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ABSTRACT

The dominant compressive failure mechanism of modern
fibre composites is microbuckling. This is
demonstrated in the form of a fracture map. For
polymer matrix composites microbuckling is a plastic
event. An analysis is presented of both elastic and
plastic microbuckling of unidirectional composites
under remote axial and shear loading. The effects of
fibre misalignment and inclination of the band are
included. We find that a simple rigid-perfectly
plastic analysis suffices for plastic microbuckling; it
demonstrates that the axial compressive strength

increases with decreasing fibre misalignment,
increasing shear strength of the matrix, and decreasing
remote shear stress. Finally, a calculation is

performed of the remote axial and shear stress required
to propagate an existing microbuckle. We find that the
axial propagation stress is typically less than the
shear yield stress of the matrix material.

1. INTRODUCTION
Most fibre reinforced polymer matrix composites have a

compressive strength less than their tensile strength
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due to microbuckling of the load bearing fibres aligned
with the loading direction. In many applications
compressive strength is a design limiting feature.
Over the past ten years significant improvements have
been made to the tensile strength, impact resistance
and toughness of these composites. Unfortunately,
compressive strength has shown little concomitant
improvement.

In this paper, previous experimental studies
and theoretical models of microbuckling are reviewed.
A new analysis of microbuckling is presented, based
upon the kink band analysis of Budiansky (1983). The
composite is subjected to remote axial compression and
shear. Material inside and outside of the kink band is
taken to be homogeneous but anisotropic. The kink band
response is calculated for a variety of constitutive
behaviours: (1) elastic, (2) rigid-perfectly plastic,
and (3) elastic-perfectly plastic. An analysis is then
given for the remote axial and shear stress required to
propagate a microbuckle zone into undamaged material
across the section of a specimen. The analysis is
based upon a simple energy balance. We find remarkably
low values for the propagation stress. This suggests
that the compressive failure stress of large sheet
structures containing a microbuckle near a stress
raiser may be much less than that predicted for small
undamaged specimens.

The paper deals only with the response of
unidirectional unnotched composites. In many practical
applications notched multi-directional composites are

used. A design methodology is now emerging to deal
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with the effects of notches and off-axis plies (see for
example, Starnes and Williams (1982), Rhodes, Mikulas
and McGowan (1984), Soutis and Fleck (1990) and Soutis,
Fleck and Smith (1990)).

2. PREVIOUS THEORETICAL WORK

Rosen (1965) assumed that compressive failure is by
elastic microbuckling: he modelled the fibres as
columns supported by an elastic foundation. He
recognised that the composite plate may be a short
stiff structure which does not buckle in compression on
the macroscale, but the individual, fibres have small
diameters and buckle as slender columns on the
microscale. Two possible buckling modes were
distinguished, the shear mode and the extension mode.
For the shear mode, shear deformation occurs in the

matrix material, and the compressive strength o, is

given by,
o = Gm (2.1)
c l—vf )
where Gm is the shear modulus of the matrix and Ve is
the fibre volume fraction. In the extension mode,

matrix material suffers direct straining in a direction
transverse to the fibre axis. The shear mode predicts
a lower strength than the extension mode and is assumed
to dominate.

The Rosen anaysis overpredicts strength
typically by a factor of four. This suggests that
microbuckling is a plastic rather than an elastic

event. Several investigators (eg. Lager and June
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(1969)) have introduced empirical correction factors in
order to improve the agreement between the Rosen theory
and experiment.

Argon (1972) and Budiansky (1983) identified

the shear yield stress k of the matrix material and the

initial misalignment angle ¢ of fibres in the
microbuckled band as the main factors governing the

compressive strength.The misalignment angle ¢, and band
inclination B are defined in the insert in Fig.l1l. For a

microbuckled

band
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Fig.1: Effect of shear yield stress k of polyester
matrix upon compressive strength o, of glass and Kevlar

composites. Data taken from Piggott and Harris (1980).
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rigid-perfectly plastic matrix material, Budiansky

found that the compressive strength o, is given by

b 3
o =% (2.2)
¢
where,
* Ty, 2 X
kK =k (1+ (Ty tan2B) (2.3)

and UTY is the yield stress of the composite transverse
to the fibre direction.

There was little need to include fibre bending
explicitly in the analysis: a kinking analysis suffices
wherein material in the microbuckled band is treated as
a homogeneous anisotropic solid. This approach is
developed later in the present paper.

Recently, Steif (1988) has modelled the effect
of fibre-matrix debonding upon the elastic
microbuckling of fibre composites. The model is an
adaptation of the Rosen analysis to situations where
slip occurs at the fibre-matrix interface; slip begins
when the interfacial shear stress attains a critical
value. Interfacial shear failure is similar in many
respects to shear yielding of the matrix. Steif's
model gives reasonable predictions for ceramic matrix
composites when the wavelength of the buckle equals the

specimen length. This assumption is unrealistic.

3. AVAILABLE EXPERIMENTAL EVIDENCE

From the published literature it is apparent that
unidirectional composites fail by two distinct failure
mechanisms, fibre microbuckling and fibre collapse.

