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ABSTRACT

A CONSTITUTIVE relation for simple shear of an elastic—plastic material containing a periodic array of cracks
is developed. The relation is based on finite element analysis and slip-line field solutions for interacting
cracks in simple shear. Typical shear stress—strain curves display a peak in the nominal shear stress due to
competition between strain hardening of the matrix and material softening due to rotation and stretching
of cracks with deformation. The effect of nonuniform crack distributions on localization behavior is studied
by determining the critical conditions for which the shear strain in a band of cracks becomes unbounded
relative to that in the surrounding, uncracked material. The results show that the strain to localization
depends strongly on the ratio of crack length to crack spacing, crack orientation, crack-face friction and
matrix hardening. The results are helpful to understanding shear localization under confining pressures,
where voids adopt a crack-like morphology.

1. INTRODUCTION

FAILURE of nominally ductile materials is sometimes associated with the onset of
localized plastic deformation along narrow shear bands. Once formed, shear bands
signify imminent failure by the rapid nucleation, growth and coalescence of voids and
cracks within the band. Under increasing confining pressure, failure may be delayed
due to void collapse, increasing crack-face friction or suppression of void nucleation.
In the limit of sufficiently large confining pressure, shearing of the band eventually
produces necking of the specimen to a point (e.g. TEIRLINK et al., 1988).

This work addresses the onset of shear banding under conditions where local
stresses at inclusion—-matrix interfaces produce debonding into a void, but where the
macroscopic pressure and shearing loads produce stretching and collapse of voids
into cracks. Examples are a rolled, low carbon steel loaded in torsion (Fig. 1), and
sliding frictional contact geometries, where shear bands in the highly deformed near-
surface layer are thought to produce wear flakes (SuH, 1986).

In this paper, an elastic—plastic constitutive relation is developed for a band of
cracks in shear. The band softens at large strains by the stretching and rotation of the
cracks. Crack tip growth associated with the strain singularity at the crack tip is
neglected. The development adopts an idealized, two-dimensional periodic cell model
containing a crack, for which the ratio of crack length to crack spacing and crack
orientation angle are the internal damage variables. Slip-line field techniques and finite
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element analysis are used to obtain the nominal shear stress at which the band reaches
limit load, as a function of the current damage, confining pressure, crack-face friction,
and flow stress of the perfectly plastic matrix material. These solutions also suggest
how existing damage may evolve with continued shearing. Consistency and equiva-
lence of plastic work are used to produce an approximate incremental shear stress—
strain relation for the band when the matrix material exhibits work-hardening.

This constitutive relation complements a popular relation developed for voided
materials by GURSON (1977, 1975). In that analysis, an isotropic hardening law using
void volume fraction as a scalar damage parameter is developed from an approximate
yield condition for a thick spherical shell volume element. The Gurson model is most
applicable to stress states with a large tensile hydrostatic component since a spherical
void shape is more likely to be maintained for such loadings. The present analysis
considers the effect of void shape by studying the limiting case of sliding (mode IT)
cracks. For simple shear of a voided material with an incompressible matrix, the
Gurson model predicts no mechanical softening due to damage evolution, whereas
the present analysis does.

In order to evaluate the effect of nonuniform crack distributions on localization
behavior, a bifurcation analysis as developed by Yamamoro (1978) is used. Here, an
initial band of cracked material characterized by a crack density, crack orientation,
and a constitutive law in shear as described earlier is embedded in an uncracked
matrix. The initial imperfection is assumed to exist from nonhomogeneous nucleation
during prior deformation or processing. Critical conditions for which the strain
increment in the band becomes infinite while that outside the band remains finite are
determined as a function of initial crack size and spacing, crack orientation, and matrix
work-hardening. The estimates of localization strain in simple shear are regarded as
an upper bound since in the present analysis, the imperfection band is restricted to
remain parallel to the direction of simple shear.

