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ABSTRACT

Classical effective descriptions of heterogeneous materials fail to capture the influ-
ence of the spatial scale of the heterogeneity on the overall response of components.
This influence may become important when the scale at which the effective contin-
uum fields vary approaches that of the microstructure of the material and may then
give rise to size effects and other deviations from the classical theory. These effects
can be successfully captured by continuum theories that include a material length
scale, such as strain gradient theories. However, the precise relation between the mi-
crostructure, on the one hand, and the length scale and other properties of the effec-
tive modeling, on the other, are usually unknown. A rigorous link between these two
scales of observation is provided by an extension of the classical asymptotic homog-
enization theory, which was proposed by Smyshlyaev and Cherednichenko (J. Mech.
Phys. Solids 48:1325–1358, 2000) for the scalar problem of antiplane shear. In the
present contribution, this method is extended to three-dimensional linear elasticity.
It requires the solution of a series of boundary value problems on the periodic cell
that characterizes the microstructure. A finite element solution strategy is developed
for this purpose. The resulting fields can be used to determine the effective higher-
order elasticity constants required in the Toupin-Mindlin strain gradient theory. The
method has been applied to a matrix-inclusion composite, showing that higher-order
terms become more important as the stiffness contrast between inclusion and matrix
increases.
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1. INTRODUCTION

Despite the fact that the deformation of solid
materials is ultimately governed by the motion
of atoms and the forces acting between them,
engineers generally successfully rely on contin-
uum theories that describe the effect of these
phenomena at a much larger scale and in an
average sense. The main motivation for using
such approximate theories is efficiency; even
on modern digital computers, full-scale atom-
istic simulations of engineering structures and
components simply require too much compu-
tational power to be of practical use to a de-
signer. Furthermore, such computations, which
depend on more or less arbitrarily chosen initial
conditions, would deliver far more detail than
is required. Continuum theories, such as linear
elasticity, plasticity, etc., provide the approxi-
mate response engineers are interested in at a
fraction of the cost of even the simplest atom-
istic simulation.

Most materials exhibit some kind of order at
one or several spatial scales between the atomic
scale and that of components and structures.
Examples are the crystal lattice in metals and
the arrangement of fibers and matrix in fiber-
reinforced laminates. Where this order is im-
perfect or even entirely absent, a number of
spatial scales usually can still be distinguished
in the disorder. For instance, grains in a metal-
lic component tend to have a rather uniform
size, even if their shape may be disordered.
Likewise, these and other materials may con-
tain voids and defects whose size and spac-
ing have a typical order of magnitude. Stan-
dard elasticity and plasticity theory can only
be successful in describing the overall behavior
of materials if the largest of these microstruc-
tural length scales is considerably smaller than
the scale of application. In ordered materials,
this ensures that a volume which is small at
the macroscopic or component scale, still con-
tains several wavelengths of the microstructure

and can therefore be modeled independently
of the precise position and orientation with re-
spect to this microstructure. In disordered ma-
terials, it contains a sufficient number of irreg-
ularities for their random effects to cancel. It is
worth mentioning that similar statements can
be made about time scales; however, in this
contribution emphasis is on the effect of spatial
scales.

When the relevant macroscopic length scale
approaches the largest microstructural scale in
a material, microstructural effects are no longer
averaged out in the macroscopic response [1].
Note that this does not necessarily require the
overall dimensions of components to be small.
Even in large structures, high-frequency wave
propagation or localized deformation bands
may result in variations of the relevant macro-
scopic fields at the scale of the microstructure.
In each of these situations the microstructure
and its local behavior may strongly influence
the observed macroscopic response. For in-
stance, the propagation of elastic waves in crys-
talline materials exhibits anisotropic and dis-
persive effects as a result of the interaction of
the waves with the crystal lattice (see, for in-
stance, [2] and references therein). In forming
operations on thin metallic strips, the distribu-
tion of plastic strain may vary significantly be-
tween specimens depending on the orientation
of individual grains (see, e.g., [3]). This clearly
leads to a large scatter in experiments in which
the grain orientation is not controlled. Aver-
age results, however, often also show a system-
atic dependence on specimen size relative to,
e.g., grain size. In tensile tests on thin metal-
lic strips a decrease of the apparent strength
with specimen thickness has been reported [3].
Bending and torsion tests, on the other hand,
show a substantial strengthening with respect
to the classical theory [4,5].

Microstructural effects can often be de-
scribed accurately and in a natural way by
modeling the microstructure in detail at the
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dominant size scale, assuming relatively simple
constitutive relations at this scale. Examples are
beam-network models of metal foams, which
allow one to capture the strain profiles and size
effects observed in experiments [6], and dis-
crete dislocation dynamics models, which cap-
ture the influence of hard particles in a plas-
tically deforming metallic matrix on the yield
strength [7]. Although much more efficient
than atomistic simulations, these microstruc-
tural analyses are still rather expensive and
provide much more detailed results than re-
quired, for instance, by design engineers. Fur-
thermore, they require geometric and mate-
rial data which may be difficult to obtain and
may vary between different instances of the
same product or specimen. Engineers, there-
fore, have a legitimate interest in continuum
theories that can predict the average response
(or bounds) of the real-size components tak-
ing into account the effect of microstructure, or
at least the typical scale of the microstructure.
Note that “average” should usually be inter-
preted as “ensemble average” in this context,
since volume averaging may smoothen stress
and strain variations to an unacceptable degree.

An interesting and promising intermediate
solution is provided by multilevel finite ele-
ment or computational homogenization tech-
niques used by [8,9]; see also the contribu-
tion by Kouznetsova et al. [10] to this issue.
These methods employ a homogeneous con-
tinuum formulation at the macroscale, but ex-
tract the constitutive response by a pointwise
link with a micromechanical model, which usu-
ally consists of a finite element model on its
own. Like the truly microstructural models,
this approach does not require the formula-
tion of macroscopic constitutive relations and
allows one to make (usually more realistic) con-
stitutive assumptions at a lower, microscopic
scale. Connecting the two scales when they
are not well separated, however, still presents
a theoretical challenge [9,10]. Furthermore, due

to the computational cost of the microscale fi-
nite element analyses, the method will not eas-
ily be able to compete with closed-form macro-
scopic theories in those cases where the latter
are available.

