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Abstract

Matrix methods of linear algebra are used to analyse the structural mechanics of the periodic pin-

jointed truss by application of Bloch’s theorem. Periodic collapse mechanisms and periodic states of

self-stress are deduced from the four fundamental subspaces of the kinematic and equilibrium matrix

for the periodic structure. The methodology developed is then applied to the Kagome lattice and the

triangular–triangular (T–T) lattice. Both periodic collapse mechanisms and collapse mechanisms

associated with uniform macroscopic straining are determined. It is found that the T–T lattice

possesses only macroscopic strain-producing mechanisms, while the Kagome lattice possesses only

periodic mechanisms which do not generate macroscopic strain. Consequently, the Kagome lattice

can support all macroscopic stress states. The macroscopic stiffness of the Kagome and T–T trusses

is obtained from energy considerations. The paper concludes with a classification of collapse

mechanisms for periodic lattices.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past decade, a range of commercial metallic foams have been developed, see for
example, Ashby et al. (2000). These are mostly produced by the introduction of gas
bubbles (e.g. hydrogen) into the melt. The bubble expansion process leads to random
cellular structures, and minimisation of surface energy leads to a low nodal connectivity,
with typically three to four cell struts per node as shown in Fig. 1a. It is generally
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. (a) Planar section through an Alporas closed-cell metal foam of relative density r=rs ¼ 0:09 (from Ashby

et al., 2000). (b) Photograph of the octet-truss lattice material made from a casting aluminium alloy, LM25 (from

Deshpande et al., 2001b).
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recognised that the resulting mechanical properties are far from optimal due to the fact
that the cell walls deform by local bending (Ashby et al., 2000; Deshpande et al., 2001a).
This has led to a search for open-cell microstructures which deform by the stretching of
constituent cell members, giving a much higher stiffness and strength per unit mass. A
photograph of the octet-truss structure is given in Fig. 1b. The joint positions of this
Buckminster Fuller architecture (Marks, 1960) correspond to the face-centred cubic (FCC)
crystal structure (Hilbert and Cohn-Vossen, 1990; Jones and March, 1973). The joint
connectivity is 12, and this spatially periodic lattice material has the feature that the cell
members deform by local stretching for all macroscopic loading states.1 Consequently, the
specific mechanical properties of the octet truss far exceed those of open-cell foams. The
principal aim of this paper is to develop and apply systematic analytical procedures for the
macroscopic properties of pin-jointed periodic lattice materials, such as the octet-truss
structure.

The macroscopic effective properties of a rigid-jointed lattice are closely related to the
structural performance of the pin-jointed parent structure. It is appreciated that practical
lattice structures are neither pin-jointed nor rigid-jointed. Nonetheless, the pin-jointed
truss can give useful physical insight as follows. Consider a slender bar, built-in at one end
and subjected to a combined transverse and axial load at the other end. The built-in bar
has a much lower transverse stiffness than axial stiffness. Consequently, the assumption of
pin-joints remains a useful idealisation for the deformation response of lattice structures
comprising slender bars. The pin-jointed version comprises bars which are stiff in
stretching yet can rotate freely about the pin-joints. When the bar connectivity of the pin-
joints is sufficiently low, the pin-jointed truss collapses by inextensional mechanisms; the
rigid-jointed version deforms by bending of the bars and rotation of the joints.
Alternatively, a high connectivity causes the pin-jointed truss to behave as a redundant
structure and collapse now involves bar extension; a similar deformation mode is exhibited
by the rigid-jointed version. We conclude that the structural performance of both the pin-
jointed parent truss and the rigid-jointed daughter structure are largely dictated by the
nodal connectivity. These concepts are made precise below for the periodic pin-jointed
lattice.
1Here, and in the sequel, the macroscopic loading states considered are work conjugate to a state of uniform

macroscopic strain, with rotation gradients ignored.
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The structure of the paper is as follows. A structural analysis of pin-jointed lattices with
extensible bars is developed, based upon the equilibrium matrix analysis methods of
Pellegrino and Calladine (1986). Deformation of the periodic lattice is taken to be either
periodic, in accordance with Bloch-wave theory, or is associated with uniform macroscopic
straining (the Cauchy–Born hypothesis). Bloch-wave theory is used to identify both the
periodic states of self-stress and the periodic collapse mechanisms which do not produce
macroscopic strain. The assumption of uniform macroscopic straining is used to calculate
the internal energy and the macroscopic stiffness of the lattice structure. The theory is then
applied to the Kagome lattice and the triangular–triangular T–T lattice in order to obtain
the collapse mechanisms, states of self-stress and the macroscopic effective stiffness.

2. Review of matrix analysis for pin-jointed trusses

A developed literature exists on the structural mechanics of finite pin-jointed trusses.
Much less is known about the mechanics of infinite, periodic pin-jointed trusses. This is the
subject of the present paper. Maxwell (1864) formulated the so-called Maxwell’s rule for a
finite pin-jointed truss: a 3D truss having j joints and no kinematic constraints requires at
least 3j � 6 bars to have the possibility of rigidity. Pellegrino and Calladine (1986)
generalised Maxwell’s rule and showed how the methods of linear algebra may be applied
to both planar and spatial trusses. More recently, Pellegrino (1993) formalised these
methods within the framework of the singular value decomposition (SVD) and Deshpande
et al. (2001a) examined the stiffness of various foam topologies. We base our review of
matrix methods mainly upon Pellegrino and Calladine (1986) and Pellegrino (1993). First,
we summarise the behaviour of finite pin-jointed structures and then we consider infinite,
periodic structures.

2.1. Finite structures

We begin with some definitions. A finite truss of b bars and j pin-joints is statically

determinate when the tension in every bar can be determined solely from the equilibrium
equations for a given set of external forces applied to each joint; the number of equilibrium
equations is equal to the number of unknown bar tensions. A finite truss is kinematically

determinate when the location of each joint is uniquely determined by the length of each
bar. If an unconstrained truss is statically and kinematically determinate then, by Maxwell
(1864),

b� 2j þ 3 ¼ 0 in two-dimensions ð2DÞ (1)

and

b� 3j þ 6 ¼ 0 in three-dimensions ð3DÞ. (2)

We emphasise that the relations (1) and (2) are necessary, but not sufficient, conditions for
static and kinematic determinacy.

2.1.1. Equilibrium matrix

Before generalising (1) and (2), we first introduce the equilibrium matrix A. Consider a
planar truss (dimension n ¼ 2), or a spatial truss (dimension n ¼ 3) truss, consisting of j

total joints connected by b bars and constrained by k kinematic constraints to rigid
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Fig. 2. Joint equilibrium in n-dimensions: tm is the mth bar tension, x
ðmÞ
i is the ith position component of the mth

joint and f
ðuÞ
i is the ith external force component applied at the joint u. All components are defined with respect to

the usual orthonormal basis fi1; . . . ; ing.
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foundations. The b bar tensions are assembled into a vector t, the ðnj � kÞ components of
external force are assembled into a vector f , the b bar elongations are assembled into a
vector e, and the ðnj � kÞ displacement components are assembled into a vector d.

A representative, unconstrained joint u connected to M neighbouring joints by M bars is
shown in Fig. 2. The equilibrium relations in n dimensions for this joint are

XM
m¼1

ðx
ðmÞ
i � x

ðuÞ
i Þ � tm

Lm

�
XM
m¼1

C
ðmÞ
i � tm ¼ f

ðuÞ
i 8i 2 f1; . . . ; ng. (3)

Here, tm is the mth bar tension, x
ðmÞ
i is the ith position component of the mth joint, Lm is

the length of the mth bar, C
ðmÞ
i is the ith component of the direction cosine vector of the

mth bar, and f
ðuÞ
i is the ith external force component applied at the joint u. Now apply (3)

to the j joints and b bars comprising a n-dimensional truss with k kinematic constraints.
Then, the direction cosines, with u ranging over all j, are C

ðmÞ
i ¼ ðx

ðmÞ
i � x

ðuÞ
i Þ=Lm; they

generate the real, ðnj � kÞ � b equilibrium matrix A 2 Rðnj�kÞ�b. The bar tensions tm range
over all b and make up the real b-element tension vector t 2 Rb; and, the right-hand side
force components f

ðuÞ
i make up the ðnj � kÞ element load vector f 2 Rnj�k. The equilibrium

statements are written compactly in matrix form as

A � t ¼ f . (4)

2.1.2. Kinematic matrix

The kinematic equations conjugate to (3) and (4) are developed as follows. Introduce
d 2 Rnj�k as the (infinitesimal) joint displacement vector and e 2 Rb as the bar elongation
vector. Then,

em ¼
Xn

i¼1

C
ðmÞ
i � ðd

ðvÞ
i � d

ðuÞ
i Þ 8m 2 f1; . . . ; bg. (5)

In matrix form, this reads

B � d ¼ e (6)

thereby defining the kinematic matrix, B 2 Rb�ðnj�kÞ. Application of the principle of virtual
work (PVW) implies that B ¼ AT, where the superscript T denotes the transpose.