When the matrix yield stress is sufficiently
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high, the fibres suffer compressive collapse. This is
due to fibre yielding in the case of steel or Kevlar
fibres (see Moncunill de Ferran and Harris (1970),
Greszczuk (1972, 1975), Piggott and Harris (1980), and
Piggot (1981)). Alternatively, fibre collapse is by
compressive fracture from defects in the case of carbon
fibres or glass fibres (see Ewins and Ham (1973), Ewins
and Potter (1980), and Piggott and Harris (1980)).
Available experimental evidence for polymer
matrix composites supports the hypothesis that
microbuckling is a plastic rather than an elastic
phenomenon. A summary of the measured compressive
strengths for unidirectional, carbon fibre polymer

matrix composites is given in Table 1. The first three

Composite o ——G—(MPa) k (MPa)| ¢
S Ref. c 1-v
ystem f
(MPa)
T800/924C |Soutis (1989) |1615 6000 60 |2.6°
HITEX |U.S.Polymeric 1447 5510 40 |1.4°
12K/E7 jK8 (1990)
HITEX 46-|U.S.Polymeric 1274 4400 67 |3.0°
3B/ETKST (1990)
AS4/PEEK |Jelf (1990) | 1200 4000 78 |3.4°
HS/MY720 |[Curtis and 400 3000 55 |7.5°
(Woven) [Bishop (1984)
Table 1: Comparison of measured compressive strength

g, of wunidirectional carbon fibre polymer matrix

composites with predictions of the Rosen model,
equation 2.1 and the Budiansky model, equation 2.2.
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data sets refer to carbon fibre epoxy composites, the
system AS4/PEEK is a carbon fibre Peek composite, and
the system HS/MY720 refers to a carbon fibre epoxy
0°/90° woven layup. The table includes predicted
strengths by the Rosen (1965) model, and the inferred

misalignment angle ¢ by substituting strength values o,

and k into equation 2.2. For simplicity we assume
K . .
B =0 so that k' = k. The error in the inferred values

of ¢ is at most 20% by this approximation, for typical
values of ET/G and B. We conclude from Table 1 that

the Rosen model overpredicts compressive strength by a

factor of approximately 4. The inferred values for ¢

from Budiansky's model, equation 2.2, agree with

typical measurements of ¢, Jelf (1990). For polymer
matrix composites, the matrix yields rather than
microcracks. We are justified in viewing k as a
plastic yield stress.

Direct experimental evidence to support
equation 2.2 comes from measurements of the
microbuckling strength of glass fibre and Kevlar fibre
reinforced polyester by Piggott and Harris (1980).
They varied the matrix shear yield stress by
controlling the state of polyester resin cure from just
jelled to fully cured. The compressive strength is
proportional to k, provided that failure is by
microbuckling, see Fig.l. This behaviour supports

equation 2.2. The slope of the graph in Fig. 1 gives

¢ = 3.7°, assuming B = O. When k is increased to
sufficiently high values the glass or Kevlar fibres

collapse prior to microbuckling.
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Early carbon fibre epoxy composites failed by
fibre collapse at test temperatures below approximately
100°C, see Fig. 2. At higher temperatures
microbuckling occurred; the progressive decrease in
microbuckling strength with increasing temperature T
for T > 100°C is associated with the decrease in matrix
shear yield stress k with increasing T, in accordance
with equation 2.2. Over the last decade the
compressive strength of carbon fibres has doubled,

while epoxy matrices have changed little in strength

C. (MPa)
‘]“~\\ 42000
N\
fibre-collapse \\ robucki
(XAS carbon \ microbuckling
fibre) \/
1500+ N\
N\
AN
N\

\

) \\
1000+ %&\\xsx

fibre-collapse

(HT-S carbon X
fibre) microbuckling \x
X
500 + \
X
1 1 1 | |
-100 -50 0 50 100 150
T(c)
Fig. 2: Effect of temperature T upon failure strength
o, of carbon fibre epoxy matrix composites.

Experimental data x-x are taken from Ewins and Potter
(1980). The dotted line gives the typical response of
more recent systems. /
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due to demands for high impact strength and high
toughness of the composite. Thus the transition
temperature from microbuckling to fibre collapse has
shifted from approximately 100°C to -40°C (Barker and
Balasundaram (1987)), as shown in Fig. 2. Thus present
day carbon fibre epoxy composites fail by microbuckling
at ambient and at elevated temperatures.

The failure mechanisms exhibited by a

unidirectional fibre composite may be summarised in a

fracture diagram, with axes k/¢ and Gm/(l—vf), as shown
in Fig. 3. Failure is by three distinct mechanisms:
1. Elastic microbuckling. Rosen's analysis predicts a

microbuckling strength o, given by equation 2.1.

g & & &
SRR
o' o 8 o
e é?,i &l ‘3| 7
o | [/
o L/
1000+ } | | : ; Fibre
l | | ? Collapse"
I Elastic s
4; microbuckling f;
¢ | | l | / Oc =540MPa Data from Piggott
r
(MPa) I l | éj and Harris (1980)
| % o S AN
500
l | l Plastic __ -~ ___________I'OO_MPG
|| | mierobuakiing T T T g0 uea
| =~ 200MPa
~_“______________________géfngMPa
| |
0 500 1000 1500
m
-1—_'\',"- (MPa)

Fig.3: Fracture map for glass fibre polyester matrix
composite. Data taken from Piggott and Harris (1980).
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2. Plastic microbuckling. The Budiansky analysis

predicts a strength given by equation 2.2. For

*
simplicity we assume B = O, hence k = k.
3. Fibre collapse. This occurs when the stress in the

fibres attains a critical fracture value Tps such that

o (3.1)

c ~ V%

The fracture diagram contains contours of
compressive strength o, given by equations 2.1-2.3 and
3.1. The boundary of the fibre collapse regime depends
upon fibre volume fraction Vf3 otherwise the diagram is
unique for a given fibre reinforcement.