2. THE YIELD Locus FOR AN ARRAY OF CRACKS IN SHEAR

Observations of nominally ductile materials in shear, as shown in Fig. 1, suggest
possible localization of deformation in a shear band of cracks. An idealized 2-D model
of such a band is depicted as a periodic array of cracks as shown in Fig. 2(a). The
cracks are assumed to have uniform length 24, spacing 2L and inclination angle 6, as
might be expected when crack nucleation sites are evenly spaced in a material under
uniform loading. In order to determine the mechanical response of a shear band in
terms of a nominal shear stress T and shear strain y across the band, a yield locus in
shear is first obtained. Here, the matrix surrounding the cracks is assumed to be
perfectly plastic with a yield stress in shear equal to k, and the critical value of t at
which the band of cracks collapses is determined by using finite element methods and
slip-line field techniques.

Finite element study of shear band collapse

Finite element analyses of the crack array were employed to determine the stress
and deformation field between interacting cracks in simple shear, and to supplement
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FIG. I. Nucleation and growth of cracks at MnS particles. observed in a rolled. low carbon steel loaded
in torsion (KAPOOR, 1987). The arrows show the direction of shear deformation.
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FiG. 2. (a) Geometry of an idealized crack array loaded in simple shear, in which the dotted region depicts

a periodic half-cell. (b) Boundary conditions for one-half of a frictionless crack cell employed in the finite

element analysis. The crack is shown by a dotted line. (c) A typical finite element mesh used for the half-
cell geometry depicted in (b).

slip-line field solutions to be discussed. The periodic structure of the band in the
x-direction and two-fold rotational symmetry about the midpoint of a crack per-
mits analysis of only one-half of a crack cell as shown in Fig. 2(b). In particular,
displacements u and tractions T along the side faces, x = L and x = —L, of the
half-cell must satisfy the periodic boundary conditions that u(L, y) = u(—L,y) and
T(L,y) = —T(—L,y). The two-fold rotational symmetry about the pointx =0,y = 0
requires that displacements and tractions on the right and left halves of the lower
face, y = 0, are related by u(x,0) = —u(—x,0) and T(x,0) = T(—x,0). The final
condition that the band deform nominally by simple shear requires that the vertical
displacement u, on the upper face equals zero, while the horizontal displacement u,
on that face is applied. Rigid translation of the half-cell is prevented by imposing
u(—L,0) = u(L,0) =0, consistent with the periodicity, two-fold rotational sym-
metry and simple shear deformation of the half-cell. Crack face conditions consistent
with a freely sliding, closed crack were obtained by setting the normal component of
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displacement across the crack to be continuous and the tangential component of
traction on the crack surfaces to be zero.

A typical finite element mesh of a half-cell with prescribed angle 6 and crack length
to spacing ratio a/L is shown in Fig. 2(c) and contains approximately 300 4-noded
plane strain constant dilatation elements. The locations of the nodes on the cell
boundary and crack surfaces must satisfy the proper periodic and two-fold rotational
symmetry conditions in order to enforce the boundary conditions described above.
Elements were concentrated at the crack tip to better model the singularity in strain.
Further, elements were concentrated in a band given by the projected height of the
crack. The total height of the cell was one and one-half to two times the projected
height of the crack to allow for more widespread plastic flow.

The perfectly plastic property of the matrix was used to help produce a well-defined
collapse load, unlike that for a work-hardening matrix. The corresponding numerical
problems associated with the study of incompressible rigid—plastic flow were alleviated
by including an elastic portion in the matrix material response and by employing four-
noded constant dilatation elements as suggested by NAGTEGAAL et al. (1974). The
isotropic elastic behavior was described by an elastic shear modulus G equal to 1000
times the yield stress & in shear, and Poisson’s ratio v = 0.45.

Finite element calculations were performed for various crack sizes and orientations,
but are presented here for a/L = 1/3 and 2/3, and 6 in the range 0 to 45°. The analysis
employed a general purpose finite element program MARC (1983); analysis for a
given crack orientation angle and crack size to spacing ratio used between five to
fifteen minutes of CPU on an IBM 4341 mainframe computer.