Pellegrino and Calladine (1986) have generalised Maxwell’s rule by proving that the
number of independent inextensional mechanisms, mX0, and the number of independent
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states of self-stress, sX0, are related to the rank r of the equilibrium matrix A by

s ¼ b� r and m ¼ nj � k � r. (7)

Note that s can be described qualitatively as the number of redundant bars in an arbitrary
truss (see Crandall et al., 1978; Pellegrino and Calladine, 1986; Przemieniecki, 1968).
We now specialise (7) to the case of a free planar or spatial truss with k ¼ 0. Then,

s ¼ b� r and m ¼ nj � r (8)

and the null space of A, NulðAT
Þ, contains inextensional mechanisms that correspond to

rigid-body motions of the entire, finite truss. In 2D and 3D there are, respectively, three and
six independent translations and rotations of a rigid body. Thus, for k ¼ 0, we define the
number of rigid-body motions, mr, as

mr ¼
3 when n ¼ 2;

6 when n ¼ 3:

�
(9)

Write mi as the number of internal mechanisms. Then, upon substituting (9) into (8) we
have

mi ¼ m�mr ¼ nj � r�mr. (10)

A free truss with k ¼ 0 is statically and kinematically determinate when s ¼ mi ¼ 0.

2.2. Infinite periodic structures

Thus far we have considered finite truss structures where the number of constituent bars
and joints are finite, and numerical calculation of the rank of the corresponding
equilibrium matrix is straightforward. This approach is now extended to an infinite
periodic truss.
Deshpande et al. (2001a) considered the case of a periodic truss in which all joints are

similarly situated, such that the truss appears invariant when viewed from any joint. The
corresponding Maxwell’s rule is a function of the number of bars connected to each joint,
termed the joint connectivity Z. Deshpande et al. (2001a) found a necessary, but not
sufficient, condition for rigidity is Z ¼ 4 in 2D and Z ¼ 6 in 3D. In contrast, the necessary
and sufficient conditions for the rigidity of 2D and 3D similarly situated trusses are Z ¼ 6
and Z ¼ 12 (Deshpande et al., 2001a). These connectivities correspond to the planar fully
triangulated truss and spatial octet truss, respectively. Note that these rigid trusses contain
redundant members, with sa0 and mi ¼ 0. While the above theory provide useful rigidity
criteria, the restriction to similarly situated periodic trusses is severe. In fact, the square
truss and fully triangulated truss are the only similarly situated 2D lattices. In this paper,
we shall consider periodic trusses which do not possess similarly situated joints.
Guest and Hutchinson (2003) have shown recently that a pin-jointed infinite lattice

cannot be both statically and kinematically determinate. The pin-jointed analysis detailed
below probes more general kinematics than those assumed by them but leads to the same
conclusion. We invoke Bloch’s theorem and form the set of all possible periodic
mechanisms ranging over all possible wavelengths, as well as a restricted set of non-
periodic mechanisms that produce macroscopic strains. Details on the background and
applications of Bloch’s theorem on a wide range of problems in theoretical physics are
given in Bloch (1928), Lomont (1959), Cornwell (1997) and Cantrell (2000).
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We shall also show, by the principle of virtual work, that our kinematic analysis gives
rise to corresponding infinitesimal statics: we shall form the set of all possible periodic
states of self-stress over all possible wavelengths, as well as non-periodic states of self-stress
that produce macroscopic stresses.

The Bloch-wave extension to the matrix theory of pin-jointed trusses builds upon the
work of Triantafyllidis and Schnaidt (1993) and Triantafyllidis and Schraad (1998) for
two-dimensional periodic composites. Triantafyllidis and Schnaidt (1993) analysed the
elastic stability of a rigid-jointed, square lattice. Using the beam-column form of the
Euler–Bernoulli beam stiffness matrix (e.g. Coates et al., 1988; Livesley, 1975), they first
considered the primitive unit cell as a finite structure of rigid-joints and elastic beams. To
convert this finite problem to the desired problem of periodic, infinite extent, they assumed
that the infinitesimal displacement and rotation fields of the rigid-joints are doubly
periodic over the entire lattice. In contrast, in the current study, Bloch’s theorem is applied
to the kinematic and equilibrium matrices of the unit cell of a periodic, pin-jointed
structure. The matrix methods of analysis developed by Pellegrino and Calladine (1986) for
finite, pin-jointed structures are thereby extended to the periodic case, and periodic
mechanisms and states of self-stress are obtained.

3. Bloch-wave mechanisms for periodic structures

The general theory is developed for a periodic 2D or 3D lattice, but for illustration, the
theory is explained for the case of the 2D Kagome lattice shown in Fig. 3a. A
representative unit cell of this lattice is given in Fig. 3b, with an alternative unit cell
sketched in Fig. 3c. Consider a primitive unit cell of a periodic lattice, and define the direct

translational basis fakg where k 2 f1; . . . ; ng. Again, n is the dimension of the lattice, such
that n ¼ 2 in 2D and n ¼ 3 in 3D. Translations of the unit cell by the basis vectors fakg

tessellate the cell and allow it to fill space. Any neighbouring unit cell may be reached upon
translating the reference unit cell by a direct lattice translation vector x � xkak, where xk is
any set of integer values. For the 2D unit cell of Fig. 3b, we sketch our choice of fa1; a2g in
Fig. 4a. Next, introduce the joint basis f jlg 8l 2 f1; . . . ; Jg in order to define the location of
the J independent joints of the unit cell. In the unit cell of Fig. 3b, there are three such
joints ðJ ¼ 3Þ with joint vectors f j1; j2; j3g as sketched in Fig. 4b. Joints of the unit cell are
omitted from the joint basis when they coincide with joints obtained by translating the unit
(a) (b) (c)

Fig. 3. (a) Kagome lattice with bar length L, (b) selected primitive unit cell and (c) alternate unit cell with labelling

required for only joints 1, 2 and 3.
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(a) (b) (c) (d)

Fig. 4. Kagome lattice bases: (a) direct translation vectors, (b) joint vectors, (c) bar vectors, and (d) illustration of

lattice position vectors. Each bar is of length L.
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cell by some integer combination of fakg. A bar basis fbmg 8m 2 f1; . . . ;Mg is likewise
introduced to define the location of the mid-point of the M independent bars of the unit
cell, see Fig. 4c.
We use the direct lattice translation basis fakg 8k 2 f1; . . . ; ng and the joint basis fjlg 8l 2

f1; . . . ; Jg to define the direct lattice position vectors of all joints pl 8l 2 f1; . . . ; Jg. For
example, consider joint 2 of the reference unit cell of Fig. 3b. Joints of type 2 in
neighbouring unit cells are located by translating the reference unit cell an integer number
of fakg, as sketched in Fig. 4d. We label the set of all joint locations of type l 2 f1; . . . ; Jg by
pl . Thus,

pl ¼ jl þ x ¼ jl þ xkak 8l 2 f1; . . . ; Jg; k 2 f1; . . . ; ng. (11)

We shall also make use of the reciprocal lattice basis, fakg of spatial dimension n. It is
related directly to the direct translational basis by a j � ak ¼ d j

k where d j
k is the usual

Kronecker delta symbol (equal to unity when j ¼ k, and zero otherwise).
3.1. Joint displacements

