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Abstract

A prior assessment of the response of a metallic sandwich panels to water blast has identified soft and strong core
responses and outlined the advantages of softness. Ensuing analysis has provided mechanism maps that distinguish these
responses. The present article extends these assessments by developing an analytic model for the wet face response, inclu-
sive of fluid/structure interaction, that can be used for a wide range of core topologies. The model addresses cavitation and
incorporates the momentum of reconstituted water attached to the wet face. It assumes a transient dynamic strength of the
core associated with dynamic buckling. The model includes coefficients that have been independently characterized using
numerical simulations. The fidelity of the analytic model has also been assessed using simulations. The results reveal that
analytic predictions of the wet face velocities are quite accurate for most of the soft cores examined. The implication is that
the models may be used as reliable input to panel-level simulations for predicting such metrics as the reaction forces and
the displacements. Discrepancies arise for strong cores with relatively large push back stress, and for systems with very thin
wet faces, suggesting that embellishments are required for panels incorporating such features.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Insights regarding the response of metallic sandwich panels to water blast have been gained by recent
assessments of the fluid/structure interaction (FSI) by Deshpande and Fleck (2005), Xue and Hutchinson
(2004), Fleck and Deshpande (2004), Liang et al. (2007), Hutchinson and Xue (2005), Tilbrook et al.
(2006). Most crucial has been the discovery of soft and strong core responses when the panel is subjected
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

List of symbols

cpl plastic wave speed of base material
cw sound speed in water
E, ET Young’s modulus and plastic tangent modulus of base material
Hc height of the core
hwet, hdry thickness of the wet and dry faces, respectively
Itot momentum of the free-standing sandwich plate
mwet, mdry, mcore mass per unit area of wet, dry faces and core, respectively
Mwet, Mdry effective mass per unit area of wet and dry faces, respectively
p fluid pressure
pc cavitation pressure
p0 peak pressure of free field impulse
t time
t0 characteristic time of incident pressure pulse
t1 first cavitation time
tc time of cavitation at the wet face
tcommon time when the wet and dry faces of the sandwich panel attain a common velocity vwet = vdry

tpeak wet face peak velocity time
tpulse pulse time, after which core buckles and its compressive strength reduces
tx cavitation time at position x

v velocity of the fluid
vr velocity of the fluid at the instant of its cavitation
v
_

peak wet face peak velocity
v
_

wet wet face velocity at the instant of cavitation at the wet face i.e. t = tc

vwet, vdry velocity of the wet and dry faces, respectively
_vdry acceleration of the dry face
x, X original and current position of material points of water; the water occupies x < 0
xe reconstitution wave front location
xcav location of the breaking front
x0

cav location of the breaking front at the instant t = tc

b fluid–structure interaction parameter
_ep plastic strain rate
q density of the base material
�q relative density of the core
qw density of the water
r
_

wet face stress
rY yield strength of the base material
rc

YD dynamic yield strength of the core
rpulse, rss effective dynamic strength of the core before and after tpulse, respectively
w, /, v empirical coefficients
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to a high impulse fluid-interaction pressure or an impulsive loading on its wet face (Liang et al., 2007). The
occurrence of soft or strong core behavior is dependent on such factors as the dynamic strength of the core,
its thickness and the magnitude of the impulse (Tilbrook et al., 2006). By design of the core to elicit a soft
response, all relevant performance metrics are beneficially affected. Namely, the forces transmitted to the sup-
ports, the panel center deflection and the plastic strains induced in the faces are all reduced (Liang et al., 2007;
Tilbrook et al., 2006). However, the soft design must assure that the front face does not slap into the back, e.g.
by ensuring that the core is tall, so that the wet face is either arrested before a slap occurs, or its velocity
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equalizes with that of the back face prior to any collision. If a slap does occur, the ordering of the performance
inverts according to Tilbrook et al. (2006).