Data for glass fibre reinforced polyester are
included in Fig. 3, taken from the work of Piggott and
Harris (1980). The data are replotted from Fig. 1.
The experimental values support the common finding that
the yield stress and elastic stiffness of polymer
matrices scale in a linear fashion: thus the
compressive strength of the fibre composite varies
linearly with elastic modulus. This has led several
investigators (for example Dow and Gruntfest (1960) and
Rosen (1965)) to conclude erroneously that
microbuckling is an elastic event for polymer matrix
composites.

It is clear from the fracture diagram that the
maximum attainable compressive strength is dictated by
the intrinsic compressive fracture strength of the
fibres. This strength is rarely achieved in practice
for polymer matrix composites; requirements for high
composite toughness and impact strength dictate the use

of matrices with a low yield stress and high ductility.
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Thus, plastic microbuckling is the usual failure mode
in compression.

The ceramic matrix of ceramic fibre/ceramic
matrix composites displays a non-linear response due to
plasticity or to microcracking, Evans and Adler (1978).
A plastic microbuckling analysis remains appropriate
for such systems.

Preliminary unpublished tests by the authors
show that elastic microbuckling occurs in a glass
fibre/silicone rubber matrix composite. No systematic
experimental investigations of elastic microbuckling in

elastomeric matrix composites were found from the

literature.

4. KINKING ANALYSIS
We shall analyse the behaviour of a kinked band of
infinite length and finite width w, oriented at an

angle B as shown in Fig. 4. First we consider the

Fig.4: Detailed geometry of kink band.
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kinematics and equilibrium of the band. In subsequent
sections we explore the effect of the constitutive

behaviour upon the buckling response.

4.1 Kinematics
We assume inextensional fibres but allow the composite
to undergo direct straining transverse to the fibre
direction, and shear straining parallel to the fibre
direction. The fibres are assumed to have broken along
the boundaries of the band. We smear out the fibres
and matrix, and consider the composite to behave as a
homogeneous anisotropic solid. Fibre bending is not
treated explicitly; Budiansky has included the effects
of fibre bending elsewhere, Budiansky (1983). He found
that except for its role in setting the kink band
width, fibre bending has only a small influence on the
collapse response and can be neglected for most
practical applications.

Consider the buckled band shown in Fig. 4. An

arbitrary point P has a position vector r,

r=¢§, €1 + &2 &> (4.1)

in terms of Cartesian co-ordinates (§,,f,) and fixed
orthonormal base vectors (e1.€2) which  are
instantaneously aligned with the fibre direction in the

band. The velocity v of the point P is
y=Yy v e + X$ €2 (4.2)
where 7 is the remote shear strain rate parallel to

the unbuckled fibres, é is the rotation rate of the
fibres in the band, and the fixed unit vector e,, and

lengths x and y are defined in Fig. 4. We assume the
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remote direct strain rate transverse to the fibres

equals zero.

The velocity strain rate é in the band is

Sk (zvy+ (xv)) (4.3)

where the superscript T denotes the transpose and the
gradient operator Vv is

d d
Y= &1 gt &2 5F, (4.4)

The quantitites x, y, £, and £, are related by

E, + E> tan (B - ¢ - ¢)
£, cosp sec (B - ¢ — ¢) (4.5)

X

Il

and, y

Here, 3 is the initial misalignment angle of
fibres in the band; it serves as an imperfection.

Unit vectors e; and e,, aligned with respect
to the remote fibre direction as shown in Fig. 4, can

be resolved into the ¢, and e, directions as,
€1 = €1 COS(-‘; + ¢) - €2 sin(&: + @)
ez = €1 sin(¢ + ¢) + 5 cos($ + ¢) (4.6)

We can now evaluate the strain rate via

equations 4.2 - 4.7, to give
&= (¢tan(B-9-9) - cos B sin($+¢) sec(P-9-9))eea
+ %(¢+rmcosPeos (P+)sec(B-4-9)) (e1e2 + €ae1)  (4.7)
But é equals [éT €ExEx * % ’.7(91.(22 + €2€4)]
where by definition éT is the direct strain rate

transverse to the fibres in the band, and v is the

shear strain rate in the band. Identification of this
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expression for € with equatioﬁ 4.7 gives,
ep = dtan(B-4-¢) —1® cos B sin(F+4) sec(B-3-4)
and, v =¢ + v cos B cos($ + ¢) sec (B - ¢ - ¢) (4.8)

For the case of vanishing remote shear,

equations 4.8 may be integrated directly to give,

= on [cosgﬁ—$;¢)]
cos(ﬁ—$)
and v = ¢. (4.9)

et

The band boundary rotates at a rate é which
depends upon the remote shear strain rate ;m,
B = - v cos3B (4.10)
Integration of 4.10 yields,
tanf = tanBo - (4.11)

where Bo is the initial inclination of the band.