The finite element calculations furnish for a given a/L and 6 the nominal shear
traction 7 as a function of the applied nominal shear strain y(=u,/H). Figure 3
displays some typical features, and shows the approximately linear increase in t with
v, which occurs as a plastic zone grows from each crack tip but remains well confined
by surrounding elastic material. When y reaches approximately the yield strain 7, in
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F1G. 3. Finite element results showing a typical plot of nominal shear stress vs nominal shear strain for the
idealized array of cracks. The shear stress and strain are normalized. respectively, by the yield stress and
strain of the matrix in shear.
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F1G. 4. (a) Predictions by finite element analysis of the local slip-line directions for a frictionless crack

array in shear, as shown by short line segments oriented along a direction of principal shear and with

length linearly proportional to the magnitude of principal shear. The solid black lines show the cor-

responding complete slip-line field solution. The dotted lines depict freely sliding cracks with 8 &~ 20.7° and
a/L = 2/3. (b) The hodograph to the slip-line field in (a).

shear, T abruptly levels off to a collapse load less than the yield stress k in shear. The
collapse load corresponds to the overlapping of plastic zones from crack tips in two
adjacent cells and the formation of a fully plastic ligament between the cracks.
Deformation was continued to values of several times y/y, to establish a well-defined
collapse load plateau and to insure that plastic strain increments were considerably
larger than elastic strain increments in yielded regions of the crack array.

The finite element solutions described were used to help motivate slip-line field
solutions for crack arrays in a rigid, perfectly plastic matrix as discussed in the next
section. Figure 4(a) provides a spatial plot of the local directions of principal shear,
based on the final plastic strain increments at the end of a loading history. These line
segments have length directly proportional to the magnitude of principal shear strain,
and show the local orientation for which the strain increment consists of pure shear
and the stress state consists of pure shear plus hydrostatic pressure. Superimposed in
Fig. 4(a) is the actual slip-line field. The finite element solution compares favorably,
although it is clear that lines of shear discontinuity are substantially broadened. In
general, shear discontinuities can not be modelled very well, even when the density of
finite elements is increased substantially in such regions. This is due in part to the
elastic component of the matrix response. However, as will be shown in the next
section, the finite element method accurately predicts collapse loads of the crack array
and complements the slip-line field approach. In addition, more accurate descriptions
of matrix materials which incorporate work-hardening, for instance, may be included
directly in the finite element analysis.
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Slip-line fields of crack arrays

The finite element solutions discussed helped to motivate slip-line field solutions
for crack arrays in shear. With the exception of geometries with crack orientation
angle equal to 0 or 90° (NAGPAL et al., 1972), the fields presented here have not, to
the authors’ knowledge, appeared in the literature.

The slip-line fields for the shear crack geometry shown in Fig. 2(a) degenerate into
simple forms at discrete angles between 0 and 45° inclusive given by

0 =sin"< n /ﬂ) @1
n n+1 2 ) )

where 7 is a non-negative integer, and c relates the uniform frictional shear stress ¢,

on the crack surfaces to the yield stress & in shear of the rigid, perfectly plastic matrix
by

t, = ck. 22)

Figures 4 and 5 show the essential features of the discrete angle slip-line fields, in
which the ligament between the cracks is divided horizontally into » rigid, sliding
rectangular blocks (n = 1 in Fig. 4, n = 3 in Fig. 5), and each crack surface is divided
equally among n+ 1 rigid regions. The solution predicts each crack to kink, due to
the lines of velocity discontinuity which intersect the crack surface. In actual materials
which work-harden, these lines would broaden substantially and most likely produce
rotated and curved rather than kinked cracks.
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FiG. 5. (a) Slip-line field solution for the integer case n = 3 (0 ~ 32°), with a/L = 2/3 and crack surface
friction coefficient ¢ = cos 2¢ (=0 here). (b) The corresponding hodograph to (a).
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The collapse load in shear predicted by the slip-line solution is linearly dependent
ona/L,