Liang et al. (2007) and Tilbrook et al. (2006) found that the relative velocity transients of the wet and dry
faces are qualitatively different for soft and strong responses (Fig. 1), which allows for a distinction of the two
behaviors. Upon sustaining the impulse, the wet face rapidly accelerates to a maximum velocity, just before
water cavitation commences. Thereafter, the core imposes a push back stress, causing the wet face to deceler-
ate. Simultaneously, the back face accelerates. The magnitude of the accelerations depend upon the dynamic
strength of the core, as well as upon the pressure loading by the cavitated water after it has reattached to the
wet face.

If the accelerations and decelerations are sufficiently large, the wet and dry face velocities converge to a
common velocity (Xue and Hutchinson, 2004) and a strong response arises (Liang et al., 2007). Subsequently,
both faces decelerate together and arrest. Conversely, if the dry face arrests before acquiring the velocity of the
wet face, the subsequent response is soft and is quite different.

A model that distinguishes soft and strong responses is contingent upon a comprehensive understanding of
the factors controlling the velocities of the faces. Tilbrook et al. (2006) have developed the associated mechan-
ics for impulsively loaded panels with cores that crush at constant dynamic strength. Examples suggest that
the soft behavior occurs over a limited range of geometries, core strengths and blast impulse. It remains to
develop analogous solutions for panels subject to water blast (with associated FSI considerations) and to
extend the ideas to panels with structured prismatic cores. The primary objective of this article is to establish
an analytical model for the velocity characteristics of the faces of unsupported panels, representative of the
central segment of an edge supported panel prior to the deceleration of the dry face caused by the constraint
imposed by the edge supports (Deshpande and Fleck, 2005; Fleck and Deshpande, 2004; Liang et al., 2007;
Tilbrook et al., 2006).

To attain this objective, the article includes the following elements. (i) The constituent properties of repre-
sentative prismatic cores are summarized. (ii) An analytical model governing the velocities of the wet face is
developed, by envisaging it as a solid plate that interacts with a homogenized core only through its dynamic
strength, rc

YD. (iii) Numerical unit cell calculations are conducted for the I-core configuration. These are used
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Fig. 1. Trends in the wet and dry face velocities for a sandwich panel supported on the dry face and subjected to a water blast. (a) Strong
response in which the velocities of the two faces converge to a common value and then decelerate together. (b) Soft response in which the
dry face velocity always exceeds that for the wet face.



Table 1
The four cases of steel I-core sandwich beams examined by numerical simulation and the parameters ascertained by fitting to the analytic
model

Case I II III IV

Core relative density �q (%) 1.33 4.00 1.33 1.33
Wet face thickness hwet (mm) 8.0 8.0 3.2 8.0
Face thickness ratio hdry/hwet 1 1 4 1
Core thickness Hc (m) 0.3 0.1 0.3 0.3
Peak pressure p0 (MPa) 100 100 100 200
Peak velocity v

_
peak (m/s) 67.1 61.7 95.0 136.7

Pulse time tpulse (ms) 0.31 0.175 0.25 0.30
Dynamic yield strength rY (MPa) 341 363 348 356
Core strength rpulse (MPa) 4.5 14.6 4.7 4.7

rss (MPa) 0.33 1.28 0.38 0.40
Coefficients w 1.0 1.0 1.0 1.0

v 0.07 0.09 0.08 0.09
/ 1.0 1.8 0.8 1.0
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to calibrate coefficients in the analytic model, as well as assess its fidelity. For this purpose, results are pre-
sented for the four cases elaborated in Table 1, which embrace the expected range of designs and impulse lev-
els. It will be shown that case II represents a strong core while all others are soft. That is, for cases I, III and
IV, the wet face velocity always exceeds that for the dry face (Fig. 1): whereas, for case II, the two faces acquire
a common velocity prior to arrest.