Closed-form macroscopic continuum frame-
works which take into account microstructural
effects and, in particular, the relevant length
scale(s) of the microstructure, have been devel-
oped since the early 1960s [11–15], although the
much earlier work by the Cosserat brothers [16]
should also be mentioned in this connection.
The end of the previous century has shown a
renaissance of these theories, which was driven
by the desire to properly capture shear bands
and other localized failure bands, as well as to
capture size effects that were observed in exper-
iments [17–24]. Finite element algorithms have
been developed that allow one to solve the rele-
vant equations for realistic geometries in an ac-
curate and reliable manner [25–29]. Finite ele-
ment as well as analytical solutions obtained for
simple geometries generally show the desired
behavior, i.e., shear bands and damage bands
of a finite width and size effects that compare
well with the available experiment data.

Crucial in the success of the enhanced contin-
uum formulations is that they introduce a ma-
terial length scale — or sometimes several of
them [22]. It is this length that sets the width
of localization bands and the size at which
size effects come into play. It is generally ac-
cepted that the material length scale should be
related to the typical dimensions of the rele-
vant microstructural features. However, the
precise way in which it enters the continuum
formulation, although sometimes motivated by
micromechanical arguments and by thermody-
namical principles, is usually largely based on
phenomenology. This implies that constitu-
tive relations and the parameters featured in
them must always be determined from exper-
iments. For a number of theories and mate-
rials, such an experimental parameter identi-
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fication, including that of the internal length
scale, has indeed been carried out successfully
(see, e.g., [4,5,30,31]). However, these identi-
fication procedures not only require advanced
experimental techniques, but they also have a
limited predictive power: for every new mate-
rial or new microstructure new experiments are
needed.

Extensive and repeated experimental identi-
fication may be avoided if a rigorous connec-
tion can be made between microstructure and
its effect on the overall response. Classical ho-
mogenization methods make this connection
by predicting average properties of a material
(or bounds on them) based on the properties of
the constituents and their geometrical arrange-
ment (see, e.g., [32–37]). In their standard form,
however, these methods fail to include the scale
of the microstructure in the resulting constitu-
tive laws. Where this scale has a significant in-
fluence on the overall response, such as in the
situations discussed above, extensions of the
classical theory are required.

For linear elastic random composites, an en-
hanced homogenization method has been pro-
posed by Willis and coworkers [36,38,39]. A
nonlocal effective representation is derived by
formally solving the equilibrium equations in
terms of a stress polarization and subsequent
ensemble averaging. The method requires sta-
tistical data on the random microstructure. In
particular, two-point statistical data introduces
the typical scale of microstructural fluctuations
and, thus, sets the length scale of the nonlo-
cal effective theory. A similar path was fol-
lowed before by Beran and McCoy [40,41], re-
sulting in an effective higher-order gradient
theory. Higher-order gradient theories for pe-
riodic, linear elastic media have been devel-
oped by Boutin [42] and Triantafyllidis and
Bardenhagen [43] using an asymptotic solution
of the microstructural problem. The size of
the periodic cell enters the higher-order effec-
tive continuum as the microstructural length

scale. For the simplified case of antiplane shear,
Smyshlyaev and Cherednichenko [1] have re-
fined this approach by introducing variational
arguments. Their method ensures that the dif-
ference between real and homogenized behav-
ior is minimized and that the homogenized
equilibrium equations are elliptic.

In each of the above enhanced homogeniza-
tion methods, closed-form expressions can only
be obtained for very simple microstructures
(e.g., laminates [42]). Applications to real mate-
rials require a computational strategy to solve
the relevant equations. It is the objective of this
contribution to develop such a computational
strategy and to apply it to a two-phase com-
posite. The method proposed by Smyshlyaev
and Cherednichenko [1] is taken as a starting
point for this development. It is first extended
to the fully three-dimensional case in Section 2
(see also [44]). As in the antiplane shear case
discussed by Smyshlyaev and Cherednichenko,
a number of boundary value problems must be
solved on the periodic cell in order to determine
the higher-order elasticity constants of the over-
all strain gradient elasticity description. These
problems are cast in a weak form and solved
by the finite element method. Effective higher-
order moduli can then be computed directly
from the numerical solutions (Section 3). In
Section 4, the method is applied to a matrix-
inclusion system, for which the influence of the
ratio of the elastic moduli of the inclusion and
matrix on the effective behavior is examined.

2. HOMOGENIZATION TOWARD STRAIN
GRADIENT ELASTICITY

The homogenization method developed in this
paper largely follows that of Smyshlyaev and
Cherednichenko [1]. However, the limitation to
antiplane shear made by them is dropped. As
a consequence, the scalar character of the equa-
tions is lost and vector problems must be con-
sidered. The influence of this change of charac-
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ter on the main development is limited, but it
may have some impact on the formal justifica-
tion of the asymptotics, which is not considered
here.

2.1 Heterogeneous Problem

The setting of the heterogeneous problem con-
sidered here is a simple extension to three di-
mensions of that of Smyshlyaev and Chered-
nichenko [1]; see Fig. 1 for a graphical repre-
sentation of the one-dimensional case. The mi-
crostructure of the material is constructed from
a unit cell Q = [0, 1] × [0, 1] × [0, 1] by rescal-
ing by a small parameter ε and repetition along
each of the coordinates xi (i = 1, 2, 3). The pe-
riod of the material is thus εQ, and the parame-
ter ε appears as the natural length scale. A body
force f(x) is applied, which is also periodic but
has a larger period T = [0, T ] × [0, T ] × [0, T ],
where T is of the order of one and T/ε is an inte-
ger; at the scale ε of the microstructure f(x) is as-
sumed to be smooth. It is emphasized that the
macroscopic periodicity (period T) is used only
in developing the homogenization process; the

C
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T

f

x

FIGURE 1. One-dimensional heterogeneous elas-
ticity problem with double periodicity

effective relations following from it can also be
used in nonperiodic problems. The microscopic
periodicity (period εQ), on the other hand, is
essential for the method to work.

The three-dimensional equilibrium problem
on the period T can be written as

∂σij

∂xi
+ fj(x) = 0 (j = 1, 2, 3) (1)

where the Cauchy stress tensor is given by

σij =Cijkl(x/ε) ekl ekl =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
(2)

and summation is implied over the repeated
indices i, k, l = 1, 2, 3. The elasticity tensor
Cijkl(ξ) satisfies the usual symmetries Cijkl =
Cjikl = Cijlk = Cklij and is assumed to be
positive-definite and piecewise smooth; the ap-
propriate weak continuity conditions must be
added to Eq. (1) at discontinuity surfaces.