4.2 Equilibrium
Now consider equilibrium of the band. Equating the

traction on both sides of the band boundary gives,
ne-g®=n-g (4.12)

where n = e; cosf3 + e, sin B is the unit normal to the

band, the remote stress o® is,

go = -0g® e e +T° (e €5 + €5 €4) (4.13)

and the stress inside the band o is,

g = UL €1 &4 F UT €z €5 + T(eq €5 + €5 €,) (4.14)

Here aL is the direct stress in the fibre direction.
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Substitution of 4.13 and 4.14 into 4.12, gives

via 4.6 the two equilibrium statements,

- o© cosB cos(9 + ¢) + T sin(B + ¢ + ¢)

=7 sin(B - ¢ - ¢) + o cos(B - ¢ - ¢) (4.15)
and ow cos B sin(¢ + ¢) + T cos(B + ¢ + ¢)

=7 cos(B - ¢ - ¢) +opsin(B-¢-9) (4.16)

The longitudinal stress op

direction in the band is of limited interest (the

along the fibre

fibres are inextensional), and we consider equation
4.15 no further. The stress components O and T are of
interest, and appear explicitly in our suggested
constitutive laws for the band; we shall make extensive
use of equation 4.16 in the calculation of the buckling

response of the kinked band.

Note that the stress rates GL, UT and T
defined with respect to the rotating fibres are
objective stress rates which are not equal to the
Jaumann stress rates. Nevertheless, they appear to be

the natural choice.

5. ELASTIC MICROBUCKLING

In this section we calculate the buckling load and the
post buckling response for an elastic composite under
remote compressive axial stress o® and remote shear
stress T®. Material inside and outside of the kinked
band has a transverse stiffness E., and a shear

T
stiffness G, such that,

T® = Gy®, T = Gv, o = ETeT (5.1)
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For simplicity, we assume remote proportional loading,

T® = eg® (5.2)

where the dimensionless parameter e is fixed, and

neglect the presence of any imperfections, ¢ = O.
Budiansky (1983) has argued elsewhere that
imperfections produce only small knock-down factors
upon the buckling load, and can be neglected.

First, we calculate the buckling load. Ve
differentiate the equilibrium equation 4.16 with
respect to ¢ and make use of equations 4.8, 4.10, 5.1
and 5.2, to give,

£o(0) ULEL = ¢(9) (5.3)
where, f,(¢) = cosfB sing + e g sinB cos? B sing

G

+ e cos(B + ¢) + e %m cos® B sin(B + ¢) - e cosP cos¢

- e '(r—;cos2 B sin(B - ¢) + e -(-:EI- cosf3 sing tan(B - ¢)

T
e g cos? B cos(B-¢)

£2(4) = cos(B - ¢) + g sin(B - ¢)
e/
+ El sin(f - ¢) tan(B - ¢) - 5= cos(B - 9)

- g—m cosf cos¢p + e g—w sin(B + ¢) (5.4)

In the limit ¢ - 0,f,(¢) - 0. Hence f,(0) =0

by equation 5.3, and the buckling load a*g/G is

T
2_1-'-0 tan Bo (5.5)
G_1—2etanﬁo :

In equation 5.5, ﬁo is defined as the limit of fB as
¢ - 0, and not the inclination of the band boundary at

o® = 70 = (Q,
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That is, Bo is the initial inclination at buckling.

Surprisingly, we find from equation 5.5 that a
negative value of remote shear stress 1™ = e 0% reduces
the buckling load. For a fixed 7w/0%® value there
exists a critical initial inclination Bc such that o'g/G

is a minimum; this is demonstrated in Fig. 5a.

(2)

minimum, 3,= B,

05

0 ! 1 L L 1 |

20° 30°
Bo

Fig.5(a): Effect of initial band inclination Bo upon
the elastic buckling stress afg, for the case E‘T/G = 4.
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An interaction diagram showing the buckling
locus for ﬁo = ﬁc is given in Fig. 5b. The collapse
locus is sensitive to the value assumed for ET/G,
(Typically, Eﬁ/G X 4). Equation 5.5 predicts Bc =0
for the limit of vanishing remote shear stress. This
is in disagreement with typical measurements of band
angle for ceramic fibre polymer composites, where the
observed angle is Bo = 10° - 30°. Budiansky (1983)
argues via an elastic bending analysis that geometrical
imperfections induce the onset of plastic yielding
along an inclined domain at ﬁo > 0. Thus, in order to
achieve Bo > 0 we must assume the presence of
imperfections and assume the material is able to yield

plastically.
(b)

- o
&40

—t?

G
Fig.5(b): Interaction diagram for elastic
microbuckling. Plot of buckling locus for weakest

inclination ﬁo = Bc, for a range of ET/G values.
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For most practical cases ET/G > 1 and the
presence of remote shear has only a small influence on

the buckling load ag/G as shown in Fig. 5b.