Periodic displacement fields of the pin-jointed lattice are now explored, and for
simplicity we restrict our development to the two-dimensional case; the full 3D treatment
follows immediately. We assume that the 2D joint displacement is complex, dðpl ;wÞ 2 C

2,
and is defined over the entire lattice using Bloch’s theorem for the joint displacement field.
First, introduce the wave vector w � waa

a with rational components 0pwao1, and
a 2 f1; 2g. Then, Bloch’s theorem gives:

dðpl ;wÞ � dð jl þ x;wÞ ¼ dð jl ;wÞ expð2piw � xÞ 8l 2 f1; . . . ; Jg (12)

in terms of the complex number i �
ffiffiffiffiffiffiffi
�1
p

. Note that the displacement field (12) is periodic
and generates vanishing macroscopic strain; later we shall deal with the case of uniform
macroscopic straining.
We now extend the matrix analysis of a finite pin-jointed truss to a periodic lattice of

infinite extent. Consider a lattice primitive unit cell Y comprised of j pin-joints, within and
on the unit cell boundary qY, and b truss members that intersect qY only at their joint-
ends. The Kagome lattice unit cell of Fig. 3b is such a unit cell. Upon making use of the
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theory reviewed in Section 2, one may form the kinematic matrix B 2 Rb�2j assuming that
the unit cell is free of external kinematic constraints ðk ¼ 0Þ. Imposition of periodicity
reduces the kinematic matrix relation as follows. Identify each of the p periodic joint pairs
on qY separated by unit-cell translation vectors,

x̂ ¼ x̂aaa 8x̂
a
2 f�1; 0; 1g, (13)

such that the number of independent joints is J ¼ j � p. Thus, the linearly independent
joint basis, f jlg 8l 2 f1; . . . Jg, defines the joint basis f jl þ x̂lg, of which p vectors are
dependent. Applying these p dependencies to (12) yields p equations of the form

dðjl þ x̂l ;wÞ ¼ zðw; x̂lÞdðjl ;wÞ, (14)

where zð�; �Þ is a scalar complex function defined as

zðw; x̂lÞ ¼ expð2piw � x̂lÞ. (15)

Now insert Eqs. (14) and (15) into the unit-cell kinematic matrix relation (6), wherein
B 2 Rb�2j , to obtain the reduced relation

B̄ðwÞ � d̄ðwÞ ¼ ēðwÞ (16)

by elimination of 2p elements of d. The vectors d̄ and ē contain a subset of the elements of
d and e, respectively. For general w, we have d̄ðwÞ 2 C2J , B̄ðwÞ 2 Cb�2J and ēðwÞ 2 Cb.

The next step is the calculation of the four fundamental subspaces of B̄ðwÞ: the
interpretation of (16) closely parallels the interpretation of (6) as given by Pellegrino and
Calladine (1986). The null space of B̄ðwÞ, NulðB̄ðwÞÞ, is a linearly independent basis
spanning all the joint displacement vectors d̄ compatible with zero bar elongations ē ¼ 0.
Upon using (12), each such null vector d̄ defines a periodic mechanism of the lattice with
wave vector w. The row space of B̄, RowðB̄ðwÞÞ, is a basis spanning all joint displacement
vectors d̄ compatible with non-zero bar elongations ēa0. The column space of B̄,
ColðB̄ðwÞÞ, spans all geometrically compatible reduced bar elongation vectors ē. The left
null space of B̄ðwÞ is NulðB̄

H
ðwÞÞ where the superscript H denotes the complex conjugate of

the transpose. This left null space spans all geometrically incompatible bar elongation
vectors ē for each assumed value of w.

Finally, one may exploit the linearity of the above formulation and sum over all possible
w, and thereby obtain a Fourier series representation of joint displacements based upon
(12):

dð plÞ ¼ dð jl þ xÞ ¼
X
w2W

dð jl ;wÞ expð2piw � xÞ 8l 2 f1; . . . ; Jg. (17)

In (17), the wave vector w can be restricted without loss of generality to the primitive unit
cell W in reciprocal space, known as the first Brillouin zone (see Brillouin, 1946; Grosso
and Pastori-Parravincini, 2000; Jones and March, 1973; Lomont, 1959).

3.2. Joint forces

A similar development applies to the statics of an infinite periodic truss. Begin by writing
the equilibrium statement for the unit cell as A � t ¼ f . Then, apply the periodic boundary
conditions for joint forces f to obtain the reduced relation

ĀðwÞ � t̄ ¼ f̄ . (18)
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The principle of virtual work implies Ā ¼ B̄
H
. With this direct connection in place, the four

fundamental subspaces of Ā are related directly to the four fundamental subspaces of B̄.
For example, the null space NulðĀÞ is identical to NulðB̄

H
Þ, the space of periodic states of

self-stress.
4. Macroscopic strain-producing mechanisms

The Bloch-wave theory described in Section 3 gives the periodic joint displacement fields
for an infinite periodic truss. However, macroscopic strain-producing mechanisms are also
possible. Consider again the primitive unit cell Y of a periodic lattice, such as that given in
Fig. 3b. The unit cell has j pin-joints within and on the unit cell boundary qY, and has b

truss members that only contact qY at their joint-ends. The Cauchy–Born hypothesis

(Bhattacharya, 2003; Born and Huang, 1954; Maugin, 1992; Pitteri and Zanzotto, 2003)
states that the infinitesimal displacement fields of the periodic truss can be additively
decomposed into an affine deformation field of the joints as dictated by the
macroscopically homogeneous strain ē, and into a displacement field which repeats from
one cell to the next. Thus, the displacement field of any unit cell Y is

dð jl þ x̂lÞ ¼ ē � x̂l þ pð jlÞ 8jl 2 qY (19)

for all l 2 f1; . . . ; Jg where the independent joint basis fjlg was defined in Section 3 and the
unit-cell translation basis fx̂lg has already been defined in (13). The vector field pð jlÞ is unit-
cell periodic.
The periodicity statement (19) is applied to the unit cell kinematic matrix relation

B � d ¼ e in order to give the reduced equation

B̄ � d̄ ¼ ē (20)

by elimination of 2p elements of d. In general, d̄ 2 C2J , B̄ 2 Cb�2J and ē 2 Cb. Note that B̄
is identical to the Bloch-wave reduced kinematic matrix of (16) for w ¼ 0; that is,
B̄ ¼ B̄ðw ¼ 0Þ. The next step is again the calculation of the four fundamental subspaces of
B̄. Details are given for specific lattices in the following sections.
The static boundary conditions consistent with the assumed kinematics (19) are that the

macroscopic tractions r̄ � n are equal and opposite on opposite faces of qY. Thus, r̄ � n is
anti-periodic over Y. This may be expressed in terms of external joint forces on qY as

f ð jl þ x̂lÞ þ f ð jlÞ ¼ 0. (21)

Alternatively, the boundary conditions for the case where bars, rather than joints, are cut
by the unit cell boundary become

tðbm þ x̂mÞ � tðbmÞ ¼ 0, (22)

where tðbmÞ are bar tensions and fbmg 8m 2 f1; . . . ;Bg is the independent bar basis of
Section 3. A combination of (21) and (22) is enforced when both bars and joints exist on
qY. Application of (21) and (22) to the unit cell equilibrium matrix relation A � t ¼ f gives
the states of self-stress. Alternatively, these states are found in the null space of the Bloch-
wave reduced equilibrium matrix at w ¼ 0.
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5. Kagome lattice

The theoretical development of Sections 3 and 4 is now applied to the 2D Kagome
lattice of bar length L, as sketched in Fig. 3. Hyun and Torquato (2002) have shown that
the Kagome lattice has optimal in-plane stiffness amongst isotropic trusses with bars of
equal side length. Indeed, in the ‘‘dilute limit’’ of low relative density, the Kagome lattice
attains the Hashin–Shtrikman upper bound (Christensen, 2000; Hyun and Torquato, 2002;
Torquato et al., 1998). Hutchinson and Fleck (2005) have recently explored the stiffness,
strength and actuating properties of the Kagome truss, and have demonstrated its
morphing capability. With the addition of suitable patch bars on the periphery, statically
and kinematically determinate finite versions have been obtained, see for example, Symons
et al. (2005).