Substitution of relations (2) in the set of equi-
librium equations (1) results in a set of partial
differential equations in terms of the displace-
ment components uk(x). It proves to be use-
ful to rewrite this set of equations in the vector
form

∂

∂xi

(
Ail(x/ε)

∂u
∂xl

)
+ f(x) = 0 (3)

where the matrix-valued functions Ail(ξ) are
given in terms of the elastic moduli Cijkl by
(Ail)jk(ξ) = Cijkl(ξ). Periodicity of the body
force f implies that the displacement field u
is T-periodic; furthermore, rigid body motion
is prevented by the requirement that the mean
displacement on the period T vanishes. To-
gether with these conditions, Eq. (3) forms a
well-posed boundary value problem.

2.2 Asymptotic Solution

Equation (3) clearly shows the influence of the
two scales of the problem. On the one hand, the
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coefficient matrices Ail vary at the microstruc-
tural scale given by the cell size ε. On the
other hand, the body force f has a wavelength
T and is therefore related to the macroscopic
scale. Homogenization methods aim at averag-
ing the fast variations in u, which are due to the
microstructure, and at formulating equations
which allow one to determine this averaged re-
sponse without first solving the full, two-scale
problem. Asymptotic homogenization [35,45]
allows one to separate the influences of the two
scales by assuming a solution of the form

u(x) =
∞∑

m=0

εm um(x, x/ε) (4)

where the functions um(x, ξ) are Q-periodic
with respect to the microstructural coordinates
ξ and T-periodic with respect to the macro-
scopic coordinates x.

Straightforward substitution of Eq. (4) in
Eq. (3) and requiring that the resulting equa-
tion is satisfied at each order of ε shows that the
asymptotic expansion (4) must be of the form
[42, 45]

u(x)=v(x) +
∞∑

m=1

εm
∑

|n|=m

Nn(x/ε) Dnv(x) (5)

The vector-valued function v(x) is T-periodic.
Superimposed on this slowly varying field
is a series of correction terms. The sub-
script n = n1n2 . . . nm denotes a multi-index
with “length” |n| = m in which each of
n1, n2, . . . , nm adopts the values 1, 2, 3. Dn de-
notes differentiation with respect to xn1 , xn2 ,
etc.: Dn = ∂m/∂xn1∂xn2 . . . ∂xnm . So each
of the correction terms in Eq. (5) consists of
a derivative of v(x) modulated by a matrix-
valued field Nn(x/ε).

The functions Nn(ξ) are Q-periodic and sat-
isfy the following partial differential equation
on the periodic cell [45]:

∂

∂ξi

(
Ail(ξ)

∂Nn

∂ξl

)
+ Tn(ξ) = Hn

(|n| = m = 1, 2, 3, . . .) (6)

where

Tn1(ξ)=
∂Ain1

∂ξi
(m = 1) (7)

Tn1n2(ξ)=
∂

∂ξi
(Ain1Nn2) + An1l

∂Nn2

∂ξl

+An1n2 (m = 2) (8)

Tn(ξ)=
∂

∂ξi
(Ain1Nn2...nm) + An1l

∂Nn2...nm

∂ξl

+An1n2Nn3...nm (m ≥ 3) (9)

and

Hn = 〈Tn〉 =
∫

Q
Tn(ξ) dξ (10)

Note that Hn1 = 0 because of periodicity.
Uniqueness of Nn is ensured by the additional
requirement that their mean on the periodic cell
vanishes, i.e., 〈Nn〉 = 0. Problems (6) depend
only on the microstructural stiffness distribu-
tion given by Ail(ξ) and can therefore be solved
independently of the macroscopic problem [in
particular, independently of the distribution of
body force f(x)]. Since for values of m ≥ 2
Eq. (6) depends on functions Nn with |n| < m,
these problems have to be solved sequentially,
for increasing m and starting at m = 1.

The slowly varying contribution v to Eq. (5)
formally satisfies [45]

∞∑

m=2

εm−2
∑

|n|=m

HnDnv(x) + f(x) = 0 (11)

where Hn are the constant matrices defined by
Eq. (10). All information on the heterogeneous

International Journal for Multiscale Computational Engineering



COMPUTATIONAL EVALUATION OF STRAIN GRADIENT ELASTICITY CONSTANTS 605

microstructure has been lumped into these ma-
trices and only macroscopic quantities remain
in Eq. (11). This equation is was, therefore,
termed “homogenized equation of infinite or-
der” by Bakhvalov and Panasenko [45], a term
which will be further substantiated in the next
section.

2.3 Homogenization by Ensemble
Averaging

The averaged behavior of the heterogeneous
material can be determined based on the argu-
ment that the precise “phase” of the microstruc-
ture with respect to the body force is gener-
ally unknown and a family of translated mi-
crostructures should therefore be considered
[1]; see Fig. 2 for a one-dimensional representa-
tion. Average relations can then be obtained by
ensemble averaging of the solutions for each of
these translations. The translation is described
by a translation vector ζ ∈ Q; note that trans-
lations beyond Q need not be considered since
the same periodic microstructure can always be
obtained by another ζ ∈ Q.

The equilibrium problem for a single realisa-
tion of the translation reads

−εζ

f

x

FIGURE 2. Translation of the microstructure with
respect to the body force

∂

∂xi

(
Aζ

il(x/ε)
∂uζ

∂xl

)
+ f(x) = 0 (12)

with Aζ
il(ξ) = Ail(ξ + ζ) and the additional

conditions that uζ is T-periodic and
〈
uζ

〉
= 0.

Following the same arguments that led to rela-
tion (5), it can easily be shown that the asymp-
totic solution to Eq. (12) is given by

uζ(x)=v(x)+
∞∑

m=1

εm
∑

|n|=m

Nζ
n(x/ε) Dnv(x) (13)

with
Nζ

n(ξ) = Nn(ξ + ζ) (14)

and v the same slowly varying function which
appeared in Eq. (5), i.e., the solution of Eq. (11).
The leading, zeroth-order term in Eq. (13) thus
does not depend on the translation vector ζ,
whereas the correction terms depend on ζ in a
way that is given by the translated microstruc-
tural functions Nζ

n according to Eq. (14).
Expression (13) gives the asymptotic solution

to the heterogeneous problem for each realiza-
tion of the translated microstructure. The ho-
mogenized response is now defined as the en-
semble average of this family of solutions uζ :

ū(x) =
∫

Q
uζ(x) dζ (15)

Substitution of Eq. (13) results in

ū(x) =
∫

Q
dζ v(x)

+
∞∑

m=1

εm
∑

|n|=m

∫

Q
Nζ

n(x/ε) dζ Dnv(x) (16)

where use has been made of the fact that v and
its derivatives do not depend on ζ. The first
integral on the right-hand side is equal to one
because Q is a unit cell. Using relation (14),
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the other integrals, which are associated with
higher-order terms, can easily be seen to be
equal to 〈Nn〉 = 0 (cf. [1]). Thus, the higher-
order contributions to uζ cancel in the ensemble
averaging and only the leading term v survives
the averaging:

ū(x) = v(x) (17)

This identifies the slowly varying field v as the
true homogenized solution and Eq. (11) as the
true homogenized equilibrium equation.