5.1 Elastic Post Buckling Response
The post buckling response is determined by integrating

numerically a system of 4 linear 1lst order differential

equations:
YD), (@ L b o
U e €5 G e w
d_(o_gﬂ: ha (5> & gl B, ¢)
B on @ L Lp 9 (5.6)

The function h; is given by h, = f,/f, from
equations 5.3 and 5.4. Functions h,, h; and h,; follow

naturally from equations 4.8, 4.10 and 5.1,

fo
h, =1+ e ?:-cos ¢ cos B sec(B - ¢)
ET f, ET ‘
h; = ol tan(f - ¢) - e -G sin ¢ cos B sec(B - ¢)
1

fa

and h, = -e cos®p o (56.7)
1

The system of equations 5.6 is integrated from
¢ = O using a Runge-Kutta scheme. Since f;(¢) and
f,(¢) are of order ¢ for ¢ small, care is required in
evaluating h, = f,/f, for small ¢.

Typical results are shown in Fig. 6. For
Bo =0 and all 71%/0%w, the post buckling response is

stable: o%/G increases with increasing ¢. For Bo >0,
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a softening post bifurcation response is displayed.
Now consider the effect of T®/0® upon the buckling
response, as shown in Fig. 6. When T®/0® = 0, the
minimum buckling load ag/G is achieved at Bo = 0. When
To/0% = -1, a:/G is a minimum at Bo = 11.7°; the post
buckling response for this critical orientation is
softening initially and hardening later. A
snap-through response is predicted at large values of

|T/0| and B,» such as T@/ow = -1, B = 30°.

2.5

1.5

0_5 1 1 1 I N 1
0° 10° 20° 30°

Fig.6: Elastic post buckling response, F.r/G = 4.
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6. PLASTIC MICROBUCKLING

Polymer and metal matrix composites usually fail by
plastic microbuckling. Budiansky (1983) has previously
analysed plastic microbuckling by considering the
response to remote axial stress o® of a kink band made
from rigid-perfectly plastic material. We begin by
generalising this analysis for the case of a remote
stress o® with a remote shear stress 7o, Then, we
consider microbuckling of an elastic-perfectly plastic
solid under combined axial and shear stress. Plastic
microbuckling in a strain hardening solid will be

addressed in a future publication.

6.1 Rigid-Perfectly Plastic Solid

Consider the response of a rigid-perfectly plastic
composite containing a kink band as shown in Fig. 4.
The material is loaded remotely by an axial stress ow
and a shear stress 7©. In general, the kink band is
inclined at an angle B, and fibres in the kink band

suffer an initial misalignment ¢.

During collapse, non—-proportional plastic
straining occurs in the kink band. Remote material
remains rigid, thus B is constant and we can drop the
dist.inction between [ and ﬁo. Inclined kink bands
induce transverse stresses at the initiation of

kinking, so that a combined-stress plasticity law must

be invoked. We use arbitrarily a quadratic yield
condition,
o.
Ty2 T2 _
D+ ()7 =1 (6.1)

Ty
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where k and aTy are the shear and tensile transverse
yield stresses of the composite with respect to the
fibre direction.

It appears reasonable to assume that an

associated plastic flow rule applies. Then, by
normality, v = %-X
T
= (=2 A (6.2)
Ty

*

where the non-dimensional parameter A is positive for
active plastic straining.

Combining equations 6.2 with equations 4.8
(recalling that 7® = 0 since remote material is rigid),

gives,

UT 2 _
op =7 (55 tan (B -3 - 9) (6-3)

and, via equation 6.1,
o
Ty.2 - -
TEk(1+ (D) tan? (B-F-9)F  (6.4)
We can now obtain an expression for the o®

versus ¢ collapse response, by substituting the

equations 6.3 and 6.4 into 4.16,

Or, 2 - — -
k(1+(—) " tan®(B-3-4)) “cos(B-F-4)-Tocos (B+F+4)

agw = —
cosP sin(¢+¢)
(6.5)
For small ¢ and ¢, this simplifies to,
*
0% ~ _§T_:;:2_ (6.6)
¢+ ¢

o
where k* =k (1 + (~£X)2 tan® B)}5 as given by equation
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2.3. Equation 6.6 has been given previously by Batdorf
and Ko (1987) in the limit B = O. In the case of
vanishing remote shear, equation 6.6 reduces to
equation (2.2), given by Budiansky (1983).

For simplicity, we shall consider proportional
remote loading with 7© = eo®. Equations 6.5 and 6.6

then reduce to,

(o7
14(—0)?tan? (B-3-4) |

=3 _ cos(p-3-9) 3
* o — -
k 1+(-%¥)2tanzﬁ cosBsin(¢+¢)+ecos(B+o+¢)
(6.7)
and, Te.1+2+ Y7t (6.8)
k ¢ ¢
respectively.
Results
Equations 6.7 and 6.8 are compared in Fig. 7. We
[y .
Equation 6.8, all B
™ — — — Full solution, equation 6.7
Fig.7: Accuracy of small ¢ approximation for

microbuckling of a rigid-perfectly plastic solid.

UTy/k =2, ¢ = 2°,
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deduce that the small (¢ + ¢) approximation is

adequate. Matrix failure or fibre-matrix debonding
occurs at small values of ¢ (typically 3°) and the kink
band then loses its load carrying capacity. Thus,
equation 6.8 suffices over the range of validity of the
analysis.