T a
E = 1 - Zf(c9 On)’ (2'3)
where
f(c,0,) = (1—c)cosB,—(cos™ ' c+./1—c*>—20,)sinb,. 2.9

The remote hydrostatic pressure, p/k, on the crack array and the normal compressive
traction t,/k on the crack surfaces are related by

h_p _4 = —2_19y_2 :
k_k+[1 Lcos@,,](cos c+/1—c*—28,) L (A+sinf,. (25

In addition to the restriction imposed by (2.1), the regions of validity for the solution
are that (i) ¢ < cos 20, and (ii) ¢, > 0, and (iii) a/L < 1/cos 6. Equality in the first
condition corresponds to “‘locking up” of the cracks, for which t/k = 1. The second
condition specifies that the cracks may not open up under simple shear deformation.
Equality in the final restriction corresponds to the # rigid sliding rectangular blocks
shrinking to zero length. In this case, a different slip-line field is needed for more
closely spaced cracks.

Although relations (2.3) and (2.5) strictly apply at only the discrete values of 0,
defined by (2.1), these relations provide very good approximations for intermediate
values of 6. Figure 6 shows f(c, 0) as a continuous function of 0 for several values of
c. The symbols (+), which denote values of 6, where the simple slip-line fields

f(c, )
0

0.757
0.50 7
0.25 7

1
0.00 - -

0 15 30 45

0 (degrees)

FI1G. 6. Slip-line field solution for the nominal collapse load in shear, given by t/k = 1 —(a/L) " f(c, 0).

Symbols (A) and (V) denote the finite element predictions for freely sliding cracks with a/L = 1/3 and

2/3, respectively. The symbols (+) denote results from the slip-line field solutions at integer values 8, using

(2.1) and (2.4), and symbols (O) denote results for intermediate values of 0 as discussed in the Appendix.

The smooth curves show the approximate relation obtained by interpreting (2.4) as a continuous function
of 6.
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described occur, become more closely spaced as the cracks approach the “lock up”
orientation § = (cos ™' ¢)/2. In this limit, / approaches zero and the material responds
as if no cracks are present. More complex slip-line fields for intermediate values of 6
between 0 and approximately 15° are briefly presented in the Appendix. The values
of f(c = 0,0) from the intermediate fields are represented by symbols (Q) in Fig. 6,
and show relations (2.3) and (2.5) to be good approximations even at lower values
of 6 where the density of 6, points is lower. The shear collapse load is therefore a
monotonically decreasing function of 6 in the range 6 =0 to (cos™'¢)/2 and a
monotonically increasing function of crack-face friction in the range ¢ = 0 to cos 26.

Estimates of f(c,t) from the finite element calculations discussed compare favor-
ably with slip-line predictions given by (2.4). In particular, the triangular symbols
(A) and (¥) in Fig. 6 show the finite element estimates for friction-free cracks
(c = 0) of size a/L = 1/3 and 2/3, respectively, over an angular range of 0 = 0 to 45°.
Differences in predictions by the two methods are less than 5%.

The restriction that ¢, > 0 for the slip-line solution specifies a maximum value of
remote hydrostatic tension, ¢,,/k = — p/k, below which the cracks will remain closed.
In this case, (2.5) is used to determine o,,/k by setting ¢, = ¢ = 0 corresponding to
traction-free crack surfaces. Figure 7 shows that ¢,,/k is positive over the entire range
of a/L and 6. This result indicates important related features of cracked materials.
First, substantial crack friction may exist in shear bands, even when hydrostatic
tension is present. Further, a simple shear mode of deformation, which involves
no macroscopic dilatation, is predicted to persist for the crack array, even though
substantial hydrostatic tension may exist. This behavior is not predicted by the Gurson
constitutive law for voided materials, since there, void growth is always predicted to
accompany local stress states of hydrostatic tension and shear.