2.4 Truncation Based on Energetics

The above result for the homogenized equation
of infinite order [i.e., Eq. (11)] is classical. How-
ever, it is not of much practical use, precisely
because it is of infinite order. For practical ap-
plications it must somehow be approximated
by an equation — or a system of equations —
of finite order. One should realize that sim-
ply truncating the left-hand side of Eq. (11) at
some order of ε may not be a good idea because
ellipticity of the resulting equation cannot be
guaranteed. One way to proceed has been sug-
gested by Boutin [42] and basically means that
the infinite-order equation is split into a series
of second-order partial differential equations.
Each of these equations has the form of an elas-
ticity problem with a body force that depends
on the solution of the previous problem. The
series can be truncated to an arbitrary number
of equations, thereby defining the degree of mi-
crostructural detail which is taken into account.

The approach followed by Smyshlyaev and
Cherednichenko [1] is different in that it leads
to a single partial differential equation — of a
higher order — which has the appealing prop-
erty that it falls back onto the Toupin-Mindlin
strain gradient elasticity framework (see [11,
46] or Section 2.5). The finite-order governing
equation is derived via a variational formula-
tion of the averaged problem. In this way, el-
lipticity of the resulting equation is guaranteed

in a natural way. Moreover, the resulting ho-
mogenized solution is the best possible fit to ū
in terms of elastic energy.

The equilibrium problem for a single realiza-
tion of the microstructural translation can be
written in a variational form by defining on the
macroscopic period T the energy functional

Eζ [u?]=
∫

T

[
1
2

(
∂u∗

∂xi

)T

Aζ
il(x/ε)

∂u∗

∂xl
−fTu∗

]
dx

(18)

where the trial functions u∗(x) must satisfy the
kinematic constraints that were imposed on the
solution uζ , i.e., periodicity and 〈u∗〉 = 0. The
elastic energy in the equilibrium state, denoted
by Iζ , is the minimum of Eζ [u∗] and is obtained
for u∗ = uζ :

Iζ = min
u∗(x)

Eζ [u∗] = Eζ [uζ ] (19)

Taking the ensemble average of Eq. (19) over
all possible translations results in the following
minimization problem for the average energy:

Ī =
∫

Q
Iζdζ =

∫

Q
min
u∗(x)

Eζ [u∗] dζ (20)

Introducing the trial function u∗∗(x, ζ) which is
T-periodic in its first argument and Q-periodic
in its second argument, this minimization prob-
lem can be rewritten as

Ī = min
u??(x,ζ)

Ē[u??] (21)

where Ē[u∗∗] is defined as

Ē[u∗∗] =
∫

Q
Eζ [u∗∗] dζ (22)

The minimizer of Ē[u∗∗] clearly is u∗∗(x, ζ) =
uζ(x), the asymptotics of which are given by
Eq. (13).
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The crux of the method proposed by
Smyshlyaev and Cherednichenko [1] is now to
restrict the set of trial functions u∗∗ by truncat-
ing Eq. (13) after a finite number of terms. In the
present three-dimensional case, this means that
we consider a class Û of trial functions which
can be written as

u∗∗(x, ζ)=v∗(x)+
K∑

m=1

εm
∑

|n|=m

Nζ
n(x/ε) Dnv∗(x)

(23)

where K ≥ 1. A higher value of K implies that
more detail of the microstructural fields is in-
cluded and will result in a higher order of the
resulting homogenized equations. Limiting the
class of trial functions in Eq. (21) to Û , a min-
imization problem of order K can now be for-
mulated as

Î = min
u∗∗(x,ζ)∈Û

Ē[u∗∗] (24)

Since the dependence of u∗∗(x, ζ) on ζ is
known, the energy functional Ē[u∗∗] can be
rewritten solely in terms of the slowly varying
field v∗(x) for u∗∗(x, ζ) ∈ Û :

Î = min
v∗(x)

Ê[v∗] (25)

where Ê[v∗] follows by substitution of Eq. (23)
into Eq. (22) and use of relation (14) as

Ê[v∗] =
∫

T




K+1∑
r,s=1

εr+s−2

∑
|p|=r,|q|=s

1
2(Dpv∗)TĤp;q

Dqv∗−fTv∗



dx (26)

with

Ĥp;q =
∫

Q

(
∂Np

∂ξi
+ δip1Np2...pr

)T

× Ail(ξ)
(

∂Nq

∂ξl
+ δlq1Nq2...qs

)
dξ

(r, s = 2, . . . , K) (27)

For r = 1 or s = 1, the factors Np2...pr or
Nq2...qs in Eq. (27) must be replaced by the iden-
tity matrix I; for r = K + 1 or s = K + 1 the
terms ∂Np/∂xi or ∂Nq/∂xl must be dropped,
respectively. The constant matrices Ĥp;q can be
computed solely on the basis of the microstruc-
tural stiffness distribution and the microstruc-
tural functions Nn, and can therefore be deter-
mined independently of the macroscopic prob-
lem.

Limiting the energy minimization to trial
functions u∗∗ ∈ Û for which the microstruc-
tural influence is given by Eq. (23) implies that
the energy Î obtained in this minimization will
generally be higher than the true mean energy
Ī . Furthermore, the minimizer v̂ of Ê[v∗] gen-
erally will not satisfy the homogenized equa-
tion of infinite order (11). The elastic energy
Î generated by this minimiser, however, is the
closest possible to Ī within the limited class of
trial functions. In this sense, v̂ is the best pos-
sible approximation of v for a given order K of
the microstructural influence in Eq. (23); it was,
therefore, termed “homogenized solution of or-
der K” by Smyshlyaev and Cherednichenko
[1]. The “homogenized equation of order K,”
i.e., the truncated counterpart of Eq. (11), which
is satisfied by v̂, can be obtained as the Euler-
Lagrange equation associated with the mini-
mization (25). This equation can be interpreted
as an equilibrium problem for a grade-n elastic
medium (see [44]). Here, however, Smyshlyaev
and Cherednichenko’s interpretation as a strain
gradient continuum in the sense of Toupin and
Mindlin [11,46] is followed.
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2.5 Interpretation in Terms of Strain
Gradient Elasticity

The strain gradient continuum theory due to
Toupin and Mindlin [11,46] is a generalization
of standard continuum mechanics in the sense
that, apart from the usual first-order gradients
of displacement (i.e., strain), higher-order gra-
dients of the displacement are also taken into
account in the kinematics — in principle to an
arbitrary order. For instance, in the theory de-
veloped in [46], gradients up to order 3 are
considered. Each of these deformation mea-
sures has a higher-order stress measure asso-
ciated with it, which is work conjugate to it.
The equilibrium equations that must be satis-
fied by these higher-order stresses and consti-
tutive relations between stresses and (higher-
order) strains have been derived from an en-
ergy potential via variational considerations
(see, e.g., [46]).