Consider the periodic Kagome lattice, with unit cell as sketched in Fig. 3b. The direct
and reciprocal bases can be expressed in terms of the orthonormal basis fiag as

a1 ¼ Li1 þ L
ffiffiffi
3
p

i2 and a2 ¼ �Li1 þ L
ffiffiffi
3
p

i2, ð23Þ

a1 ¼ ð2LÞ�1i1 þ 2L
ffiffiffi
3
p� ��1

i2 and a2 ¼ ð�2LÞ�1i1 þ 2L
ffiffiffi
3
p� ��1

i2. ð24Þ

The joint basis for the Kagome lattice comprises the three vectors j1 ¼ ð�i1 þ 0i2ÞL,

j2 ¼ ð�i1 þ
ffiffiffi
3
p

i2ÞL=2, and j3 ¼ ði1 þ
ffiffiffi
3
p

i2ÞL=2. Likewise, the bar basis is made up of

the six vectors b1 ¼ ð�3i1 �
ffiffiffi
3
p

i2ÞL=4, b2 ¼ ð�3i1 þ
ffiffiffi
3
p

i2ÞL=4, b3 ¼ ð0i1 þ
ffiffiffi
3
p

i2ÞL=2,

b4 ¼ ð3i1 þ
ffiffiffi
3
p

i2ÞL=4, b5 ¼ ð3i1 �
ffiffiffi
3
p

i2ÞL=4 and b6 ¼ ð0i1 þ
ffiffiffi
3
p

i2ÞL=2.
We next form the kinematic relation B � d ¼ e for the Kagome lattice unit cell of Fig. 3b

using the prescription (6). The components of this relation, for the choice of orthonormal
basis fi1; i2g, read

B ¼

� 1
2
�
ffiffi
3
p

2
1
2

ffiffi
3
p

2
0 0 0 0 0 0 0 0

0 0 �1 0 1 0 0 0 0 0 0 0

0 0 0 0 � 1
2

ffiffi
3
p

2
1
2
�
ffiffi
3
p

2
0 0 0 0

0 0 0 0 0 0 1
2

ffiffi
3
p

2
� 1

2
�
ffiffi
3
p

2
0 0

0 0 0 0 0 0 0 0 1 0 �1 0

� 1
2

ffiffi
3
p

2
0 0 0 0 0 0 0 0 1

2
�
ffiffi
3
p

2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
, (25)

dT
¼ ½d

ð1Þ
1 d

ð1Þ
2 d

ð2Þ
1 d

ð2Þ
2 d

ð3Þ
1 d

ð3Þ
2 d

ð4Þ
1 d

ð4Þ
2 d

ð5Þ
1 d

ð5Þ
2 d

ð6Þ
1 d

ð6Þ
2 �, (26)

and

eT ¼ ½e1 e2 e3 e4 e5 e6�. (27)

The bar elongations are ek ¼ eðbkÞ for k 2 f1; 2; . . . ; 6g, d ðlÞa ¼ daðjlÞ for l 2 f1; 2; 3g,
d ð4Þa ¼ dað j1 þ a1 � a2Þ, dð5Þa ¼ dað j2 � a2Þ, and d ð6Þa ¼ dað j3 � a1Þ.

The corresponding finite equilibrium matrix A is A ¼ BT, such that A � t ¼ f for the unit
cell of Fig. 3b. Here, tk ¼ tðbkÞ for k 2 f1; 2; . . . ; 6g, f ðlÞa ¼ f að jlÞ for l 2 f1; 2; 3g,
f ð4Þa ¼ f að j1 þ a1 � a2Þ, f ð5Þa ¼ f að j2 � a2Þ, and f ð6Þa ¼ f að j3 � a1Þ. The joint force vector
components are defined using the orthonormal basis fi1; i2g shown in Fig. 3b, giving
f ð j1Þ ¼ f að j1Þia for example.
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5.1. Bloch-wave reduction of the kinematic matrix

We proceed by using Bloch’s theorem (12) to represent the joint displacements of the
Kagome lattice as

dðpl ;wÞ ¼ dð jl þ x;wÞ ¼ dð jl ;wÞ expð2piw � xÞ 8l 2 f1; 2; 3g. (28)

With a view towards the Bloch wave reduction of B, periodicity demands

d ð4Þa ¼ z1ðwÞz
�
2ðwÞd

ð1Þ
a ; d ð5Þa ¼ z�2ðwÞd

ð2Þ
a and d ð6Þa ¼ z�1ðwÞd

ð3Þ
a , (29)

where zaðwÞ ¼ expð2piwaÞ and a 2 f1; 2g. Here and in the following a superscript asterisk
denotes the complex conjugate. Upon substituting (29) into B � d ¼ e as given by (25)–(27),
the Bloch-wave reduced kinematic statement for the Kagome lattice, B̄ðwÞ � d̄ðwÞ ¼ ēðwÞ, is
explicitly

� 1
2

�
ffiffi
3
p

2
1
2

ffiffi
3
p

2
0 0

0 0 �1 0 1 0
1
2

z1z
�
2 �

ffiffi
3
p

2
z1z
�
2 0 0 � 1

2

ffiffi
3
p

2

1
2

z1z
�
2

ffiffi
3
p

2
z1z�2 � 1

2
z�2 �

ffiffi
3
p

2
z�2 0 0

0 0 z�2 0 �z�1 0

� 1
2

ffiffi
3
p

2
0 0 1

2
z�1 �

ffiffi
3
p

2
z�1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

d
ð1Þ
1

d
ð1Þ
2

d
ð2Þ
1

d
ð2Þ
2

d
ð3Þ
1

d
ð3Þ
2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

e1

e2

e3

e4

e5

e6

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
. (30)

It is emphasised that the complex numbers za ¼ expð2piwaÞ are directly related to the
components wa of the wave vector w. It remains to search for those values of wa for which
periodic collapse mechanisms exist. Upon noting that the reduced kinematic matrix B̄ðwÞ
in (30) is square, we conclude that periodic collapse mechanisms exist when B̄ðwÞ is
singular. The number of independent periodic collapse mechanisms is given by the
dimension of the null space of B̄ðwÞ. Elementary row operations on B̄ yield the following
augmented kinematic matrix:

� 1
2
�
ffiffi
3
p

2
1
2

ffiffi
3
p

2
0 0

0
ffiffiffi
3
p

� 1
2

�
ffiffi
3
p

2
1
2

z�1 �
ffiffi
3
p

2
z�1

0 0 �1 0 1 0

0 0 1
2
ðz1 � 1Þ

ffiffi
3
p

2
ðz1 � 1Þ 0 0

0 0 0 0 1
2
ðz�2 � 1Þ �

ffiffi
3
p

2
ðz�2 � 1Þ

0 0 0 0 z�2 � z�1 0

0
BBBBBBBBBB@

����������������

e1

�e1 þ e6

e2

z1e1 þ z2e4

e3 þ z1z
�
2e6

z�2e2 þ e5

1
CCCCCCCCCA
. (31)

Examination of (31) reveals that B̄ðwÞ is singular when the determinant of the lower right-
hand corner 4� 4 matrix within the 6� 6 kinematic matrix (31) is zero. Recalling the
definition w ¼ waaa and the periodicity relations (29), B̄ðwÞ is singular for the following
choices of za: (i) z1ðwÞ ¼ z2ðwÞ, (ii) z1ðwÞ ¼ 1, or (iii) z2ðwÞ ¼ 1. In wave vector space, these
three conditions become (i) w1 ¼ w2, (ii) w1 ¼ 0, or (iii) w2 ¼ 0.
The collapse mechanisms for each of these trajectories in ðw1;w2Þ space are now detailed.