The slip-line fields predict that plastic straining occurs in a band of height equal to
that of the projected crack height 24 sin 6. This dimension remains constant during
collapse of the band in shear. A suitable choice for the average plastic shear strain
experienced by the band is

o /k
3.0-1 m/
]
2-5-1 a/L =1
]
2.0
) 2/3
1.5
1.0 1/3
0.57
0.0 T T T T T T T T 1
0 15 30 45
6 (degrees)
F1G. 7. The maximum value of mean stress. o,,/k = —p/k, for which the crack faces in the array under

simple shear will remain closed.
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y? = Ulasin 0, (2.6)

where 2U is the remote displacement jump across the band.

The hodographs in Figs 4(b) and 5(b) suggest approximate relations to update a/L
and 6 in terms of the corresponding initial values, denoted by subscript o,

a/L sin 6,
(a/L),  sin@’ @7
cot 0 = cot 6, +yP. (2.8)

The approximation is based on the slip-line prediction that the upper and lower crack
tips move at velocity ¥ and — V, respectively. The finite element calculations verify
this result in the fully plastic range. The above relations also assume that the crack
remains straight, rather than kink as the slip-line solution predicts. This seems reason-
able for actual materials which work-harden.

An additional result from the hodograph for the crack band in simple shear is the
jump, Av,, in tangential velocity across the sliding crack surfaces :

/1
Avc=2V[cos 60— te
l—¢

3. THE SHEAR STRESS-STRAIN RESPONSE FOR A CRACK ARRAY,
INCORPORATING STRAIN HARDENING

sin 0] . 2.9)

The relation between an increment of loading, ¢ and an increment of nominal
plastic shear strain, }° of the crack array is constructed from the above perfectly
plastic analysis. Strain hardening is incorporated approximately by updating the mean
flow stress k of the matrix from an initial value k..

The incremental stress-strain relation for the crack array is obtained by differ-
entiating (2.3) with respect to time:

T a k k a\ adf. adf.
= [I“Zf(c’e)]k‘o_ko [f(c,@) <Z>+ZE§9+ZE§C]' (3.1)

Each of the time rates of change on the right side is expressed as a function of 7P in
order to obtain a relation of the form,

— = FyP 3.2
K= (3.2)
where F'is the plastic tangent modulus in shear to be determined. The rates of change

for crack length and orientation are obtained by differentiating (2.7) and (2.8),
respectively,
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\ 1
(%) =3 %}"p sin 20,

f = —y°sin? 0. (3.3)

The current flow stress of the matrix varies spatially within the band, due to
nonuniform straining caused by the cracks. The formulation in (3.1) is therefore
approximate in that an average value, &, for the flow stress in shear must be assigned.
The rate of change, k. is determined by equating the external plastic work rate
performed on the crack array to that dissipated internally. If v(x) = o;;€}; is the rate
of internal dissipation in a unit element of matrix at position X, the equivalence of
internal and external plastic work is written as

2(t-V-2L)—t,*Av.*2a = J w(x) dx, 3.4
4

where 4 = 2L+ 2asin 0 denotes the area of integration over a periodic cell of the crack
array.

The right side of (3.4) can be evaluated in terms of an average plastic energy
dissipation rate, W, per unit volume of matrix times 4. In the case of a hardening
matrix described by J, theory, the dissipation rate is

0e(X)
h(o,)
where g.(x) = \/Ek(x) is the effective flow stress, and /h(o.) = do./det is the slope of

the effective stress—plastic strain curve. An average value, k, in the band is defined
from the above relation by

W(x) = Go(X), 3.5)

W = 3kk/h(/3K). (3.6)

Using relations (2.2), (2.9) and (3.4)-(3.6), an average rate of change of flow stress

is given as
k1 h [t a [l+c
_=__,",P —_ — — —_— —_— .
k. 3k0’[k Lc(cos@ l_csm0>i|. 3.7

The slope h = h(\/§l€) of the effective stress—plastic strain curve represents the only
input of the mechanical response of the matrix. For the particular case where the

matrix follows a power-law relation in shear described by

T {/m/)’y (elastic range, 7,,/k, < 1) }

ke |Gm/v,)"  (clastic—plastic range, t,,/k, > 1) (3-8)

the slope 4 is defined in terms of the elastic and tangent moduli G, G, according to