In a similar fashion, effective constitutive re-
lations of the strain gradient type can be re-
trieved from the energy minimization problem
(25) by casting it in a variational form. Using
the symmetry property Ĥp;q = ĤT

q;p, the varia-
tion δÊ due to a variation δv∗ of the trial func-
tion v∗ can be written as

δÊ =
∫

T




K+1∑
r=1

∑
|p|=r

(Dpδv∗)T

×
(

K+1∑
s=1

εr+s−2

∑
|q|=s

Ĥp;q Dqv∗
)
− δv∗Tf




dx (28)

The factors Dpδv∗ in the kernel of the integral
can be recognised as variations of the higher-
order deformation gradients

e∗pj = Dpv∗j (|p| = r ≥ 2) (29)

associated with the slow displacement varia-
tion v∗; the first-order gradient terms can be
symmetrized in the usual way

e∗p1j =
1
2

(
∂v∗j
∂xp1

+
∂v∗p1

∂xj

)
(|p| = r = 1) (30)

Using these expressions and the minor symme-
tries of Ĥp;q, Eq. (28) can be rewritten as

δÊ =
∫

T




K+1∑

r=1

∑

|p|=r

δe∗pjσ
∗
pj − δv∗j fj


dx (31)

where the terms between round brackets in
Eq. (28) have been identified as the higher-
order stresses conjugate to δe∗pj :

σ∗pj =
K+1∑

s=1

ε|p|+s−2
∑

|q|=s

Ĉpj;qke
∗
qk (32)

with

Ĉpj;qk =
1

|p|!|q|!
∑

p′=P(p)
q′=P(q)

(
Ĥp′;q′

)
jk

(33)

and P(p) denoting all possible permutations of
p. Note that the stiffness coefficients Ĉpj;qk have
been symmetrized with respect to p and q in or-
der to reduce the number of independent val-
ues.

Integration by parts and realising that the re-
sulting boundary terms vanish because of peri-
odicity allows to rewrite Eq. (31) as

δÊ =−
∫

T
δv∗j




K+1∑

r=1

(−1)r−1
∑

|p|=r

Dpσ∗pj + fj


dx

(34)

Now, for the energy minimizer v̂ and the
stresses σ̂pj associated with it, the variation δÊ
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must vanish for all admissible δv∗j . The above
expression for δÊ shows that this can only be
true if

K+1∑

r=1

(−1)r−1
∑

|p|=r

Dpσ̂pj +fj = 0 (j = 1, 2, 3) (35)

These equations are exactly the equilibrium
equations of the Toupin-Mindlin framework,
formulated in terms of the effective (higher-
order) stresses associated with the homoge-
nized solution v̂. Indeed, it can easily be ver-
ified that for K = 0 they reduce to the stan-
dard equilibrium equations of classical contin-
uum mechanics. If more microstructural effects
are taken into account in Eq. (23), i.e., for K ≥ 1,
higher-order stresses come into play and the or-
der of the equations becomes K + 1 in terms of
these stresses. For K = 1 only second-order
displacement gradients (or gradients of strain)
and so-called double stresses appear [11,12];
this is also the case which was extended to plas-
ticity by Fleck and Hutchinson [22]. For K = 2
the theory of [46] is retrieved and even higher
K lead to the natural extensions of these cases
to higher orders.

The above shows that an effective strain gra-
dient description is obtained as the natural
outcome of homogenizing a standard elastic
medium. Perhaps more importantly, it also
shows how to determine the effective constitu-
tive behavior of the heterogeneous material in
terms of higher-order strains and stresses. For
the homogenized solution v̂ the homogenized
deformation gradients according to Eqs. (29)–
(30) become

êq1k =
1
2

(
∂v̂k

∂xq1

+
∂v̂q1

∂xk

)
(|q| = s = 1) (36)

êqk = Dqv̂k (|q| = s ≥ 2) (37)

and the homogenized stresses generated by this
deformation read [cf. (32)]

σ̂pj =
K+1∑

s=1

ε|p|+s−2
∑

|q|=s

Ĉpj;qkêqk (38)

where the constants Ĉpj;qk are given by Eq. (33).
These constants should be compared to the
standard elastic moduli of linear elasticity; to-
gether with the constitutive relations (38), they
uniquely define the higher-order effective re-
sponse of the heterogeneous material. Rela-
tions (38) also show that the periodic cell size
ε, which is the typical length scale of the mi-
crostructure, enters the effective constitutive re-
lations. The effective properties are, therefore,
clearly size dependent, and macroscopic analy-
ses using these properties will show a size effect
as the macroscopic dimensions are diminished
to the order of the microstructural size ε. The
precise influence of the material length scale
in different directions is governed by the elas-
tic moduli Ĉpj;qk and may therefore be highly
anisotropic.

It is emphasised that the moduli Ĉpj;qk are
not unknown parameters, but can be com-
puted in a systematic way for any periodic mi-
crostructure once the cell problems given by
Equation (6) have been solved. The resulting
microstructural fields Nn(ξ) can then be in-
serted in (27), after which the moduli Ĉpj;qk

can be determined via Eq. (33). Particularly
for higher orders, a substantial amount of data
can thus be generated, for which it is diffi-
cult to imagine how it could be determined
purely experimentally. It is worth mentioning
in this connection that already for an isotropic,
second-order linear elastic strain gradient the-
ory, 18 independent elastic constants were iden-
tified in [46]. It needs no further explana-
tion that this number increases dramatically if
anisotropy is considered and as the framework
is extended to higher orders.
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3. FINITE ELEMENT IMPLEMENTATION

A crucial step in determining the effective
higher-order response of the heterogeneous
material, characterized by the moduli Ĉpj;qk as
discussed above, consists in solving the mi-
crostructural boundary value problems given
by Eq. (6) together with Eqs. (7)–(9) and the
conditions of periodicity and vanishing aver-
age. As was stated before, these problems are
fully determined by the microstructure of the
material and can therefore be solved indepen-
dently of the macroscopic problem at hand. For
relatively simple microstructures, they can be
solved analytically (see, for instance, Boutin
[42] for the case of a two-phase laminate). For
less trivial geometric arrangements, a numeri-
cal approach must be followed. In this contri-
bution, a finite element algorithm is developed
for this purpose.

