the surface of the conical notch the stress components a4 and 0,9 are zero. This
boundary condition in oy may be expressed in terms of ¢, X, Y and Z via (4.6b) and
(4.7) to give

(1—5)X+s¢pcot+Z =0, 0=4, (4.14a)
while the boundary condition in g,4, via (4.6d), gives
Y=0, 0=25. (4.14b)

The values X(f) = 4,, Z(f) = A, form unknown parameters of the problem in
addition to s and a,.

The two point boundary value problem consisting of the differential equations
(4.9a—d), the boundary conditions (4.13a—d) at 8 = 1°, and the boundary conditions
given above at 6 = B, is solved using a commercially available numerical package
developed by the Numerical Algorithms Group. Using initial guessed values of the
unknown parameters s, a,, A; and 4,, the system of differential equations is integrated
numerically from 6 = 1° to 6 = f using the Runge-Kutta—Merson method. Corrected
values of the parameters are calculated using a generalised Newton iteration method.
The Newton correction in each iteration is determined using a Jacobian matrix whose
(i, /)th element depends on the derivative of the ith component of the solution y; = (¢,
X, Y, Z) with respect to the jth parameter p; = (s, a5, 4, A,). This matrix is calculated
by numerical differentiation. This process is repeated iteratively until convergence is
obtained. A form of parameter tracking is used whereby the previous converged
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solution of the parameters p; is used to give the starting value for successively larger
values of n or f.

The lowest eigenvalue s > 2 is given as a function of f, for various » values in Fig.
4. Results for the linear case » = 1 are in agreement with the solution presented in
Section 3. It is clear that for § > 90°, stresses are singular at the tip of the cone. For
any fixed n, the singularity is strongest at a value of § which increases from 120° for
n =1, to 180° for n —» co. For a given f > 90°, the level of singularity increases (i.e.
s decreases) as #n increases. For all §, the solution is less singular than for a plane crack,
where for any type of loading s = 3—n/(n+1) (HuTCHINSON, 1968a,b; RICE and
ROSENGREN, 1968). In this sense, the conical notch is less damaging than a plane
crack.

4.2.1. Rigid perfectly-plastic limit. Figure 4 includes the rigid perfectly-plastic limit,
n = 0. The governing system of 4 first order differential equations is now derived for
this case. The constitutive law (4.5) reduces to

NV E:T
=z 4.15
0y ey ( )

where o is identified with the uniaxial yield stress. The stress components (4.6a—d,
4.7) become

6 — g, =20 (s_2) 2, (4.162)
VAR
1—8)X t0
o0, = 20 (=9 XFs5é cot§) (4.16b)
NE r
X—s¢p cot 8
Gps—0h = :;’5( S?CO ), (4.16¢)
b= % % (4.16d)
3
and
oy Z
o= (4.16¢)

The effective strain measure I is still given by (4.4b), and the system of differential
equations governing ¢, X, Y and Z (4.9a—d) simplifies to

¢ =X—¢cotb, (4.17a)

X' =2Y—-s5(3—s)¢, (4.17b)
1—‘/

Y =—-3(—-2)X—Ycot0+7Y—, (4.17¢)

r
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4

Z' = s(s—2)%¢+ (25— 5) Y+ (Z+ (1 —5) X +5¢ cot 0) % (4.17d)

A solution is found using (4.17a—d) instead of (4.9a—d), with the boundary conditions
unchanged. This solution is included in Fig. 4. It is apparent that the rigid perfectly-
plastic case gives the most singular solution at any given .

4.2.2. Case s = 3. Equations (4.17a-d) with (4.12a,b) remain well-behaved and
may be integrated for the non-singular limit s = 3.

4.2.3. Discussion of results for conical notch. Contours of constant effective stress
oz are given in Fig. 6 for conical notches of angle f = 95°, 135° and 175°, and various
n. The stresses are normalised according to (HUTCHINSON, 1968a),

s—3
O'ij(r, 0) = rT&IJ(G) (4.183)
where 6;;(0) is deduced from (4.6 and 4.7), consistent with
(5eff(0))max = 19 0 < 0 < ﬁ (418b)

The tilde components give the polar profile of the stress field after normalisation such
that [aeﬂ'(r = 19 0)]max = 1.