1 1/1 1 dr,, T\
=366 a-a-ve() )

The rate of change ¢ of the crack-face friction coefficient depends, in general, on
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the material surface roughness. lubrication and traction ¢, normal to the crack surface.
The work of WANHEIM et al. (1978, 1980) indicates that ¢ may be approximated as
independent of ¢, at very small and at very large values of 7,. Under these conditions
and also in the case of freely sliding boundaries where ¢ = 0, it may be reasonable to
assume ¢ = 0. In intermediate cases where frictional properties may be more accurately
described by a constant coefficient of friction u = r,/t,, (2.5) may be used to obtain
an explicit relation for ¢ under conditions of constant remote pressure p:

. ph )t a l14+c¢ .
C—ﬂ[ 3/52{/3 Lc<c050+ /—l_csme)}

—2sin § cos 29]«;9/(1 + \/—”——> (3.10)
1—-¢?

The plastic tangent modulus F defined in (3.2) may be determined from substitution
of (3.3), (3.7) and (3.10) for the rates of change of (a/L), 6, k and ¢ into (3.1).
Approximating the elastic shear modulus of the crack array as G, the incremental
shear stress—strain relation is written as

i_<l ‘>_l- @3.11
K= G+F ¥. A1)

Although F and G are comparable at low strains, 1/G « 1/F at larger strains, and
therefore, can be ignored.

Figure 8(a—d) shows the shear stress—strain curves obtained from numerical inte-
gration of (3.11) to very large values of shear strain. In all cases, the crack-face friction
coeflicient is assumed to be constant. Some prominent features are the initial increase
in nominal shear stress produced by work hardening of the matrix, and the devel-
opment of a maximum in t corresponding to F = 0, beyond which softening mech-
anisms of crack growth and rotation dominate over work hardening. Each of the
curves requires an initial geometry described by (a/L), and 6,. Figure 8(a) shows that
the maximum t and the corresponding shear strain at which it occurs increase with
matrix hardening exponent. Figure 8(b) indicates that the critical value of t at which
F =0 increases between 0 and 45° with decreasing initial crack angle ,. As 6
approaches 0, the work hardening rate increases due to a decrease in both the volume
of material contained in the band and the rate of crack stretching and rotation. Figure
8(c) displays the reduction in the maximum value of T and corresponding value of
shear strain due to a higher initial crack length to spacing ratio (a/L),. Figure 8(d)
demonstrates the increase in the maximum value of t and the corresponding value of
shear strain which accompany higher crack-face friction.

The approximations involved in incorporating work hardening were tested by
comparing shear stress—strain curves predicted by (3.11) to those calculated from
FEM studies which incorporate a power-law behavior for the matrix as described in
(3.8). Figure 9 shows predicted curves for the case of 6, = 30°, (¢/L), = 2/3, N = 0.1
and y, = 10~ °; the agreement is good. This supports the approximation made earlier
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FIG. 8. Shear stress—strain curves for a cracked material (a) as a function of matrix hardening exponent

N, using initial values of 8, = 30°, (a/L), = 0.1 and ¢ = 0, (b) as a function of initial crack orientation

angle 6, using N = 0.2, (¢/L), = 0.1 and ¢ = 0, (c) as a function of the initial ratio (a/L), of crack length

to crack spacing, using N = 0.2, 0, = 30° and ¢ = 0, and (d) as a function of crack surface friction coefficient

¢, using N = 0.2, 0, = 30° and (a/L), = 0.1. The symbol (A) indicates where the maximum shear stress

occurs on each curve, and (W) indicates a transition from locked to unlocked crack sliding conditions for
the case ¢ = 0.75.
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FiG. 9. Comparison of shear stress—shear strain results predicted by the approximate slip-line field model
incorporating strain hardening (solid line) to finite element results (+), for the case of (a/L), = 2/3,
6, = 30°, yield strain in shear y, = 0.001, and power-law hardening exponent N = 0.1.
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to characterize the work hardening rate in terms of an average value of flow stress,
even though spatial variations exist in the band.