Given the dependence of the terms Tn and
Hn in Eq. (6) for a certain order m = |n| on the
functions Nn of order m− 1 and lower, the mi-
crostructural problems must be solved for in-
creasing order m. At a certain order, Eq. (6) can
be regarded as a set of linear elasticity equa-
tions, with each column of Tn −Hn represent-
ing a body force vector, which is known once
all problems of lower order have been solved.
The columns of Nn are then the displacement
fields corresponding to these body forces. The
development of the finite element algorithm to
solve these equations is therefore largely paral-
lel to that for boundary value problems in linear
elasticity. Instead of the usual displacement or
traction boundary conditions, however, the so-
lutions of Eq. (6) must satisfy Q-periodicity and
have mean zero. The latter condition can easily
be dealt with by first solving the problem with
Nn fixed at the corners of the cell and, subse-
quently, subtracting from this solution its aver-
age. Periodicity can be enforced by introducing

dependencies between the boundary nodes of
the finite element discretization (see also be-
low).

3.1 Weak Formulation of Cell Problems

The finite element discretization of cell prob-
lems is based on the weak form of Eq. (6). This
weak form is first derived for the case m ≥ 3
using the weighted residuals formalism. Af-
ter substitution of Tn(ξ) according to Eq. (9),
Eq. (6) reads

∂

∂ξi

(
Ail

∂Nn

∂ξl

)
+

∂

∂ξi
(Ain1Nn2...nm)

+ An1l
∂Nn2...nm

∂ξl
+An1n2Nn3...nm = Hn (39)

Multiplication of this equation by a Q-periodic,
vector-valued test function ψ(x) and integra-
tion over the cell Q results in the weighted
residuals form

∫

Q
ψT ∂

∂ξi

(
Ail

∂Nn

∂ξl

)
dξ

+
∫

Q
ψT ∂

∂ξi
(Ain1Nn2...nm)dξ

+
∫

Q
ψTAn1l

∂Nn2...nm

∂ξl
dξ

+
∫

Q
ψTAn1n2Nn3...nm dξ =

∫

Q
ψTHn dξ (40)

which must be satisfied for all admissible ψ.
The continuity conditions on Nn can be relaxed
by integration by parts of the first two integrals;
after reordering this yields the weak formula-
tion
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∫

Q

∂ψ

∂ξi

T

Ail
∂Nn

∂ξl
dξ =

−
∫

Q

∂ψ

∂ξi

T

Ain1Nn2...nm dξ

+
∫

Q
ψTAn1l

∂Nn2...nm

∂ξl
dξ

+
∫

Q
ψTAn1n2Nn3...nm dξ

−
∫

Q
ψTHn dξ (41)

Note that the boundary terms which result
from the integration by parts, vanish because
of periodicity.

It is now convenient to condense the summa-
tion over i and l in Eq. (41) into matrix form. To
this end the following 9×1 matrices are defined:

Dψ =




∂ψ

∂ξ1

∂ψ

∂ξ2

∂ψ

∂ξ3




DNn =




∂Nn

∂ξ1

∂Nn

∂ξ2

∂Nn

∂ξ3




(42)

as well as the 9× 9 and 9× 3 matrices

A =



A11 A12 A13

A21 A22 A23

A31 A32 A33


 An1 =



A1n1

A2n1

A3n1


 (43)

With these definitions, Eq. (41) can be rewritten
as

∫

Q
(Dψ)TADNn dξ =

−
∫

Q
(Dψ)TAn1Nn2...nm dξ

+
∫

Q
ψTAT

n1
DNn2...nm dξ

+
∫

Q
ψTAn1n2Nn3...nm dξ

−
∫

Q
ψTHn dξ (44)

Note that the matrix products can, in principle,
be condensed slightly further using the sym-
metries of Ail (cf. standard elasticity); however,
this is not done here for clarity.

The equivalents of Eq. (44) for m = 1 and
m = 2 follow analogically. The result for m = 2
can be obtained from Eq. (44) by dropping the
factor Nn3...nm in the third term on the right-
hand side. Likewise, for m = 1, the factor
Nn2...nm disappears in the first right-hand side
term; all other terms on the right-hand side dis-
appear entirely.

3.2 Discretization by Finite Element Shape
Functions

The weak forms obtained above can now be
discretized by interpolating the test function
ψ(ξ) and the microstructural functions Nn(ξ)
in the standard way

ψ(ξ) = Φ(ξ)ψ̃ Nn(ξ) = Φ(ξ)Ñn (45)

where Φ(ξ) contains the finite element interpo-
lation functions and the vector ψ̃ and the ma-
trix Ñn contain the nodal components of ψ and
Nn, respectively. Using the same interpolation,
the derivatives Dψ and DNn can be written as

Dψ(ξ) = B(ξ)ψ̃ DNn(ξ) = B(ξ)Ñn (46)
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where B(ξ) contains the shape function deriva-
tives. The microstructural functions of lower
order will generally have been computed us-
ing the same discretization and are therefore
available in the same discrete form given by
Eqs. (45)–(46).

Substitution of the respective discretizations
in Eq. (44) and realizing that the resulting equa-
tion must be satisfied for all ψ̃ results in a set of
discrete equations of the form

K Ñn = Fn (47)

where K is the standard stiffness matrix in elas-
ticity, given by

K =
∫

Q
BTABdξ (48)

and Fn is a matrix, which reads

Fn = −
∫

Q
BTAn1ΦdξÑn2...nm

+
∫

Q
ΦTAT

n1
Bdξ Ñn2...nm

+
∫

Q
ΦTAn1n2Φdξ Ñn3...nm

−
∫

Q
ΦTHn dξ (m ≥ 3) (49)

The matrix Hn in this expression can be com-
puted from Eqs. (9) and (10) on the basis of the
numerical solutions obtained at lower orders

Hn =
∫

Q
AT

n1
Bdξ Ñn2...nm

+
∫

Q
An1n2Φdξ Ñn3...nm (m ≥ 3) (50)

Note that the first term in Eq. (9) vanishes after
integration as a result of periodicity.