It is evident from equation 6.8 that the

maximum value of remote stress o® (at ¢ = 0) is
critically dependent upon the misalignment angle ¢. As

¢ tends to zero, o® becomes unbounded; there is no
finite bifurcation load for the perfect structure. The
implication is that the materials manufacturer should

arrange processing conditions to maximise fibre

alignment, and thereby minimise ¢.

We also deduce from equation 6.8 that a
positive shear stress 7© reduces the buckling stress
fo This contrasts with the case of -elastic
microbuckling where a negative value of T® reduces the
bifurcation value of o». To gain insight into this
apparent paradox we consider next the buckling response

of an elastic-perfectly plastic solid.

6.2 Elastic-perfectly Plastic Solid

We now examine the buckling response of an
elastic-perfectly plastic composite, of geometry shown
in Fig. 4. Consider the general case of the kink band
inclined at an angle B, loaded remotely by o®w and 7.

The fibres in the band have an initial misalignment ¢.
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Typically, the response consists of two stages:
(a) An initial elastic response, followed by
(b) Matrix yielding and an elastic-plastic response.

We are interested in the early stages of

deformation, and assume that ¢, the various strain

measures and $‘are each small,such that equations
4.8 simplify to,
Y~ P+ Ao, er ~ ¢ tan B (6.9)

The shear strain in the remote material ~®
remains less than the shear yield strain 7y (= 0.1%-1%)
throughout the response. Thus B % Bo by equation 4.11.

(a) Initial Elastic Response
The equilibrium equation 4.16, the constitutive law 5.1
and equation 6.9 may be combined to give the initial

elastic response,

2
(G + ET tan® B) ¢
(1 -2 e tan B) e

Here, as elsewhere, we assume remote proportional

o® ~ (6.10)

loading with 7° = e ow.

The wmatrix yields when equation 6.1 is
satisfied. At this instant ¢ attains the yield value
¢y. Application of 5.1 and 6.9 gives,

T =Gv = G(¢y + e %2)
o,

1 = Egep = Ep ¢ tan B (6.11)

The value of o® at which yield commences, o® = a;, is

determined by substituting equation 6.10 and 6.11 into
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the yield condition 6.1, and solving for o® by the
Newton-Raphson method. Predictions are compared in
Fig. 8a with the buckling stresses aoé, ‘rg for a
rigid-perfectly plastic solid,

b3
k-T2

¢

which is a restatement of equation 6.6 with ¢ = O.
It is clear from Fig. 8a that the collapse
locus given by the rigid-perfectly plastic solid well

Collapse locus, rigid-plastic

1.0 solid. Equation 6.12

_ ——— Onset of yield in elastic-

o® Q plastic solid.
k*
0S5}
0
Fig.8(a): Comparison of collapse load ogt-p-/k* for

rigid-perfectly plastic solid with onset of yield load
— %
agg¢/k for elastic-perfectly plastic solid.

— 2 3 — o = -
E/G = (or,/k)* = 4, § = 2°, v = /G = 0.001.
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approximates the onset of yield in the
elastic-perfectly plastic solid. A positive shear
stress T decreases both the buckling stress ag for the
rigid-perfectly plastic solid, and the stress a; at
which the matrix yields for the elastic-perfectly

plastic solid. In the limit of e/¢ << 1 and ¢/¢ << 1,

a? and o2 reduce to the same expression,

om ~ oo ~ K* (1 - & (6.13)
y C ?
Consider the special case T = 0. Then

equations 6.11 and 6.1 give,

o, =51+ (292 (D7 e (6.14)
y G Or G
y
Rigid-ptastic, all B
— — — Elastic-plastic ¢ Onset of yield
I::O
C.oo
1
- I/
& P
k" ~_ 1> _ )
//// =0 B=0
7 ———%:0.p=20°
/1 d 005
0.5 // a®
1y //
AN
// © =005, p =20
/A““*‘~\1§=oos.p=m
o
I | Il
0 1 2 3
%,
Fig.8(b): Comparison of collapse response for

rigid-perfectly plastic solid with that for
lastic-perfectly plasti lid. G = /k)? = 4,
elastic-perfectly plastic soli ET/ (aTy )

¢ =2°, v = 0.001.
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o
If we assume for mathematical convenience el (—%X)z,
then equations 6.10 and 6.14 reduce to,
*
o = _k (6.15)
+
¢ ¢y

* Ty, %
where k' = k (1 + (—E¥)2 tan® B)“, as before. This

value for (a;, ¢y) lies on the o» versus ¢ response for
the rigid-perfectly plastic solid given by equation
6.6.

(b) Post Yield Response

After matrix yield, the elastic-perfectly composite
suffers both elastic and plastic straining in the kink
band. The plastic strain rate is normal to the yield
locus given by equation 6.1. A derivation of the
relevant equations is given in Appendix A. Here, we
describe only the results.

The pre and post yield response for the
elastic—perfectly plastic solid is compared in Fig. 8b
with the post buckling response for the rigid-perfectly
plastic solid. We note that the matrix yields at
¢/1y$1, where 7y = k/G is the shear yield strain of the
matrix. The elastic-plastic response quickly
approaches the rigid-perfectly plastic result, so that
they are indistinguishable beyond ¢/7y = 2. We
conclude that the rigid-perfectly plastic constitutive

description is adequate for practical purposes.

o
In the limit of 7® = O, with @F-T- = (502, the
post-yield elastic—perfectly plastic response coincides

with the rigid-perfectly plastic response. In the
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limit of B = 0, material in the kink band suffers
simple shear with T = k, Op = 0. Again, the post yield
elastic—perfectly plastic response coincides with the

rigid-perfectly plastic response.