10 (b) B=135°
\ DMen n=oo, Eeff =1
0s -,S\f:/ n=12
S R n= Cett = 1
"-.?‘(n =
0.5
conical conical
notch notch \.
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i
0 & 0
L | ] | |
-05 0 05 -05 0
04
(c) B=175°
0-2 N =09, Egc 1
/ n=3,12, Gy =1
of-metch M
n=1, Oey=1 | |
-1-0 -0-S 00

FIG. 6. Plot of constant o.4(r, 8) at tip of conical notch for (a) f = 95°, (b) f =135° and (c) f = 175°.
For n = oo, plot is of constant &(r, 6). Singular solution in all cases.
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FiG. 7. Stress components 6;,(6) at tip of conical notch for the special cases (a) half space, g = 90°, and
(b) needle shaped, f = 180°. All n. All solutions are non-singular with s = 3.

Contours of constant effective stress o.q = r~>"6.(0) equal to unity are given in
Fig. 6 for finite n. These contours of constant stress are also contours of constant
effective strain, &.4. For the case of n = o0, g4 = g, is uniform for all (r, 6) while
Eoff = (2/\/§)r"‘31“(0) varies with r and 6. Thus, for n = oo, contours of constant
gq(r, 0) =1 are included in Fig. 6, where &g(r, 0) is normalised such that
[teg(r =1, 0)]max = 1, for 0 < 0 < B.

For all notch geometries 90° < f# < 180° and all n, stresses are singular at the tip
of the cone. The contours of constant o4 Or &4 give an indication of the shape of the
plastic zone at the tip of the conical notch. For all # and » considered in Fig. 6, it
appears that the contour of constant o lies close to the surface of the cone, rather
than extending deep into the material. The distance from the cone tip to the contour
is always less along 6 = 0 than along 0 = f.

The shape of the contour of constant o is strongly dependent on f, but only
weakly dependent on n. As f is increased the contour lies closer to the surface of the
cone, until at f# = 175° the contour suggests a boundary layer solution over the surface
of the cone.

For 8 = 90° and 180°, s equals 3 for all n, and the effective stress is uniform. This
prevents us from drawing contours of constant effective stress for these geometries.
The case = 90° represents a half space under equibiaxial tension parallel to the free
surface, while § = 180° represents the case of a needle-shaped cavity in a full space,
under uniaxial tension parallel to the axis of the needle. These stress states are shown
in Fig. 7, and are given analytically by Eqs (3.24) and (3.25) for all .

The stress components 6;,(f) corresponding to the geometries and » values of Fig.
6 are displayed in Fig. 8. Consider first f = 95° and n =1, 3, 12 and 0. Since the
geometry is close to a half space, the stress field is close to the half space solution of
equibiaxial tension, compare Figs 8a and 7a. The effective stress 6.5(0) varies little
from unity, and the hydrostatic stress 6,(6) is equal to 0.7+0.1 for all 6 and n,
compared to 2/3 for the half space solution.
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F1G. 8. Stress components 6;;(0) at tip of conical notch for (a) g = 95°, (b) f = 135° and (c) § = 175°. For
each geometry, n = 1, 3, 12 and oo.
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F1G. 8. (continued).

Now consider f = 135°. For n = 1, the effective stress Gy increases from 0.07 at
0 = 0° to unity at 0 = B, implying that yielding is preferred along the flanks of the
cone. At the surface of the cone 64, = 1.1, 0, = 0.6 and gy = 0,5 = 0, so yielding
occurs essentially in the ¢—6 plane driven by the large ‘hoop stress’ component 6.
The hydrostatic stress 6, is approximately constant, and equal to 0.5+0.1. As n is
increased, the response is qualitatively the same, except for the behaviour of ,. The
hydrostatic stress 6, at 8 = 0 increases with increasing », from 0.4 for n =1 to 1.7
for n = c0. As 0 is increased to 8 = f3, 6, changes in a monotonic manner to a value
of ~0.6, for all n. In summary, for this geometry and all n, 6, is larger than 6.4 for
0 = 0°, while at 0 = f8, 6, ~ 0.6 is less than 6.4 = 1 and yielding is by the ‘hoop stress’
component G-