Without loss of generality, we exploit the symmetry of the Kagome lattice in order to
present our findings. The first Brillouin zone (BZ) of the Kagome lattice, with its
hexagonal ðD6Þ symmetry, is sketched Fig. 5a. Symmetry dictates that one-twelfth of the
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zone is fully representative: this sector is shown shaded in Fig. 5a and is given in more
detail in Fig. 5b, with the locus (i) w1 ¼ w2 included. Note that the loci (ii) w1 ¼ 0 and (iii)
w2 ¼ 0 are obtained immediately from the solution for locus (i) via a rotation of p=3 and
�p=3 radians, respectively. The collapse mechanisms (and corresponding states of self-
stress, to be introduced below) along all three loci are summarised in Table 1 for
completeness.
(a) (b)

Fig. 5. Kagome lattice: (a) first Brillouin zone (BZ) with (b) one-twelfth shaded section and wave vector locus (i)

w1 ¼ w2 labelled.

Table 1

Kagome lattice: null vectors of the Bloch-wave reduced equilibrium ðĀÞ and kinematic ðB̄Þ matrices

ðw1;w2Þ d̄ 2 NulðB̄Þ and t̄ 2 NulðĀÞ

ð0; 0Þ d
ð1Þ
1 ¼ d

ð2Þ
1 ¼ d

ð3Þ
1 ; d

ð1Þ
2 ¼ d

ð2Þ
2 ¼ d

ð3Þ
2 ¼ 0

t1 ¼ t4; t2 ¼ t3 ¼ t5 ¼ t6 ¼ 0

ð0; 0Þ d
ð1Þ
2 ¼ d

ð2Þ
2 ¼ d

ð3Þ
2 ; d

ð1Þ
1 ¼ d

ð2Þ
1 ¼ d

ð3Þ
1 ¼ 0

t2 ¼ t5; t1 ¼ t3 ¼ t4 ¼ t6 ¼ 0

ð0; 0Þ 1
2

d
ð1Þ
1 ¼ �d

ð2Þ
1 ¼

1ffiffi
3
p d

ð2Þ
2 ¼ �d

ð3Þ
1 ¼ �d

ð3Þ
2 ; d

ð1Þ
2 ¼ 0

t3 ¼ t6; t1 ¼ t2 ¼ t4 ¼ t5 ¼ 0

Locus (i)
ffiffiffi
3
p

d
ð3Þ
2 ¼ �

ffiffiffi
3
p

d
ð2Þ
2 ¼ d

ð3Þ
1 ¼ d

ð2Þ
1 ; d

ð1Þ
1 ¼ d

ð1Þ
2 ¼ 0

0ow1 ¼ w2p 1
2

t2 ¼ t5 expð2piw1Þ; t1 ¼ t3 ¼ t4 ¼ t6 ¼ 0

Locus (ii) 1
2

d
ð2Þ
2 ¼ d

ð1Þ
2 ¼

1ffiffi
3
p d

ð1Þ
1 ; d

ð2Þ
1 ¼ d

ð3Þ
1 ¼ d

ð3Þ
2 ¼ 0

w1 ¼ 0ow2p 1
2

t1 ¼ t4 expð2piw2Þ; t2 ¼ t3 ¼ t5 ¼ t6 ¼ 0

Locus (iii) d
ð1Þ
2 ¼ �

1ffiffi
3
p d

ð1Þ
1 ¼ d

ð3Þ
2 expð�2piw1Þ; d

ð2Þ
1 ¼ d

ð2Þ
2 ¼ d

ð3Þ
1 ¼ 0

w2 ¼ 0ow1p 1
2

t3 ¼ t6 expð2piw1Þ; t1 ¼ t2 ¼ t4 ¼ t5 ¼ 0

Other ðw1;w2Þ d̄ ¼ ;

t̄ ¼ ;
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5.2. Representative collapse mechanisms

The collapse mechanisms along the locus (i) satisfy w1 ¼ w2 with 0ow1p1
2
. At any

general joint on the locus, a single collapse mechanism can operate, and the relative
magnitude of each component of d̄ is stated in Table 1. Recall that the Bloch-wave analysis
assumes complex displacements, and each value of joint displacement can be scaled
arbitrarily by d

ð2Þ
1 , say. Here we set d

ð2Þ
1 to equal unity and generate all other displacements

by the connection given in Table 1 and in (28). Without loss of generality, two mechanisms
emerge: one represented by the real components of the displacements, and one by the
imaginary components. An example is shown in Fig. 6 for the choice w1 ¼ w2 ¼

1
3
. To aid

visualisation, an equivalent mechanism is sketched for each collapse mechanism. The
equivalent mechanism comprises an assembly of rotating and translating discs which roll
over each other. Their diameter can vary from one layer to the next, including the extreme
case of stationary strips, see Fig. 6b. Next, consider the extremes of the locus (i), as set by
w1 ¼ w2 ¼ 0 and w1 ¼ w2 ¼

1
2
. The exponential modulation factor in (28) is then real. At

w1 ¼ w2 ¼ 0, three mechanisms exist. Two are rigid-body modes but the third is a unit-cell
(a)

(b)

Fig. 6. Kagome lattice infinitesimal mechanisms (left) with an equivalent mechanism of rotating, rigid disks

(right). Two mechanisms exist for w1 ¼ w2 ¼
1
3
.
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(a)

(b)

Fig. 7. Kagome lattice infinitesimal mechanisms (left) with equivalent mechanisms of rotating, rigid disks (right).

(a) Mechanism for w1 ¼ w2 ¼ 0 and (b) mechanism for w1 ¼ w2 ¼
1
2
.
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periodic collapse mode. It is sketched in Fig. 7a, along with its equivalent mechanism.
We shall show below that this mechanism is identical to the collapse mechanism
associated with the Cauchy–Born hypothesis at zero macroscopic strain ðē ¼ 0Þ.
Further, this mechanism has the property that it is the first increment of
a finite collapse mechanism. A single collapse mode is also obtained at w1 ¼ w2 ¼

1
2
. This

has a wavelength of two unit cells and is sketched in Fig. 7b along with its equivalent
mechanism.

It is instructive to compare the predictions in the present study with the combined
experimental and numerical study by Tantikom et al. (2004). They examined the
elastic–plastic transverse compression of a hexagonal array of bonded copper tubes, and
they report the collapse mechanisms. The asymmetric deformation mode given in Fig. 11
of their paper is essentially the same collapse mechanism as that shown in Fig. 7b of the
present study.
5.3. Bloch-wave reduction of the equilibrium matrix

A similar Bloch-wave reduction can be performed on the equilibrium matrix A ¼ BT for
the periodic Kagome lattice. The reduction gives ĀðwÞ � t̄ðwÞ ¼ f̄ ðwÞ, with Ā 2 C6�6, t̄ 2 C6
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and f̄ 2 C6 given by

ĀðwÞ ¼

� 1
2

0 1
2

z�1z2
1
2

z�1z2 0 � 1
2

�
ffiffi
3
p

2 0 �
ffiffi
3
p

2 z�1z2
ffiffi
3
p

2 z�1z2 0
ffiffi
3
p

2
1
2

�1 0 � 1
2

z2 z2 0ffiffi
3
p

2
0 0 �

ffiffi
3
p

2
z2 0 0

0 1 � 1
2

0 �z1
1
2

z1

0 0
ffiffi
3
p

2
0 0 �

ffiffi
3
p

2
z1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
, (32)

t̄T ¼ ½t1 t2 t3 t4 t5 t6� (33)

and

f̄ ¼

f ð1Þ þ z�1z2f
ð4Þ

f ð2Þ þ z2f
ð5Þ

f ð3Þ1 þ z1f
ð6Þ
1

8>><
>>:

9>>=
>>;. (34)

The principle of virtual work may be invoked to show directly that ĀðwÞ � B̄
H
ðwÞ. Periodic

states of self-stress given by the null space of Ā are included in Table 1. Again, they exist
along the wave vector loci (i) w1 ¼ w2, (ii) w1 ¼ 0, or (iii) w2 ¼ 0.
As noted above we need consider loci (ii) and (iii) no further, as locus (i) is canonical.