2. Synopsis of core response

Ferri et al. (2006) have characterized experimentally the dynamics of I-cores subject to constant velocity
imposed on the front (wet) face with rigid support of the back (dry) face. The characterization has been con-
ducted for material properties representative of a stainless steel that exhibits both strain and strain-rate hard-
ening (Stout and Follansbee, 1986; Liu and Guo, 2000; Zok et al., 2004). The observed, typical front (wet) and
rear (dry) face stress versus time histories of an I-core are sketched in Fig. 2 and display the following principal
characteristics. (i) During an initial phase (for times t < tpulse), the wet face and dry faces stresses are constant
with the wet face stress r

_
exceeding the dry face stress rpulse and (ii) at t = tpulse, the core dynamically buckles

and subsequently both the wet and dry face stresses are approximately constant at a value rss < rpulse < r
_

. We
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Fig. 2. Illustration of the time variation of the core strength. The wet face strength includes an inertial contribution. The sudden drop in
strength at time tpulse coincides with the arrival of the buckle-wave at the dry face.
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summarize these characteristic parameters for an I-core constructed from a solid of density q, Young’s mod-
ulus E, dynamic initial yield strength rY and a linearly hardening plastic response with tangent modulus ET.

The initial stress transmitted through the core to the dry face, when rigidly supported, is independent of the
front face velocity, and is given by Ferri et al. (2006) as
rpulse

rY�q
¼ w; ð1Þ
where the coefficient, w � 1, an outcome determined empirically by Ferri et al. (2006) from the experiments
and confirmed in computations as discussed below, and �q is the relative density of the core. In that sense,
w is demonstrated to be independent of geometry. When the plastic wave first impinges on the dry face after
it has traveled from the wet face, the core plastically buckles and both the wet and dry face stresses drop quite
abruptly at a pulse time, tpulse given by Xue and Hutchinson (2004) and Ferri et al. (2006) as
tpulse ¼ /H c=cpl: ð2Þ
Numerical calculations indicate, with the exception of one case, that the coefficient, /, is slightly greater than
unity, confirming that tpulse is just greater than the time taken for the plastic wave to traverse the core of height

Hc at a speed cpl �
ffiffiffiffiffiffiffiffiffiffiffi
ET=q

p
. The discrepancy in the remaining case is not large, but core collapse occurs sooner

than predicted by transit of the plastic wave. At time t > tpulse, the strength of the core after it has buckled
(equal wet and dry face stresses) is given by Ferri et al. (2006) as:
rss

rY�q
¼ v; ð3Þ
where the coefficient, v � 0.08. Thus, three non-dimensional parameters dictate the core dynamics (w,/,v) and
these are typically determined from numerical calculations or experiment.

To establish a model connecting these strength characteristics to the face velocities, the wet and dry face
motions can be analyzed separately, by envisaging them as solid plates that interact with a core only through
its dynamic strength. The model for the wet face velocity is addressed in Section 3, with additional details
given in Appendix A. Three salient metrics governing the response are ascertained: the maximum velocity
acquired by the face, the subsequent rate of deceleration and the transmitted momentum. Approximate for-
mulae for the velocity and impulse obtained from linearization of the governing equations are presented in
Appendix B. The fidelity of each aspect of the model is examined through the numerical simulations described
in Section 4.
3. A lumped mass model for the response of a free-standing sandwich panel

Consider a sandwich plate comprising rigid wet and dry faces of mass per unit area mwet and mdry,
respectively, and a compressible core of mass per unit area mcore. Following Tilbrook et al. (2006) we
employ a lumped mass approximation with the mass of the core assumed to be distributed equally and
uniformly over the wet and dry face sheets. Thus, the effective masses per unit area of the wet and
dry faces are
Mwet ¼ mwet þ mcore=2 ð4aÞ
and
Mdry ¼ mdry þ mcore=2; ð4bÞ
respectively. Further, we neglect any strengthening of the core due to micro-inertial or shock wave effects and
assume that the transverse compressive strength rc