4. ESTIMATES OF DUCTILITY DUE TO SHEAR LOCALIZATION

A simple model of shear ductility is depicted in Fig. 10, where a body is loaded
under simple shear and the incipient shear band containing cracks is bounded by
uncracked material on either side of it and is oriented parallel to the shearing direction.
The crack band is assumed to obey the shear stress—strain relation developed in
Section 3 for an array of inclined cracks surrounded by a power-law matrix, and the
uncracked “external” material obeys the relation for the matrix. The band and external
material each deform by simple shear, and the critical condition for localization is
stated as Jyna/Vexternal = 0- This occurs when the modulus F of the band (see (3.11))
approaches zero, or equivalently, when a peak stress Tioe/K, 18 reached in the band.
At this point, the external material is sustaining a load Tioe/ko, and has strained a
corresponding amount y,,./y, given by (3.8).

If the band is negligibly thin compared to the specimen height, as shown in Fig. 10,
Yo/ 7y Will define the localization strain. The highly deforming band is assumed to
fracture upon localization by crack linkage, and Yioc/Yy may therefore be a measure of
the ductility of the material in simple shear.

Figure 11(a, b) displays for ¢ = 0 and ¢ = 0.5, respectively, y,,./7, as a function of
the initial crack length and crack orientation in the band. In each case, the ductility
is found to decrease with increasing initial crack length. This is supported by results
in Fig. 8(c), where the peak nominal shear stress is observed to decrease with increasing
initial crack length. Comparison of Fig. 11(a, b) shows an increase in strain to
localization with crack-face friction factor ¢. This is consistent with the increase in
peak nominal shear stress with ¢ in Fig. 8(d). The effect of hardening, although not
shown in Fig. 11, is clearly observed in Fig. 8(a). Here, an increase in matrix hardening
exponent N strongly increases the peak nominal shear stress, and the strain to
localization.

The dependence of localization strain on initial angle 6, is more complex. As 6,
approaches 45°, (2.3) and (2.4) show that t /k approaches 1 and the initial rate of

i

V

! y
external //— band
p— p

¥
external

o

F1G. 10. A model for localization in simple shear, in which the incipient shear ‘band’ is assumed to contain
an initial imperfection modelled as a band of cracks, and the surrounding, ‘external’ material is assumed
to be uncracked.
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FiG. 11. Prediction of the strain to localization, y,,./7,, as a function of the initial crack orientation angle
0, and initial crack length to spacing ratio (a/L), for (a) ¢ = 0 (friction-free cracks) and (b) ¢ =0.5
(frictional cracks produced by the confining pressure p). In each case, y, = 0.001 and N = 0.1.

plastic work in the band and external material become equal. As 6, and (a/L),
approach 0, the small volume of material in the very thin crack band rapidly work-
hardens. These two features account for the general increase in ductility seen in Fig.
11 as 0, approaches 45°, and as (a/L), and 0, approach 0. In the limit as 6 approaches
0, there are no softening mechanisms to cause the incremental shear modulus in the
band to reach zero, and the localization strain is predicted to be unbounded.

The prediction of unbounded localization strain as 8, approaches 0 suggests impor-
tant additional softening mechanisms to those modelled. In particular, additional
cracks may nucleate in the highly deforming ligaments between original cracks.
Further, the localization analysis presented restricts the imperfection band to be
parallel to the simple shear direction, and precludes additional softening due to the
rotation and stretching of the entire imperfection band. These softening mechanisms
require further information on crack nucleation criteria, such as that used by SAJE et
al. (1982) for localization due to void softening, and also on the constitutive relation
for crack bands in deformation modes other than simple shear. The analysis also
neglects crack tip growth as a softening mechanism. Little appears to be known about
crack tip growth laws in plastic shear fields. As such, the strains to localization
presented should be regarded as upper bounds.