The behaviour for § = 175° and all n shows the same trends as for f = 135°, but
in a more extreme fashion. Except for n = oo, the effective stress 6.4 remains small
until 0 approaches f; as 0 tends to f, 6.« increases rapidly to a value of unity at 6 = .
The stress state changes from essentially hydrostatic at 8 = 0°, to tensile yielding in
the ¢-direction at 6 = B. The magnitude of 6, at 6 = 0° increases from 0.56 to 4.2 as

‘n is increased from unity to infinity. This result for &, along 6 = 0° in the rigid
perfectly-plastic material is unusually large : the corresponding crack problem under
Mode I loading gives a value of (6)max = (2+n)/\/§ = 2.97 ahead of the crack tip.

4.3. Solution for rigid cone

Consider the asymptotic stress field near the tip of a rigid cone in a power law
incompressible material under remote torsionless axisymmetric loading. The govern-
ing differential equations (4.9a—d) apply when s # 3 and n # oo, with the behaviour
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at small 6 still given by (4.13a—d). At the surface of the rigid cone the displacements
u,, up are zero and (4.2a,b) imply

o) =0, (4.192)
X(p) =0. (4.19b)

The dependent variables Y(f) = 4, and Z(f) = A4, become the unknown parameters
of the problem, in addition to s and a,.

The same solution procedure is used as for the case of the conical notch. The
governing differential equations (4.9a—d) are integrated numerically from 6 = 1° to
0 = B and values for s, a,, 4,, A, are found which satisfy the boundary conditions
at each end of the integration interval. Results for the eigenvalue s as a function of
are shown in Fig. 5, for a range of n. :

It is clear from Fig. 5 that for a fixed » the solution becomes increasingly singular
(s decreases) as f§ increases. The value of f at which the solution becomes singular
(s = 3) increases slightly from 120° as 7 is increased from unity. For f = 120°, the
level of singularity increases (s decreases) with increasing n, while the reverse is true
for p < 120°. At any given n, the solution is more singular than the crack solution
s = 3—n/(n+1), for B sufficiently close to the rigid needle limit of f= 180°.

Convergence to a stable solution was neither achieved for ff near 180°, nor for the
limit n — 0.

4.3.1. Discussion of results for rigid cone. Contours of constant g.5(r, ) are given
in Fig. 9 for the case of a rigid cone and f = 90°, 95°, 135° and 175°. Behaviour is
more complex than for the conical notch, as the value of # at which stresses become
singular depends on #, see Fig. 5.

In all cases, the contour of constant o4 lies close to the surface of the rigid cone
rather than extending deep into the material : the distance from the tip of the cone to
the contour of constant o.4 is always greater along 6 = f§ than along § = 0°. For
B < 120° and all », stresses are non singular and the contour of constant g5 only gives
an approximate indication of the shape of the plastic zone surrounding the tip of the
rigid cone.

The normalised stresses 6;;(0) for the cases given in Fig. 9 are shown in Fig. 10. In
all cases the stress state along 6 = f§ consists of pure shear with hydrostatic tension :
G 1s finite, and G,, = Gyy = Gy = G,. Along 0 = 0, 6,4 is zero and Gy equals 6,4 by
the equilibrium equations (3.2a) and (3.2b), respectively. The stress state along 6 = 0
thus reduces to axisymmetric tension &y = G, With an algebraically larger stress G,,.

For B < 120°, stresses are non singular and 6.4(0) attains its maximum value of
unity at @ = 0. For larger f, stresses become singular and 6.4(0) equals unity at 0 = f.
The magnitude of the hydrostatic stress G, increases with increasing @ for all g, n. Its
magnitude at § = f varies in a complicated manner with f and n, and attains a
maximum value 6, ~ 6 for f = 135°, n = 12.