YD loads the dry face and decelerates the wet face. However,
we shall account for the dynamic buckling of the core by assuming time-dependent core strength specified as
rc
YD ¼

rpulse t 6 tpulse

rss t > tpulse

�
: ð5Þ
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Fig. 3. The co-ordinate system employed in the analysis of the wet face on a plastic foundation impinged by the water blast wave.
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Since each face is modeled as rigid, their thickness does not enter the calculation, and the origin is taken as the
wet face of the sandwich plate, while water of density qw occupies the region x 6 0 (Fig. 3). The sandwich
panel is impacted by a pressure wave traveling in the positive x direction at a speed cw. Upon use of the usual
Taylor (1963) assumption that the pressure profile of the incoming shock wave has decaying exponential
shape, with time constant t0, the incoming pressure wave that impinges on the structure at time t = 0 is written
as
p ¼ p0e�ðt�x=cwÞ=t0 : ð6Þ
Note that this form, used widely by Deshpande and Fleck (2005), Xue and Hutchinson (2004), Fleck and
Deshpande (2004), Liang et al. (2007), Hutchinson and Xue (2005), Tilbrook et al. (2006), Taylor (1963),
omits some of the details of pulse shapes associated with underwater explosions. The effects of these details
in an impulsive loading of a single degree of freedom elastic–plastic system have been assessed by Li and Meng
(2002). The wave defined in Eq. (6) interacts with the sandwich panel, reflecting from it; the subsequent pres-
sure distribution in the water depends on the motion of the sandwich panel and can be summarized as follows.
The motion of the wet face of the sandwich plate causes the reflected wave to comprise a rarefaction compo-
nent (Taylor, 1963). This rarefaction leads the water to first cavitate at time t = t1 some distance away from
the interface between the water and the sandwich plates (Fig. 4a) (Deshpande and Fleck, 2005; Xue and
Hutchinson, 2004; Bleich and Sandler, 1970). As given by Kennard (1943), two breaking fronts (N.B. these
are not acoustic waves) that have been shown to travel supersonically emanate from this cavitation plane:
the first travels away from the structure while the second approaches it (Fig. 4b) (Deshpande and Fleck,
2005; Liang et al., 2007; Bleich and Sandler, 1970); in Fig. 4d, the breaking front has just reached the wet face.
The breaking front that travels towards the sandwich plate reflects from its wet face as a reconstitution wave
that reattaches water to the sandwich plate (Fig. 4e), according to Deshpande and Fleck (2005), Liang et al.
(2007). Note that this reconstitution front never catches up with the first breaking front (Deshpande and
Fleck, 2005; Liang et al., 2007; Kennard, 1943). We now present an analysis for the motion of the wet face
of the sandwich plate that takes into account these features.
3.1. The governing equations for the motion of the wet face

We derive approximate relations for the velocity of the wet face by analyzing the motion of a rigid plate of
mass per unit area Mwet on a plastic foundation with strength rc

YD (Fig. 3). The plate is loaded by the incoming
blast wave. Taylor (1963) calculated the response of a free-standing rigid plate subjected to a blast wave of the
form (6). He found that the response is dictated by a single non-dimensional group, termed the fluid–structure
interaction parameter b = qwcwt0/Mwet. Subsequent modifications (Xue and Hutchinson, 2004; Liang et al.,
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Fig. 4. Sketch of the spatial variation in the fluid pressure at selected times. (a) First cavitation at t = t1, which occurs at some stand-off
from the wet face. (b) Just afterwards, cavitated pool spreads due to a breaking wave front at xcav that travels to the left and another one
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YD, and so the wet face has reached its maximum velocity, v
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peak. (d) Very soon
thereafter, at time t = tc, the rightmost breaking front reaches the wet face and thus the pressure there falls to zero. (e) Because the wet face
is now decelerating, the breaking front reflects from the wet face as a reconstitution wave which travels to the left and creates a layer of
attached water.
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2007) to the Taylor model for a rigid plate on a plastic foundation give the pressure in the water between the
reflected wave front and the wet face as
pðx; tÞ ¼ p0 e
x�cw t
cw t0 � 2b

1� b
þ rc

YD

p0

� �
e
�bðxþcw tÞ

cw t0 þ 1þ b
1� b

e
�ðxþcw tÞ

cw t0 þ rc
YD

p0

� �
ð7Þ
for �tcw 6 x 6 0. The pressure given by (7) is valid until the water first cavitates. Here, we assume that the
water can sustain no tension and thus the cavitation pressure pc = 0. Cavitation initiates at time t1 such that
the minimum value of p(x, t1) vanishes, with the minimization conducted over all x and p(x, t1) given by (7).
The pressure distribution at this instant is sketched in Fig. 4a.