The discretized equations for m = 1 and m =
2 follow completely analogically. This results in

systems of equations of the same form (47), but
with different right-hand sides, namely,

Fn1 = −
∫

Q
BTAn1 dξ (m = 1) (51)

and

Fn1n2 = −
∫

Q
BTAn1Φdξ Ñn2

+
∫

Q
ΦTAT

n1
Bdξ Ñn2

+
∫

Q
ΦTAn1n2 dξ

−
∫

Q
ΦTHn1n2 dξ (m = 2) (52)

In the latter expression, the matrix Hn1n2 can be
evaluated as [cf. (50)]

Hn1n2 =
∫

Q
AT

n1
Bdξ Ñn2 +

∫

Q
An1n2 dξ

(m = 2) (53)

Before the linear system of Eq. (47) can be
solved, periodicity of the finite element dis-
cretization must be enforced by tying the de-
grees of freedom associated with opposite faces
of the cell to each other. Furthermore, the nodal
values in the corner nodes are set equal to zero.
After condensing the linear system accordingly
and solving for the unknown Ñn, the average

〈Nn〉 =
∫

Q
Φdξ Ñn (54)

is subtracted from the numerical solution in or-
der to ensure that 〈Nn〉 = 0, see [47] for more
details.

3.3 Evaluation of Elastic Moduli

Once the discretized microstructural fields Ñn

have been determined for all relevant orders
m ≤ K, the matrices Ĥp;q can be determined
from the discretized equivalent of Eq. (27)
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Ĥp;q = ÑT
p

∫

Q
BTABdξ Ñq

+ ÑT
p

∫

Q
BTAq1 Φdξ Ñq2...qs

+ ÑT
p2...pr

∫

Q
ΦTAT

p1
Bdξ Ñq

+ ÑT
p2...pr

∫

Q
ΦTAp1q1 Φdξ Ñq2...qs (m ≥ 3) (55)

for m = 1 and m = K +1 some trivial modifica-
tions again have to be made to this expression
[see below Eq. (27)]. The strain gradient mod-
uli Ĉpj;qk are now readily computed according
to (33).

4. APPLICATION TO A MATRIX-INCLUSION
SYSTEM

The numerical algorithms developed in the
previous section have been applied to a two-
dimensional microstructure, which consists of
hard inclusions embedded in a softer, contin-
uous matrix phase. The inclusions have a cir-
cular shape and are stacked in a square pat-
tern; the periodic cell that can be distinguished
in this microstructure is depicted in Fig. 3(a).

The size of the inclusions is such that their
volume fraction equals 0.25. Plane deforma-
tions are assumed, i.e., displacements in the di-
rection perpendicular to the plane of the cell,
are neglected. In the reference computation,
Young’s modulus of the inclusion Ei was set to
100 times that of the matrix Em; this ratio has
also been varied, however, in order to examine
the influence of stiffness contrast between the
two phases on the computed effective moduli.
The Poisson ratios of the two materials equal
νi = νm = 1

3 .
The finite element mesh which was used

in the computations is shown in Figure 3(b);
it consists of 2520 eight-node elements which
are integrated by a reduced, four-point Gauss
scheme. Higher-order gradients are taken into
account up to an order of K = 2. This means
that the effective kinematics are described by
strains, second-order displacement gradients
and third-order displacement gradients; apart
from stresses, also double stresses and triple
stresses enter the effective constitutive descrip-
tion. Note that this is precisely the case consider
in [46].

Figure 4 shows two components of the mi-
crostructural (matrix-valued) fields N1 as com-

ξ1

ξ2

Em, νm

Ei, νi

(a) (b)

FIGURE 3. Periodic cell of the matrix-inclusion system: (a) geometry and (b) finite element discretization
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ξ1ξ2

(a)

ξ1ξ2

(b)

FIGURE 4. Microstructural function N1 computed in the first-order problems: (a) 11-component
(N1)11 and (b) 21-component (N1)21

puted with the finite element algorithm for a
stiffness contrast of Ei/Em = 100; the coordi-
nates ξ1 and ξ2 used in these plots have been
indicated in Fig. 3(a). These functions must
be interpreted as (the 1- and 2-component of)
the first-order microstructural corrections to the
overall displacement field as triggered by the
overall (11-component of) strain [see Eq. (5)].
For instance, the negative gradient of (N1)11

in the part of the domain that is occupied by
the fiber (Fig. 6(a)) indicates that the true, mi-
crostructural strain e11 in the fiber will be con-
siderably smaller than the effective strain ê11; in
the matrix, on the other hand, it is larger than
the effective strain. The (N1)21-field in Fig. 4(b),
shows that overall straining in the 11-direction
results in hardly any displacement in the ξ2 di-
rection within the fiber, but some rearrange-
ment in the matrix material. Similar conclu-
sions can be drawn for the other directions in-
volved. Indeed, as can be seen from the double
symmetry of the unit cell, the effective stiffness
of the cell is orthotropic with identical proper-
ties in the two coordinate directions.

The dominant components of the solutions
of the second-order problems (m = 2), have
been plotted in Fig. 5. The 11-component of

N11 [Fig. 5(a)] represents a microstructural dis-
placement in the direction of ξ1 under the in-
fluence of the effective displacement gradient
ê111 = ∂2v̂1/∂x2

1. Likewise, the 11-component
of N22 depicted in Fig. 5(b) represents the mi-
crostructural response to an effective displace-
ment gradient ê221 = ∂2v̂1/∂x2

2. Both of these
fields, and indeed all other fields of the same
order, are smoother and also smaller in ampli-
tude than those resulting from the first-order
problem; this trend seems to persist for higher
orders. It should be noted that they are further-
more multiplied by the small parameter ε (or
εm for higher orders) when entering the asymp-
totic expansion (5).

The numerical representations of the mi-
crostructural fields Nn have been used to com-
pute the higher-order effective stiffness moduli
Ĉpj;qk by the method described in Section 3.3.
Table 1 gives the resulting moduli for a stiffness
contrast of Ei/Em = 100. The values have been
normalized with respect to Em and (where ap-
propriate) unit length. Only nonvanishing val-
ues and values that do not follow from symme-
try arguments are given. The standard compo-
nents Cp1j;q1k coincide with the ones given by
classical homogenization. Note that the higher-
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ξ1ξ2

(a)

ξ1ξ2

(b)

FIGURE 5. Typical components of the second-order problems: (a) (N11)11 and (b) (N11)22

Ĉ11;11

Ĉ11;22

Ĉ12;12

Ei/Em

(a)

Ĉ111;111

Ĉ11;1111

Ĉ111;122

Ĉ11;1111

Ei/Em

(b)

FIGURE 6. Effective moduli of (a) standard order (Ĉp1j;q1k) and (b) higher order (Ĉpj;qk) vs. Young’s
modulus of the fiber; both axes have been normalized by Young’s modulus of the matrix

order terms are multiplied by powers of ε in
the constitutive law (38). This means that their
relevance decreases as the separation between
the microstructural and macroscopic scales in-
creases. When this scale separation is relatively
small, however, or when strong gradients are
present in the averaged displacements v̂, the in-
fluence of the higher-order terms will be more
noticeable.