Now consider the plots of &;;(8) and contours of ¢ in more detail for each selected
f value. Consider first the results for § = 90°, » = 1. This represents a clamped half
space, bonded to a rigid foundation. The non-singular stress state at 8 = f§ consists
of pure shear 6,4 with zero hydrostatic stress (Fig. 10a). The cases f =95°, n =1, 3
are similar, and |6,| = 0.1-0.2 is small at @ = f. The associated contours of constant
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F1G. 9. Plot of constant o.4(r, 6) at tip of rigid cone for (a) f = 90° (solution is non-singular), (b) g = 95°
(solutions are non-singular), (c) # = 135° (solutions are singular) and (d) f = 175° (solutions are singular).

o for these two geometries resemble those for the conical notch with f =95°,n =1
to oo, compare Figs 6 and 9.

Stresses remain non singular for the case f = 120°. An analytic solution has been

already given in Section 3.4 for this geometry and the linear material. The eigenvalue
s equals 3, and ¢(0) follows from (3.23) as

0
¢ = 2C, sin 20+ C, tan > (4.20)
where C, is an arbitrary constant. The deviatoric stresses are obtained from (3.6)—
(3.7) in the form

2

2
O,p—0p = § o€y = '§ O'0C2(9— 12 Sin2 9), (4.213)

2

2 9 3 0
Ogg—0Op = § OoEgg = ‘3‘0'0C2<12 sin? 6 — 5 - Etanz 5), (421b)
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FIG. 10. Stress components 6;,(6) at tip of rigid cone for (a) § = 90° (non-singular solution), (b) g = 95°
(non-singular solutions), (¢c) f= 120° (non-singular solution), (d) f = 135° (singular solutions), and (e)
B = 175° (singular solutions). '
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2 2 9 3 0
Opp — Op =§O'()8¢¢=§O'0C2<—§+5tan2§), (4210)
2
O, = 3 0069 = 3 0,C,(—6sin 20). (4.21d)

The hydrostatic stress o, is specialised from (4.7) as

6,(r, 0) = % o0 [2(0) +DIn ri] (4.222)
0

where r, is a new scaling constant, replacing D, in (4.7). Substitution of (4.21a—d)
and (4.22) for the stresses into the equilibrium equation (3.2a) gives g(0) = —3C,,
while substitution for the stresses into the second equilibrium equation (3.2b) gives

0
Z(0) = —6C,1In (cos 5). (4.22b)
Thus g, is expressed by
2 0
O'h(r, 0) =—O'0C2 —61n (COS_ '—3lni . . (4.23)
3 2 ro

We note from (4.21a—d) that the deviatoric stresses and the strains are independent
of r, while o, depends upon r via the In r term in (4.23). The stress components o;;
are plotted in Fig. 10c, for the choice r = ry, and C, = 1/90, such that [oes(r = r,
O)]max = 1. The effective stress o.q(r = ro, 0) shows a small deviation from unity as 0
is increased from zero to . Since deviatoric stresses are independent of r, a contour
of constant o.(r, 0) is a ray along 6 = 0.

Now consider the case f = 135°, for which the solution is singular in r for all n
considered. The effective stress 6.;(6) is approximately unity except for 6 near 110°
where it drops slightly in value. This behaviour gives rise to the unusual shape of the
constant o.s(r, 8) contours (Fig. 9). The contours penetrate far into the material at
0 = 0°, engulfing the tip of the cone. The nearest point between the contours and the
tip of cone is 6 ~ 110°; at larger values of 0 the contours flank the surface of the rigid
cone. The shape of the contours ahead of the cone is reminiscent of that for a point
load, P, applied to an elastic full space, the Kelvin problem (see, for example,
TimosHENKO and GOODIER, 1970). Kelvin’s solution gives a.q(r, 6) = r~ *G.;(6) where
G.x(0) = cos 0 and &, = — 3 cos 0. For the incompressible solid, the Kelvin solution
also applies to a half space under a normal load P/2. A contour of constant c.s(r, 6)
for the Kelvin problem is included in Fig. 9.