Prior to cavitation, the velocity in the fluid, between the reflected wave front and the wet face, is given by
vðx; tÞ ¼ p0

qwcw

e
x�cw t
cw t0 þ 2b

1� b
þ rc

YD

p0

� �
e
�bðxþcw tÞ

cw t0 � 1þ b
1� b

e
�ðxþcw tÞ

cw t0 � rc
YD

p0

� �
: ð8Þ
After first cavitation, t > t1, two breaking waves diverge. The water remains cavitated between these two
waves, see Fig. 4b. For later use, the location of the outgoing breaking front is labeled xcav(t). Eq. (7) remains
valid in the uncavitated regions (where the pressure is positive) even after cavitation has commenced somewhere
in the water. Consequently, the cavitation time tx(x) at a location x in the water is obtained by setting the
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pressure to zero in (7) and solving the implicit equation p(x, tx) = pc = 0. Comparing Eqs. (7) and (8), we ob-
serve that the velocity of the fluid at the instant of its cavitation (p(x, tx) = 0) is given as
vrðxÞ ¼
2p0

qwcw

e
x�cw txðxÞ

cw t0 : ð9Þ
Momentum conservation dictates that this fluid velocity remains constant as long as the fluid remains in a cavi-

tated state. Noting that the pressure in the fluid at x = 0 decreases with increasing time, we deduce that the wet
face will acquire its peak velocity when pðx ¼ 0; tpeakÞ ¼ rc

YD. The pressure distribution at this instant is
sketched in Fig. 4c. Thereafter, the push back stress due to the core decelerates the wet face. The time tpeak

is obtained by setting pðx ¼ 0; tpeakÞ ¼ rc
YD in Eq. (7) and is given as
tpeak ¼
t0

b� 1
ln bþ 1� b

2

rc
YD

p0

� �
: ð10Þ
Prior to tpeak there is no cavitation at x = 0. Continuity thus dictates that the velocity of the wet face is equal
to that of the fluid at x = 0, and consequently the corresponding peak velocity of the wet face follows when
Eq. (10) is inserted for t into (8) giving
v
_

peak ¼
2p0

qwcw

bþ 1� b
2

rc
YD

p0

� � 1
1�b

� rc
YD

2p0

( )
: ð11Þ
The above analysis for the motion of the wet face can be continued until the breaking front reaches the wet
face of the sandwich plate and the fluid cavitates there at a time tc = tx(0), where tc is obtained by solving Eq.
(7) as p(0, tc) = 0. The associated wet face velocity, v

_
wet, is obtained by setting x = 0 and t = tc in Eq. (9). At

the instant t = tc, the location of the outgoing breaking front is labeled as xcavðtcÞ ¼ x0
cav. The pressure vanishes

throughout the water except for x < x0
cav, see Fig. 4d.

Now consider the response for t > tc. Deceleration of the wet face continues at time t = tc and results in the
breaking front being reflected as a reconstitution wave, which travels from the wet face into the fluid, with
wavefront located at xe(t). Consequently, cavitation at the wet face does not persist for finite time, and con-
tinuity of displacement and velocity between the water at x = 0 and the wet face is unbroken. Based on the
assumption that strains in the uncavitated water are negligible, continuity at the wet face and across the recon-
stitution front located at xe gives (see Appendix A)
vwetðtÞ ¼ vrðxeÞ þ
dvrðxeÞ

dxe

dxe

dt
½t� txðxeÞ�; ð12Þ
where vwet is the current velocity of the wet face and xe is the current location of the reconstitution front mea-
sured in the undeformed configuration. Further, we assume that the velocity of the water within the reconsti-
tuted zone spanning xe 6 x 6 0 is spatially uniform and equal to vwet. Then momentum conservation provides
(see Appendix A)
d

dt
f½Mwet � qwxeðtÞ�vwetðtÞg þ qwvrðxeÞ

dxe

dt
¼ �rc

YD: ð13Þ
For a realistic set of parameters tpulse� tc. Thus, the push back strength is a constant at least up to the instant
that the breaking front reaches the wet face. Consequently, the motion of the front face is obtained in the fol-
lowing three regimes:

(i) For t < tc, the wet face velocity vwet is given by Eq. (8) with x = 0.
(ii) For tc < t 6 tpulse, we numerically integrate Eqs. (12) and (13) with rc

YD ¼ rpulse and initial conditions
vwet ¼ v

_
wet and xe = 0 at t = tc.