7. PROPAGATION OF A MICROBUCKLE BAND

In practice, fibre microbuckling initiates at a stress
raiser such as an imperfection or a hole in a sheet.
The wmicrobuckle band propagates across the remaining
section of the structure. Fleck and co-workers (Soutis
and Fleck (1990), Soutis, Fleck and Smith (1990)) have
analysed the early stages of microbuckle propagation by
treating the microbuckle as a crack with a bridging
zone at its tip. This approach is reasonable if the
traction is negligible across the microbuckled band, at
a distance far behind the tip of the advancing
microbuckle.

Here, we calculate the stress og required to
propagate a long microbuckle in steady state. In this
limit, the rubble strength of the microbuckled material
is not negligible. The geometry is shown in Fig. Oa.
We assume remote proportional loading where T® = eo®
and e is fixed. We shall use a simple energy argument
to calculate og, and make use of the remote stress
versus remote displacement response of a microbuckled
band of infinite length. Chater and Hutchinson (1984)
used a similar method to calculate the pressure
required to propagate bulgesr and buckles in elastic
cylinders.

The predicted remote stress o® versus ¢

response of the infinite band is shown in Fig. 9b. We
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assume the infinite band displays the rigid-perfectly
plastic characteristic, equation 6.6, for small ¢.
When a critical fibre rotation ¢, is attained, the
tensile transverse strain in the band er equals the
failure strain ers (typically ers = 1%) and the matrix
fails, see Fig. 9b. The band strength vanishes with
continued fibre rotation ¢ until er reduces to zero at
¢ = ¢5. Thereafter we imagine the fibres in the band

u Displacement

(a)

o

VoY
_— -

°8

o B microbuckle

L o e . —— — =4 4
B —

(b) O'w: E*-tm
d+¢
o® . lock-up
matrix
fails

& o 4

Fig.9: (a) Geometry of a propagating microbuckle. (b)
Conjectured collapse response of a microbuckle.
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contact each other and the band locks-up, with no
further straining of the band. Lock-up is based on the
idea that the composite resists compressive transverse
straining in a highly stiff manner. The condition
er = O corresponds to zero volumetric strain in the
band since the fibres are considered to be
inextensional. Chaplin (1977) and Evans and Adler
(1978) also argue that fibre rotation stops when the
volumetric strain in the band vanishes; they base their
arguments on direct measurements of microbuckling.
Consider conservation of energy when the
semi-infinite microbuckle shown in Fig. 9a undergoes a

unit advance. For a deformation theory solid we get,

Ve - U,
o® V, + T® u, = o» dv + 70 du + G_sec B (7.1)
p p C
o o
where gp is the {fixed remote stress. Horizontal

displacement u and vertical displacment v are defined
in Fig. 9a. The first two terms on the right hand side
of equation 7.1 refer to the work done by microbuckling
when material is taken from a state ¢ = o to a state ¢
= ¢,, as shown in Fig. 9b. The last term on the right
hand side of equation 7.1 represents the dissipation
due to delamination and damage in off-axis plies.
Equation 7.1 provides a mnecessary condition
for microbuckling: a detailed collapse mechanism at
the tip of the advancing microbuckle would provide the

sufficient condition.

We next calculate a; from equation 7.1. The
matrix fails when er = erg at a fibre rotation ¢,,
e
Tf
¢y = (7-2)

tan B - ¢ sec?fB
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Lock—up occurs when er equals zero. This is achieved

at a fibre rotation ¢,, where by 4.9,
$2 = 2(B - ¢) (7.3)

By kinematics, the remote displacements u and v, which
form the work conjugates of Tg and ag respectively,

are,

sin($'+ ¢) — sin ¢

£|< =i

cos ¢ - cos(9 + ¢) (7.4)

When ¢ is small, these reduce to,

u

== ¢

w

Z=%¢%+ 3¢ (7.5)

Equation 7.1 can be evaluated using equations 6.6,
7.2-7.5 and the assumption of proportional remote
loading 1 = e 0% to give,

a%n
EE-= [(1-cos2B ~ ¢ sin2B) + e(sin2B - ¢(1 + cosZB))]_1

o. G
x [#: (1+ (-2 tan?p)% + -= sec B]  (7.6)
where ¢; is specified by equation 7.2.

The buckle propagation stress og is plotted
against band inclination B in Fig. 10, by evaluating
equation 7.6. We note that og increases with
increasing Gc and decreasing 7T®, as expected. A
critical angle of B exists for which ag is a minimum,
for any specified material parameters and loading ratio
e. Disappointingly, the predicted values of B are in
the range 45° - 75° which are larger than the values
10° - 30° typically measured. This suggests that the
angle [ may be set and locked-in at the initiation of
kink
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propagation, by deformation patterns induced
elastically via initial misalignments, as proposed by
Budiansky (1983).