5. CONCLUSIONS

Flow localization in shear has been shown to occur in materials containing an initial
imperfection of cracks. The localization occurs because the damage evolution in
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shear, modelled here by crack rotation and stretching, can substantially reduce the
incremental stiffness of the material to a point of mechanical instability, even when
strain hardening is present. The strain to localization is found to depend on initial
crack orientation angle, crack size to spacing ratio, crack-face friction and material
work-hardening. The strong dependence of localization strain on the initial crack
orientation relative to the shearing direction demonstrates the important effect that
anisotropy of damage may have in localization phenomena. This may be present
under applied deformations such as simple shear, in which the material anisotropy,
represented here by cracking, rotates relative to the loading axes.

Results for localization of deformation in a cracked band may be useful when
confining pressures suppress void growth. A particular example is the delamination
wear of materials under sliding frictional contact, in which the nucleation and growth
of near-surface cracks is thought to initiate shear localization and the production of
wear flakes, SUH (1986). Further, the inclusion of crack-face friction in the model
developed may be useful in understanding the pressure dependence of ductile fracture
in shear, as noted by TEIRLINK e al. (1988). In the present model, the strain to

localization in shear is predicted to increase with crack-face friction until locking of
the crack faces occurs.
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APPENDIX

Slip-line ficlds of simple type exist for crack inclination angles 6 less than approximately 15°.
These fields are similar to those proposed by GREEN (1954) for surface asperity contacts.
Typical fields are given in Fig. Al for = 5%, a/L = 0.5 and friction factor ¢ = 0 and 0.5. The
fields consist of a circular fan with straight radial slip lines emanating from each crack tip. The
circular fan is adjacent to a singular fan with curved boundaries at the neighboring crack tip.
Unlike the slip-line fields of integer n described in the body of the paper, the plastic regions
adjacent to the crack faces are zones which deform under non-constant stress. In a manner

S (@
. b

FIG. Al. The slip-line fields for crack arrays in shear as shown in Fig. 2, with 0 = 5°, a/L = 0.5 and crack-
face friction coefficient (a) ¢ = 0 and (b) ¢ = 0.5.

1/k

approx. sol'n using (2.3).
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F1G. A2. The nominal shear collapse load 7 for an array of cracks as shown in Fig. 2(a), as given by the

exact solution ( ) and approximate solution (- ———— ) obtained by interpreting (2.3) as a continuous

function of 0. k is the flow stress of the matrix. a/L is the crack length to spacing ratio and 6 is the crack
orientation angle.
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F1G. A3. The nominal shear collapse load 7 for an array of cracks as shown in Fig. 2(a), as given by the

exact solution ( ) and approximate solution (- ———— ) obtained by interpreting (2.3) as a continuous

function of 6. k is the flow stress of the matrix. a/L is the crack length to spacing ratio and 6 is the crack
orientation angle.

similar to the n = 1 solution given in Fig. 4, the crack kinks at its midpoint due to a line of
velocity discontinuity that intersects the crack.

The slip-line fields presented here were constructed using the matrix method developed by
DEWHURST and CoLLINS (1973). The main shear traction t carried by the crack array is shown
in Fig. A2 as a function of a/L for selected angles 6, and in Fig. A3 as a function of 0 for
selected a/L. These figures show that the analytic approximation in which (2.3) and (2.4) are
treated as continuous functions of 0 agrees with the exact fields to within 3%. Further, the
shear traction 7 carried by the band decreases almost linearly with increasing a/L, as predicted
by (2.3). We conclude that the analytic approximation using (2.3) and (2.4) is satisfactory for
our purposes. It is exact for all discrete values of 0, between 0° and 45° given by (2.1).

The simple fields given in Fig. A1 are not valid for 6 larger than approximately 15°; at larger
0 values, negative plastic work is predicted on the slip line of velocity discontinuity joining
neighboring crack tips. The domain of validity of the simple fields is given in Figs A2 and A3.






	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