Along locus (i), a state of self-stress exists for any given value of w1 ¼ w2 over the domain
0ow1o1

2
. As for the collapse mechanisms, the state of self-stress is complex, and can be

interpreted as two independent states, one given by the real part and the other given by the
imaginary part of the solution. Without loss of generality, we set t5 to equal unity in the
prescription recorded in Table 1. The two states of self-stress at a representative point
w1 ¼ w2 ¼

1
3
are shown in Fig. 8. The behaviour differs from the general case at the

extremes of locus (i). At w1 ¼ w2 ¼ 0, three states of self-stress exist. They are sketched in
Fig. 9a–c, and we shall show below that they are identical to the three states of self-stress
(a) (b)

Fig. 8. Two states of self-stress in the Kagome lattice for w1 ¼ w2 ¼
1
3
.
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(a) (b)

(c) (d)

Fig. 9. (a–c) Three states of self-stress in the Kagome lattice for w1 ¼ w2 ¼ 0; (d) state of self-stress for

w1 ¼ w2 ¼
1
2
.
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under the Cauchy–Born hypothesis. At the other limit of w1 ¼ w2 ¼
1
2
, a single state of self-

stress exists, see Fig. 9d.

5.4. Mechanisms which generate macroscopic strain

5.4.1. Cauchy– Born reduction of the kinematic matrix

Strain-producing collapse mechanisms are identified by applying the Cauchy–Born
hypothesis (19) to the kinematics of the Kagome truss. Write the displacement of

the six joints of the primitive unit cell as d ðlÞa for l 2 f1; . . . ; 6g on the basis fi1; i2g,
and let ē denote the imposed macroscopic strain, with pðjlÞ periodic over the unit cell. We
specialise (19) to the primitive Kagome lattice unit cell of Fig. 3b and find that for all
a 2 f1; 2g,

d ð4Þa � d ð1Þa ¼ 2L�̄a1

d ð5Þa � d ð2Þa ¼ L�̄a1 � L
ffiffiffi
3
p

�̄a2

d ð6Þa � d ð3Þa ¼ �L�̄a1 � L
ffiffiffi
3
p

�̄a2

9>>=
>>;. (35)
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Now substitute (35) into (25)–(27) to obtain the reduced kinematic statement B̄ � d̄ ¼ ē

� 1
2
�
ffiffi
3
p

2
1
2

ffiffi
3
p

2
0 0

0 0 �1 0 1 0
1
2
�
ffiffi
3
p

2
0 0 � 1

2

ffiffi
3
p

2

1
2

ffiffi
3
p

2
� 1

2
�
ffiffi
3
p

2
0 0

0 0 1 0 �1 0

� 1
2

ffiffi
3
p

2 0 0 1
2 �

ffiffi
3
p

2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
�

d
ð1Þ
1

d
ð1Þ
2

d
ð2Þ
1

d
ð2Þ
2

d
ð3Þ
1

d
ð3Þ
2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

e1

e2

e3 � g3ðēÞ

e4 � g4ðēÞ

e5 � 2L�̄11

e6 þ g6ðēÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
, (36)

where g3ðēÞ � ð�̄11 �
ffiffiffi
3
p

�̄12ÞL, g4ðēÞ � ð�̄11 þ 3�̄22 þ 2
ffiffiffi
3
p

�̄12ÞL=2 and g6ðēÞ � ð�̄11 � 3�̄22ÞL=2.
Straightforward row operations on (36) imply

� 1
2
�
ffiffi
3
p

2
1
2

ffiffi
3
p

2
0 0

0 0 �1 0 1 0
1
2 �

ffiffi
3
p

2 0 0 � 1
2

ffiffi
3
p

2

0
BB@

1
CCA �

d
ð1Þ
1

d
ð1Þ
2

d
ð2Þ
1

d
ð2Þ
2

d
ð3Þ
1

d
ð3Þ
2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

e1

e2

e3 � g3ðēÞ

8><
>:

9>=
>; (37)

and

e1 þ e4 ¼ �̄11 þ 3�̄22 þ 2
ffiffiffi
3
p

�̄12
� �

L=2

e2 þ e5 ¼ 2L�̄11

e3 þ e6 ¼ �̄11 þ 3�̄22 � 2
ffiffiffi
3
p

�̄12
� �

L=2

9>=
>;. (38)

To search for possible strain-producing collapse mechanisms for a truss made from
inextensible bars, we substitute e ¼ 0 into (38). The solution is ē ¼ 0, and it is concluded
that the Kagome lattice has no inextensional collapse mechanisms capable of producing
macroscopic strain. A collapse mechanism does exist however with the property ē ¼ 0.
This mechanism is unit cell periodic and coincides with the Bloch-wave solution at
w1 ¼ w2 ¼ 0, as shown in Fig. 7a.
5.4.2. Cauchy– Born reduction of the equilibrium matrix

We now search for states of self-stress which are unit-cell periodic and which do support
macroscopic stress r̄. Anti-periodic traction conditions on the Kagome lattice unit cell of
Fig. 3b imply

f ð1Þ þ f ð4Þ ¼ f ð2Þ þ f ð5Þ ¼ f ð3Þ þ f ð6Þ ¼ 0. (39)

Recall that f ðlÞa ¼ f aðjlÞ for l 2 f1; 2; 3g, f ð4Þa ¼ f aðj1 þ a1 � a2Þ, f ð5Þa ¼ f aðj2 � a2Þ, and
f ð6Þa ¼ f aðj3 � a1Þ. Application of (39) to the equilibrium statement A � t ¼ f yields the
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reduced equilibrium relation Ā � t̄ ¼ 0 given by
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0 1
2
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2
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ffiffi
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p

2
0 �

ffiffi
3
p

2

ffiffi
3
p

2
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ffiffi
3
p

2
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2

�1 0 � 1
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1 0ffiffi
3
p

2
0 0 �

ffiffi
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p

2
0 0

0 1 � 1
2

0 �1 1
2

0 0
ffiffi
3
p

2
0 0 �

ffiffi
3
p

2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
�

t1

t2

t3

t4

t5

t6

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

0

0

0

0

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(40)

for the six bars as labelled in Fig. 4c. The relation (40) implies that there are three
independent bar tensions: t1 ¼ t4, t2 ¼ t5, and t3 ¼ t6. These three bar tensions support an
arbitrary state of macroscopic stress fs̄11; s̄22; s̄12g. They correspond to the three states of
self-stress in the Bloch-wave formulation at w1 ¼ w2 ¼ 0, and are plotted in Fig. 9a–c.

A comparison of (40) and (36) reveals that B̄ ¼ Ā
T
, as one would expect from

application of the principle of virtual work. This means that NulðĀÞ ¼ NulðB̄
T
Þ, and the

states of self-stress satisfying (40) may be interpreted kinematically as the bar elongations
disallowed by a unit-cell periodic joint displacement field.
5.5. Macroscopic stiffness

In order to determine the macroscopic stiffness of the Kagome lattice, we assume that
the tension tk in each bar k is related to the bar elongation ek by tk ¼ EAek=L, where E is
the elastic modulus of the constituent truss material, A is the cross-sectional area of the
truss members, and L is the member length. The strain energy per unit area of the unit cell
of Fig. 3b is W ¼ tkek=2S, where the unit-cell area is S ¼ 2

ffiffiffi
3
p

L2 and k sums from 1 to 6.
The macroscopic stress–strain constitutive law is given by r̄ ¼ qW=qē ¼ L̄ : ē, where the
components of the macroscopic stiffness tensor L̄ are given by

L̄abgd ¼
q2W ðēÞ

q�̄abq�̄gd
¼

EA

LS

qekðēÞ

q�̄ab

qekðēÞ

q�̄gd
8a; b; g; d 2 f1; 2g (41)

summed over k 2 f1; 2; . . . ; 6g. Appendix A presents a summary of the conditions for
uniqueness of the solution to the macroscopic boundary value problem according to the
nature of L̄.