For f = 135° and all 0, the hydrostatic stress 6, increases from ~1forn =1to ~6
for n = 12. This suggests that the load carried by a conical indenter stuck to the
material is supported largely by hydrostatic stress, for the non-linear solid.

Finally, consider the rigid cone with f=175°, n=1 and 3. This geometry
approaches that of a rigid needle. Stresses are strongly singular: for » = 1 s equals
2.19 compared with the case of a planar crack in an elastic solid where s = 2.5. As
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for the case of a conical notch of f = 175°, 6.4(0) increases from approximately zero
to unity only when 8 approaches 8. The corresponding contours of constant o (7, )
flank the surfaces of the rigid cone and of the conical notch, see Figs 9d and 6c.
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APPENDIX A
CALCULATION OF ENERGY RELEASE RATE

A.l. Bar in tension

The strain energy release rate 4 for a needle-shaped cavity in a long elastic bar in torsion is
calculated as follows. Consider a bar of length /, outer radius b, containing a circular cylindrical
cavity of length x, radius 4, as shown in Fig. Al. The solid portion of the bar is assumed to

-

]
- 3—{@:::‘:::}":_) : . \ f\'e )
/ J JRY,

! 20/ TZb

F1G. Al. Calculation of energy release rate 4 for advance of a cylindrical hole in a round bar under torsion,
or under radial tension.
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have torsional rigidity GJ, = nGb*/2. Treat the hollow portion as a tube with torsional rigidity
GJ, = nG(b*—a*)/2, where G is the shear modulus and J, is the polar moment of area. If the
end rotation of the bar is 8 under a torque T, then the compliance C = 0/T is

(I-x) x
C~r. Y Gn,

(Al)
The energy release rate ¢ per unit advance of the hole is given by

OE
G = — <O_x>T (A22)

where E = —3CT? is the potential energy of the body, and T is held constant in the above
partial derivative. Hence,

=T oc . (A2b)
0x
Combining Eqgs (A1) and (A2b) with the definitions of J; and J, yields
T*? 1 1
g~ﬁ<7b“—a4 _F) (A3)
Equation (A3) is exact for the limit / » co. For small a/b, (A3) may be rewritten as
T? (a\
e (z) - (A9

In steady-state hole elongation the energy release rate ¢ is independent of the details of the
shape of the end of the hole, and tends to zero as the hole radius a tends to zero. Thus % equals
zero for the limit of a needle-shaped cavity.

A.2. Bar under axisymmetric tension

A similar argument is used to compute % for a long elastic bar under torsionless axisymmetric
tension. Again, consider the geometry given in Fig. Al, with radial tension g, applied on the
outer surface r = b of the bar (not shown in the figure). When the bar is long, the energy release
rate ¢ is deduced from the difference in potential energy between a solid bar of radius b
under o, and a tube of outer radius b, inner radius a, under o,. For the solid bar of length
(I—x), the potential energy E, is

E, = _%(27Tb(l_x))0'bub1, (ASa)

where u,,, is the radial displacement at » = b due to o,. Similarly for the tube of length x, the
potential energy E, is

E, = —3(2nbx)0,uy;, (A5b)

where u,, is the radial displacement at r = b.
The displacement u,, is deduced from the well known Lamé equations for a tube, giving

o, b ((a2(1+v*)+b2(1—v*))

Y2 =Tpx g _ g2 b?

(A6)

where E*, v* are the plane strain values for Young’s modulus and Poisson’s ratio, respectively.
For the solid bar, Eq. (A6) may still be used with the inner radius a put equal to zero.
Combining equation (A6) with (AS5a) and (A5b) gives
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o,
E = —n(l—x) E;.bz(l —v¥)

and

b2
Finally, ¢ is given by

_ 0(E\+E,)
Ox )

Substitution of (A7a,b) into (A8) yields for small a/b,

2 2
[ a

G =

For the limiting case of a needle shaped cavity, a/b — 0, and ¢ — 0 by Eq. (A9).

o} b* (a2(1 +v*)+b2(1 —v*))
s .
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(A72)

(A7b)

(A8)

(A9)



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