The kink band analysis does not provide us
with the value of the kink width w. Budiansky (1983)
has predicted w with reasonable success using an
elastic bending analysis. He finds for perfectly
brittle fibres (tensile failure strain = 0),

*

w_w 2k |-

a=1GE) * (7.7)
where d is the fibre diameter. This expression

predicts correctly w/d ~ 10 for material properties

typical of carbon fibre epoxy composites.

7.1 Case Study
Soutis and Fleck (1990) have examined recently the

P Arrow ? denotes minimum

Fig.10: Effect of band angle B upon propagation stress

o;/k. aTy/k =2, ¢ = 2°, ers = 0.01.
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compressive failure of a unidirectional and
[i45°/02)3]s multidirectional carbon fibre epoxy
composite. They measured the following material

properties for the unidirectional material under remote

2 _
(aTy/k) = 4,

60 = 1600 MPa. Equation 6.6 predicts ¢ = 2.6° which is

axial loading: B = 20°,k = 60 MPa, ET/G

consistent with the level of fibre misalignment
observed. The fibre rotation after microbuckling ¢,
was found to satisfy equation 7.3, supporting the
concept of lock—up. Soutis and Fleck were unable to
measure the buckle propagation stress og since unstable
buckle propagation occurred once the microbuckle was
initiated. This is consistent with the predicted value
og = 13 MPa from equation 7.6 which is much less than
the measured buckling strength o, = 1600 MPa.

Soutis and Fleck (1990) have also measured the
toughness GC associated with splitting and delamination

in the [(i45/02)3]s laminate. They measured

Gc = 30 kJ/m® from the compressive fracture load of
specimens containing central slits transverse to the
loading direction. This value for Gc together with an
observed value for w = 60um, gives Gc/kw = 8.3, and
ag = 2900 MPa via equation 7.6. This predicted value
for ag is too high, as the multi-directional laminate
was observed to fail unstably at a stress o, = 810 MPa.
We conclude that more detailed modelling of damage
development in the off-axis plies is required. This is
not surprising, since the measured toughness Gc
associated with delamination and splitting is more than

two orders of magnitude greater than the dissipation
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due to microbuckling per unit area advance of the

microbuckle.

8. OONCLUDING REMARKS

The elastic and ©plastic kinking analyses of
microbuckling is able to account for some but not all
of the experimental observations. Fibre bending must
be treated explicitly in order to predict the width w
of the microbuckle band and the band inclination .

There remains a paucity of experimental
evidence on the underlaying features of microbuckling.
The authors are unaware of any systematic studies which
examine the influences of fibre misalignment upon
microbuckling strength. It is difficult to distinguish
experimentally between elastic and plastic
microbuckling of polymer matrix composites, as matrix
yield stress wusually scales linearly with matrix
stiffness. Data on the shape of the yield locus for
composites remain scant. It seems that few systematic
experimental studies have been conducted of the elastic
microbuckling of fibre composites with elastomeric
matrices.

The buckle propagation analysis suggests that
only a small compressive stress is required in order to
propagate an existing microbuckle. No measurements of
the microbuckle propagation stress were found from the

literature.
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APPENDIX A: DERIVATION OF POST-YIELD ELASTIC-PERFECTLY
PLASTIC RESPONSE

The post-yield elastic-perfectly plastic response is
given in rate form as follows. We shall use the
superscripts e and p to denote elastic and plastic,

respectively. The strain rate in the kink band is,

. .e *® * .e *
¥y=7 + "{p, eT = e,I. + e? (Al)
e T e UT
where, T =G e < q (A2)
in accordance with equations 5.1, and
o,
> T [ ] - k T Ld
’Yp = i(_ A, eT = (a)z T A (A3)

by equations 6.2; A is a positive number for active
plastic straining. Assume proportional remote loading
with 7@ = eow. We combine equations Al1-A3, with the

yield condition 6.1 and the kinematic relations 4.8, to

obtain 7.\ and the stress rates in the kink band ';' and

[%/G} _ 1 |Ayy Ao [9
A AlaL, Al 656

o
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T , k 1 OTy\2 G
A= GO o D &
k aTy k O k ET
a,
Ass =k—T((—,-‘;;)2—§tan (B-%-9)
a,
Az <[ (;,—lTi—)zcos($+¢) + sin(#+¢)Je cosp sec(B--¢)
y
(o}
Aas = 2 (D)2 B+ tan (B-9-4)
21 a’l" k Er
T PTy.» G - — —
A,s = [a_ (—k)L)2 }—Z-T-- cos(¢+¢9)-sin(¢+¢)Je cosp sec(B-¢-¢)
. T GT .
op = o DT (A4)

Equations A4 simplify in an obvious manner when we

assume small (¢+¢), and E’I‘/G = (aTy/k)z. To proceed,

we differentiate the equilibrium equation 4.16 with

respect to time, and substitute for 7, o, using A4, and

T
for [.3 using 4.10. This results in a 1st order
differential equation for d(o»/G)/d¢ of the type given
in 5.6, but with a new expression for h;. Similarly,
we obtain 1st order differential equations for
d(T/G)/d¢, d(aT/G)/d¢ and for dp/dé¢. The resulting
system of 1lst order differential equations, analogous
to equations 5.6, is integrated numerically using a
Runge-Kutta routine. The starting values are given by
the onset of yield condition described in part (a) of

section 6.2. Results are shown in Fig. 8b.
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