Recall that the anti-periodic tractions imply t1 ¼ t4, t2 ¼ t5 and t3 ¼ t6. For consistency,
we set e1 ¼ e4, e2 ¼ e5 and e3 ¼ e6. The relation (38) becomes

e1 ¼ e4 ¼ �̄11 þ 3�̄22 þ 2
ffiffiffi
3
p

�̄12
� �

L=4

e2 ¼ e5 ¼ L�̄11

e3 ¼ e6 ¼ �̄11 þ 3�̄22 � 2
ffiffiffi
3
p

�̄12
� �

L=4

9>=
>;. (42)

These relations give a unique prescription for the bar elongations for an arbitrary state of
macroscopic strain. Substitution of (42) into (41) yields eight non-zero macroscopic
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stiffness components:

3L̄1111 ¼ 3L̄2222 ¼ L̄1122 ¼ L̄2211 ¼ L̄1212 ¼ L̄2121 ¼ L̄1221 ¼ L̄2112

¼ EA
ffiffiffi
3
p

=8L. ð43Þ

Note that the isotropic tensor L̄ is positive-definite. Consequently, the Kagome lattice is
macroscopically stiff for all macroscopic stress and strain states.
The matrix form of r̄ ¼ L̄ : ē reads

s̄11
s̄22
s̄12

8><
>:

9>=
>; ¼

r̄E

8

3 1 0

1 3 0

0 0 2

0
B@

1
CA �

�̄11

�̄22

�̄12

8><
>:

9>=
>;, (44)

where r̄ ¼ A
ffiffiffi
3
p

=L is the first-order relative density of the Kagome lattice. The response is
isotropic with an effective Young’s modulus Ē ¼ r̄E=3 and Poisson’s ratio n̄ ¼ 1

3
.

6. The triangular–triangular lattice

A close link exists between the Kagome lattice and the so-called triangular–triangular
T–T lattice shown in Fig. 10. The T–T lattice has the same topology as the Kagome lattice
and its in-plane elastic response is isotropic due to its three-fold symmetry. In fact, a finite
collapse mechanism with a single degree of freedom causes the T–T lattice to expand
volumetrically to the Kagome lattice. This is evident in a plot of unit cell area S versus the
characteristic angle o, see Fig. 11. The Kagome lattice is extremal in unit cell area S, and
can be collapsed hydrostatically either by decreasing or increasing o away from p=3. Full
collapse of the angle o to either zero or 2p=3 causes the structure to take on the fully
triangulated form; but this limit is not achievable due to interference of the bars and to the
required jump in connectivity from 4 to 6.
(a) (b)

Fig. 10. (a) Triangular–triangular lattice with bar length L; (b) selected primitive unit cell with labelling required

only for joints 1, 2 and 3.
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Fig. 11. Dependence of unit-cell area S upon angle o. The Kagome lattice has o ¼ p=3, the triangular–triangular
lattice (‘‘T–T’’) has o ¼ p=6, and the triangular lattice has o ¼ 0. All lattices have bar length L.
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We proceed to consider the structural mechanics of the pin-jointed T–T truss.
Preliminary analysis reveals that no infinitesimal periodic collapse modes exist. However,
inextensional collapse modes do arise which produce macroscopic strain. These modes are
analysed in the following section.

6.1. Mechanisms which generate macroscopic strain

6.1.1. Cauchy– Born reduction of the kinematic matrix

Consider the representative unit cell shown in Fig. 10b for the T–T lattice. It has the
same topology as the Kagome unit cell of Fig. 3c, but has reduced symmetry. Infinitesimal
collapse modes which generate macroscopic strain are postulated in accordance with the
Cauchy–Born statement (19). The kinematic relation B � d ¼ e for the T–T lattice of
Fig. 10b follows from the prescription (6). Using the orthonormal basis fi1; i2g as shown in



ARTICLE IN PRESS
R.G. Hutchinson, N.A. Fleck / J. Mech. Phys. Solids 54 (2006) 756–782776
Fig. 10b, we have
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dT
¼ ½d

ð1Þ
1 d

ð1Þ
2 d

ð2Þ
1 d

ð2Þ
2 d

ð3Þ
1 d

ð3Þ
2 d

ð4Þ
1 d

ð4Þ
2 d

ð5Þ
1 d

ð5Þ
2 �, (46)

and

eT ¼ ½e1 e2 e3 e4 e5 e6�. (47)

Now follow a similar methodology to that outlined in Section 5.4; the displacements of the
boundary nodes (2–5) are related to the macroscopic strain ē by

d ð4Þa � d ð3Þa ¼

ffiffiffi
3
p

2
�̄a1 �

3

2
�̄a2

� 	
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ffiffiffi
3
p
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3

2
�̄a2

� 	
L. (48)

Once these displacements are known, the position of the inner joint follows immediately.
Upon applying (48) to (45)–(47), the reduced kinematic statement B̄ � d̄ ¼ ē is
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8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

e1

e2

e3

e4 þ g4ðēÞ

e5 þ g5ðēÞ

e6 þ g6ðēÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
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, (49)

where g4ðēÞ ¼ ð
ffiffiffi
3
p

�̄12 � 3�̄22ÞL=2, g5ðēÞ ¼ �ð3�̄11 þ 3�̄22 þ 4
ffiffiffi
3
p

�̄12ÞL=4 and g6ðēÞ ¼ ð
ffiffiffi
3
p

�̄12�
3�̄11ÞL=2. First, the null space of B̄ is examined in order to search for inextensional
mechanisms ðe ¼ 0Þ which produce no macroscopic strain ðē ¼ 0). It is found that no such
mechanisms exist. Second, we search for inextensional mechanisms which produce
macroscopic strain. Row operations on (49) imply that

e1 � e3 � e4 þ e5 ¼ 3 �̄11 � �̄22 þ 2
ffiffiffi
3
p

�̄12
� �

L=4

e1 � e2 � e4 þ e6 ¼ 3ð�̄11 � �̄22ÞL=2

)
. (50)

Inextensional mechanisms ðe ¼ 0Þ satisfying (50) occur only for the equibiaxial strain state
�̄11 ¼ �̄22 with �̄12 ¼ 0. These collapse modes produce self-similar, volumetric contraction
or dilation of the unit cell. This contraction or dilation is sketched in Fig. 11 wherein the
unit-cell area S is parameterised by the angle o shown.
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Fig. 12. States of self-stress in the triangular–triangular lattice for w1 ¼ w2 ¼ 0.

R.G. Hutchinson, N.A. Fleck / J. Mech. Phys. Solids 54 (2006) 756–782 777
6.1.2. Cauchy– Born reduction of the equilibrium matrix

Recall that the Kagome lattice can support arbitrary macroscopic stress due to the fact
that it has three internal states of self-stress. In contrast, the T–T lattice has a single strain-
producing collapse mechanism ð�̄11 ¼ �̄22; �̄12 ¼ 0Þ. Consequently, the T–T lattice is unable
to support hydrostatic stress and has only two states of self-stress. We now search for these
unit-cell periodic states of self-stress in the T–T lattice. Application of the Cauchy–Born,
anti-periodic traction condition to the unit cell of Fig. 10b yields

f ð2Þ þ f ð5Þ ¼ 0 and f ð3Þ þ f ð4Þ ¼ 0.

The unit cell equilibrium equation A � t ¼ f is thereby reduced to the form Ā � t̄ ¼ 0 where
Ā ¼ B̄

T
, and B̄ has already been given in (49). Admissible bar tensions t in the reduced

vector t̄ are those spanned by NulðĀÞ. These states of self-stress are sketched in Fig. 12, and
they satisfy

state 1: t1 ¼ �t2 ¼ �t4 ¼ t6; t3 ¼ t5 ¼ 0 (51)

and

state 2: t1 ¼ t2 ¼ �
1
2

t3 ¼ �t4 ¼
1
2

t5 ¼ �t6. (52)

The method of sections can be used to relate these bar tensions to the states of macroscopic
stress. In state 1, we have fs̄11 ¼ �s̄22; s̄12 ¼ 0g while in state 2 we have
fs̄11 ¼ s̄22 ¼ 0; s̄12a0g. Both states of self-stress are purely deviatoric. This is consistent
with the hydrostatic collapse mechanism f�̄11 ¼ �̄22; �̄12 ¼ 0g.
6.2. Macroscopic stiffness