(iii) For t > tpulse, Eqs. (12) and (13) are again employed but now with rc
YD ¼ rss and initial conditions

vwet = vwet(tpulse) and xe = xe(tpulse) as obtained at the end of regime (ii) above.

A schematic of the resulting pressure after the reconstitution wave has set in is given in Fig. 4e.
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3.2. The governing equations of motion for the dry face

The above analysis for the wet face is valid until the time tcommon when the wet and dry faces of the sand-
wich panel attain a common velocity vwet = vdry. The time tcommon is evaluated by examining the motion of the
dry face and comparing it with that of the wet face. Since the wet face is decelerating when t > tpeak and the dry
face is accelerating after it commences motion, a common velocity will always be achieved after sufficient time.
However, slap may intervene if the core is not tall. The lumped mass approximation dictates that the accel-
eration of the dry face is given as
_vdry ¼ rc
YD=Mdry ð14Þ
with initial conditions vdry = 0 at t = 0 and rc
YD specified by Eq. (5).

The analyses of Sections 3.1 and 3.2 together give the momentum of the free-standing sandwich plate
(including that of the attached water) as
I tot ¼ ½Mwet � qwxeðtÞ�vwetðtÞ þ
Z t

0

rc
YD dt ¼ ½Mwet � qwxeðtÞ�vwetðtÞ þMdryvdryðtÞ: ð15Þ
After sufficient time has passed, the wet and dry faces will reach a common velocity. This event can occur
through the processes of deceleration and acceleration of the wet and dry faces, in which case core compres-
sion will cease. An alternative possibility is that the wet face slaps into the dry face because the core has been
completely crushed. In either case, the sandwich panel will thereafter travel with a uniform and constant veloc-
ity consistent with the prior panel momentum. Because the panel is traveling at constant velocity, the pressure
in the attached layer adjacent to the wet face will be equal to zero, implying that the water there has cavitated
once more. The resulting momentum in the panel can be inferred to be Mwetvwet(tcommon) + Mdryvdry(tcommon).
Thereafter, the attached layer and the free-standing sandwich panel are effectively decoupled and will remain
so.

Approximate closed form expressions for vwet, accurate to first order in rc
YD=p0, are presented in Appendix

B and are subsequently compared with the exact numerically integrated solutions.

3.3. Effect of core strength and lumped mass approximation

We aim to understand (i) the effect of lumping the core mass into the faces and (ii) the effect of the push
back stress. For this assessment we employ the strong core situation (case II) outlined in Table 1, with the
mass per unit area of the wet face and core estimated, respectively, as mwet = hwetq and mcore ¼ H c�qq, given
a wet face of steel with thickness hwet and a density of steel taken to be q = 8000 kgm�3. Case II is utilized
for this study as it imposes the largest core push back, and so emphasizes the effects of the core strength.
The parametric study presented in Fig. 5 uses the following four cases with rc

YD taken to be constant, i.e.
we specify that rc

YD is time invariant and do not allow for the switch in the core strength from rpulse to rss

at t = tpulse:

(i) The push back stress rc
YD ¼ rpulse ¼ 14:6 MPa and core mass are accounted for using the lumped mass

approximation, i.e. Mwet is given by Eq. (4a) and thus the fluid–structure interaction parameter
b � qwcwt0/Mwet equals 1.88.

(ii) The push back stress rc
YD ¼ rpulse ¼ 14:6 MPa and the core mass is neglected, i.e. Mwet = mwet and thus

b = 2.34. This is referred to as the Taylor result, consistent with one obtained by Fleck and Deshpande
(2004).