In order to examine the influence of the stiff-
ness contrast between inclusion and matrix on

the effective properties of the composite, the
ratio Ei/Em has been varied in the range of
1 − 104. The resulting effective moduli, nor-
malized by Young’s modulus of the matrix and
unit length, have been plotted versus the con-
trast in Fig. 6. Figure 6(a) shows the moduli
Ĉijkl of the standard order. For increasing stiff-
ness of the fiber, the moduli increase from the
homogeneous values at Ei = Em to horizontal
asymptotes in the limit of a rigid fiber. Some
of the higher-order moduli have been plotted
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TABLE 1. Normalized effective higher-order moduli Ĉpj;qk computed with the higher-order ho-
mogenization method; components not given follow from symmetry or vanish.

Ĉ11;11 = 2.242661 Ĉ111;111 = 0.016795 Ĉ1111;1111 = 0.005738
Ĉ11;22 = 0.990341 Ĉ111;122 = −0.002489 Ĉ1111;1122 = −0.002944
Ĉ12;12 = 0.535859 Ĉ111;221 = 0.000973 Ĉ1111;1221 = −0.001017
Ĉ11;1111 = 0.013393 Ĉ112;112 = 0.007393 Ĉ1111;2222 = −0.000537
Ĉ11;1122 = −0.004581 Ĉ112;121 = 0.003496 Ĉ1112;1112 = 0.003235
Ĉ11;1221 = 0.000619 Ĉ121;121 = 0.002746 Ĉ1112;1121 = 0.001559
Ĉ11;2222 = −0.003646 Ĉ1112;1222 = 0.001130
Ĉ12;1112 = 0.001189 Ĉ1112;2221 = 0.002037
Ĉ12;1121 = 0.000371 Ĉ1121;1121 = 0.001374

Ĉ1121;1222 = 0.000574
Ĉ1122;1122 = 0.006014
Ĉ1122;1221 = 0.004645

in Fig. 6(b); other components show a very
similar trend and have been left out for clar-
ity. As should be expected, all higher-order
moduli vanish for the homogeneous material
(Ei = Em). As the degree of heterogeneity in-
creases, however, these higher-order terms be-
come more important. It is interesting to note
that they also asymptote to a finite value for a
rigid fiber.

5. DISCUSSION AND CONCLUDING
REMARKS

The effective properties listed in Table 1 give an
impression of the amount of data that can be
generated with the numerical homogenization
strategy described in this paper. Only two or-
ders of strain gradients have been taken into
account, and the number of different moduli
is further reduced by the high degree of sym-
metry of the periodic cell. But already in this
case determining a parameter set of this size ex-
perimentally would be extremely difficult. In-
stead, the entire set has been determined solely
on the basis of the (four) elastic constants of the

constituents and their geometric arrangement.
No a priori assumptions have been made about
the macroscopic behavior of the material. The
only assumptions are in the modeling of the
microstructure; length-scale effects, anisotropy,
and other macroscopic properties all enter the
effective representation naturally in the peri-
odic homogenization process. The degree to
which these effects are captured is set by the
number of higher-order terms that are included
(i.e., the parameter K).

Two essential requirements for the method
in its present form to work are periodicity of
the microstructure and linear elastic material
behavior of its constituents. This latter condi-
tion has been somewhat alleviated by the ex-
tension of the theory to a limited class of non-
linear elasticity problems by Cherednichenko
and Smyshlyaev [48]. As to the periodicity as-
sumption, it is emphasized that, although a pe-
riodic body force has been assumed in deriv-
ing the effective constitutive model, its appli-
cation is by no means limited to macroscopi-
cally periodic problems. The effective moduli
are properties of the material and can therefore
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also be used for nonperiodic problems. Appli-
cation to finite-sized bodies, however, requires
a more detailed understanding of the higher-
order boundary conditions that must be ap-
plied in such cases. At free boundaries, it seems
natural to set the higher-order tractions that ap-
pear at the boundary (see, e.g., [11,22,46]) equal
to zero. But in more complicated situations,
these boundary conditions should ideally be
linked back to the microstructure. A first at-
tempt in this direction — albeit for a nonlocal
theory of the integral type — has been under-
taken by Luciano [49], but more work is needed
to further clarify this link.

Periodicity of the microstructure is an es-
sential condition, which often will not be met
for real materials. However, this limitation
is less restrictive than it may appear. Mi-
crostructures that are not periodic may be dealt
with by defining a representative volume el-
ement, i.e., a sample volume which is suffi-
ciently large and contains a sufficient number
of microstructural features for its periodic ex-
tension to be representative of the real, disor-
dered microstructure. Such representative vol-
umes will generally be much larger compared
with the microstructural components (e.g., in-
clusions) than the unit cell of Section 4, but
since the homogenization method is based on
a body force generating strain gradients within
the cell, this does not need to pose a problem.
Computationally, however, the microstructural
analyses will become more expensive as the
number of finite elements needed to describe
the microstructure increases.

A drawback of the strain gradient theory
that results from the homogenization process
is that it imposes stringent continuity require-
ments on the effective displacement field. This
may not be a problem when macroscopic prob-
lems can be solved analytically, but it poses a
difficulty for numerical analysis methods, such
as the finite element method. Particularly for
high degrees of microstructural detail (large K),

this may seriously complicate the implementa-
tion of the macroscopic strain gradient formula-
tion in analysis codes. Replacement of the rig-
orously derived effective relations by approx-
imate relations, which are easier to deal with
in this respect, may be one option here. Or al-
ternatively, and perhaps more attractively, one
could aim to adapt the rigorous homogeniza-
tion framework such that it delivers an effec-
tive constitutive description that is more fa-
vorable with respect to numerical implementa-
tion. These and other aspects of the method,
e.g., extensions to the nonlinear regime, pro-
vide many opportunities for fruitful further de-
velopments.
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