The macroscopic stiffness tensor L̄ of the T–T lattice can be deduced from the strain
energy density per unit area W of the unit cell. Assume that each bar tension tk is related to
the bar elongation ek according to tk ¼ EAek=L, where A and L are the cross-sectional
area and length of each bar, respectively and E is the Young’ s modulus, as before. The
strain energy density is W ¼ tkek=2S where the unit cell area is S ¼ 3

ffiffiffi
3
p

L2=2. The
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macroscopic stress–strain constitutive law is again given by r̄ ¼ qW=qē ¼ L̄ : ē and the
components of the macroscopic stiffness tensor L̄ are given by (41).
Following the procedure of Section 5.5, we assume that the bar elongations in (50) are

consistent with the states of self-stress (51) and (52) to obtain

e1 ¼ 3�̄11 � 3�̄22 þ 2
ffiffiffi
3
p

�̄12
� �

L=8
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p
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ffiffiffi
3
p
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L=8
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ffiffiffi
3
p

�̄12
� �

L=8

e5 ¼ �e3 ¼ �̄12L
ffiffiffi
3
p

=2

9>>>>>>>>=
>>>>>>>>;
. (53)

Then, using (53) in (41), the eight non-zero macroscopic stiffness components are:

L̄1111 ¼ L̄2222 ¼ �L̄1122 ¼ �L̄2211 ¼ L̄1212 ¼ L̄2121 ¼ L̄1221 ¼ L̄2112

¼ EA
ffiffiffi
3
p

=8L. ð54Þ

Note that L̄ is fourth-order symmetric, strongly elliptic and isotropic. The important
point here is that the macroscopic stiffness tensor (54) violates pointwise stability but not
strong ellipticity. Thus, the macroscopic prescribed-displacement boundary-value problem
(BVP) has a unique solution whereas the prescribed-traction (or mixed) BVP does not
(Triantafyllidis and Bardenhagen, 1996; Triantafyllidis and Schnaidt, 1993). Additional
details are given in Appendix A.
In matrix form, the stiffness relation reads

s̄11
s̄22
s̄12

8><
>:

9>=
>; ¼

3r̄E

32

1 �1 0

�1 1 0

0 0 2

0
B@

1
CA �

�̄11

�̄22

�̄12

8><
>:

9>=
>;, (55)

where r̄ ¼ 4
ffiffiffi
3
p

A=3L is the first-order relative density of the T–T lattice. The non-
uniqueness of the prescribed-traction BVP is consistent with the singular nature of (55).
Specifically, r̄ vanishes for all hydrostatic strain states, �̄11 ¼ �̄22 and �̄12 ¼ 0, as demanded
by the hydrostatic collapse mechanism shown in Fig. 11.

7. Concluding remarks

In this study matrix methods of linear algebra are combined with Bloch’s theorem in
order to determine the structural mechanics of the periodic, pin-jointed truss. Periodic
collapse mechanisms and periodic states of self-stress are deduced from the four
fundamental subspaces of the kinematic and equilibrium matrix for the periodic structure.
The methodology developed is then applied to the Kagome lattice and the triangular–
triangular T–T lattice. The Kagome lattice does not have macroscopic strain-producing
mechanisms, but does passess periodic, inextensional collapse mechanisms.
The macroscopic elastic stiffness of a set of 2D, pin-jointed periodic lattices has been

evaluated via the Cauchy–Born, uniform strain, hypothesis. It is shown that the Kagome
lattice has macroscopic stiffness for all macroscopic loading states, and also possesses three
unit-cell periodic states of self-stress in equilibrium with an arbitrary macroscopic stress
state.
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Fig. 13. Venn diagram summarising pin-jointed kinematics of selected planar trusses.
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The T–T lattice is stiff except for the case of equibiaxial straining: it possesses a collapse
mechanism of pure dilatation. Consequently, it can carry two arbitrary states of deviatoric
macroscopic stress. Bloch wave analysis reveals that the T–T lattice has no periodic
collapse mechanisms.

It is instructive to classify the structural performance of pin-jointed lattices. The square
lattice has been re-visited recently by Hutchinson (2004) and the mechanics of the
hexagonal lattice by Gibson and Ashby (1997). The square, hexagonal and Kagome
lattices have periodic collapse mechanisms, while the square, hexagonal and T–T lattices
have macroscopic strain-producing collapse mechanisms. The fully triangulated lattice has
neither type of mechanism. Fig. 13 summarises these results in Venn diagram form.

The overall behaviours are consistent with the fact that periodic structures of low nodal
connectivity (Z ¼ 3 for the hexagonal lattice) contain strain-producing collapse mechan-
isms while periodic lattices of high nodal connectivity (Z ¼ 6 for the triangulated lattice)
are stiff under all macroscopic loading states. Periodic lattices with a connectivity of Z ¼ 4
appear to be the transition case: the square lattice is stiff under some stress states, yet
possesses macroscopic strain-producing collapse mechanisms. The Kagome lattice is stiff
under all loading states, but it can collapse by periodic mechanisms which produce no
macroscopic strain.

It is appreciated that practical lattice structures have joints which are neither pin-jointed
nor rigid-jointed. The assumption of pin-joints is a useful approximation, however, for
structures containing slender members, as the bending stiffness of the bars is much less
than the axial stiffness.

The macroscopic stiffness of both 2D and 3D lattice materials is closely related to nodal
connectivity. For example, open-celled foams with a nodal connectivity of 3–4 bars
per joint rely upon the bending stiffness of joints and bars for macroscopic stiffness. In
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pin-jointed configurations they would exhibit strain-producing collapse mechanisms. The
octet truss on the other hand has a nodal connectivity of 12 and is stretching-dominated.
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Appendix A. Macroscopic strain energy density and uniqueness of macroscopic solution

Consider a unit cell Y of a periodic 2D pin-jointed truss made from linear elastic bars of
length L. The unit cell is of area S and comprises b bars. We postulate the existence of a
macroscopic (or effective) strain energy density defined, for the unit cell of b bars, as

W ðēÞ ¼
1

2
r̄ðēÞ : ē ¼

1

2S
tkðēÞekðēÞ. (A.1)

Here, we sum over the repeated index k for k 2 f1; . . . ; bg. The bar tensions are tk ¼

ðEA=LÞek where, for each constituent (uniform) lattice member, E is the elastic modulus, A

is the cross-sectional area, and L is the bar length. Kinematic and constitutive linearity
assumed implies that W ðēÞ is a quadratic form in ē, and

r̄ðēÞ ¼
qW ðēÞ

qē
¼ L̄ : ē ¼

EA

LS
ekðēÞ

qekðēÞ

qē
. (A.2)

L̄ is the fourth-order, linearly elastic, macroscopic stiffness tensor, and its components may
be calculated via

L̄abgd ¼
q2W ðēÞ

q�̄ab q�̄gd
¼

EA

LS

qekðēÞ

q�̄ab

qekðēÞ

q�̄gd
8a; b; g; d 2 f1; 2g, (A.3)

where each component of qek=q�̄ab is a constant and L̄ has the symmetries

L̄abgd ¼ L̄gdab ¼ L̄abdg ¼ L̄bagd. (A.4)

The following discussion regarding stability and uniqueness is based upon Gurtin (1972,
1981), Marsden and Hughes (1994), Ogden (1997), Simo and Hughes (1998) and Han and
Reddy (1999). The macroscopic strain energy density function W ðēÞ is convex, and the
macroscopic stiffness tensor L̄ is pointwise stable and positive-definite, if there exists a
positive real b such that

n : L̄ : nXb n : n (A.5)

for all symmetric second-order tensors n. When L̄ is positive-definite, uniqueness is
ensured for all macroscopic boundary conditions.
Note that the macroscopic stiffness tensor L̄ satisfies the strong ellipticity condition if

there exists a positive real a such that

a� b : L̄ : a� bXakak2kbk2 8a; b 2 R2. (A.6)

This is true when the macroscopic acoustic tensor L̄abgdbbbd is positive-definite. Physically,
this implies that all possible macroscopic wave speeds are real (not imaginary) and ensures
the elliptic character of the governing macroscopic equilibrium equations. Inequality (A.6)



ARTICLE IN PRESS
R.G. Hutchinson, N.A. Fleck / J. Mech. Phys. Solids 54 (2006) 756–782 781
ensures uniqueness for the macroscopic, prescribed-displacement problem and precludes
highly localised solutions (e.g. shear bands). Note that pointwise stability implies strong
ellipticity but not conversely.
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