(iii) The push back stress is neglected (rc
YD ¼ 0Þ and the core mass is accounted for using the lumped mass

approximation, i.e. Mwet is given by Eq. (4a) and b = 1.88.
(iv) The push back stress and core mass are both neglected (i.e. rc

YD ¼ 0 and Mwet = mwet giving b = 2.34).

Note that cases (iii) and (iv) reduce to the original Taylor (1963) analysis.
Results are presented in Fig. 5 for the residual velocity vr in the cavitated water at t = tc and the cavitation

time tx as a function of the location x. Among these examples, a spread in the predicted water velocity is only
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YD, and two choices of an effective wet
face mass are used, with the wet face mass choices giving b values of 2.34 and 1.88.
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noticeable adjacent to the face (Fig. 5a). The variance from the Taylor result for a given wet face mass is at
most 15%. Accounting for the core mass by the lumped approximation, or neglecting it completely, produces
variations of less than 10%. The time at which cavitation takes place is similarly insensitive to the parameters
utilized in the model (Fig. 5b). Note that the cavitation time is linear in x, except very close to the wet face:
such that, remotely, dtx/dx � �1/cw, and the cavitation front then moves at its slowest, slightly greater than
the sonic speed in water. Since the cavitation pool spreads rapidly relative to the timescale for deceleration
(Kennard, 1943), a simple analysis treats tx as constant and equal to tc. This insight facilitates the linearization
used in Appendix B.

3.4. Sensitivity of predictions for strong and soft cores

The study is continued with comparisons between exact solutions to the analyses of Sections 3.1 and 3.2
and the approximate expressions derived in Appendix B that have been made using the cases outlined in Table
1. The core strength, rc

YD, is taken to be time invariant, and fixed at the value given by rpulse as listed in Table
1. Attention is restricted to the time tc at which cavitation occurs at the wet face and its velocity v

_
wet at that

instant. These parameters are the most important, since they form the initial conditions for the stage where
reconstitution of the water occurs at the wet face. These comparisons are made with Mwet given by Eq.
(4a) and the results are summarized in Table 2. The columns labeled ‘exact’ give results obtained as
v
_

wet ¼ vð0; tcÞ by the solution of Eqs. (7) and (8) while those labeled Eqs. (B3) and (B4) refer to asymptotic
values to first order in rc

YD=p0. The Taylor results correspond to the analysis of Section 3.1 with rc
YD ¼ 0 which

then reduces to



Table 2
Parameters for the analytic model

tc/t0 v
_

wetqwcw/2p0 v
_

peakqwcw/2p0

Exact Eq. (B3) Taylor Exact Eq. (B4) Taylor Eq. (11)

I 0.76 0.75 0.72 0.47 0.47 0.49 0.47
II 0.87 0.83 0.72 0.42 0.43 0.49 0.43
III 0.53 0.52 0.49 0.59 0.59 0.61 0.59
IV 0.74 0.74 0.72 0.48 0.48 0.49 0.48

Exact results obtained by iteration and asymptotic results accurate to first order in rc
YD=p0 are provided for tc (Eq. (B3)) and v

_
wet (Eq.

(B4)). Predictions for these two parameters when the core is strengthless are also given in the 4th and 7th column as the Taylor result. The
result for v

_
peak from Eq. (11) is exact. All results are obtained with b = qwcwt0/Mwet, i.e. the wet face mass includes half the core mass.

Fig. 6.
Mwet =
and t0
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tc

t0

¼ ln b
b� 1

ð16aÞ
and
v
_

wetqwcw

2p0

¼ b1=ðb�1Þ: ð16bÞ
It is apparent from Table 2 that, for all soft cores (cases I, III and IV), the Taylor results provide sufficient
fidelity for both tc and v

_
wet.

For the strong core (case II), the discrepancy in tc is perhaps problematic and worse than appears from
Table 2. The relevant measure to consider is tpulse � tc, since this is the later duration of the high strength stage
(with push back stress, rpulse). If there is a sizable discrepancy in this duration, the influence on the deceler-
ating wet face is large. The Taylor result gives a 14% error. However, it is apparent from Table 2 that the
asymptotic values of v

_
wet from (B4) are quite accurate in all cases. Moreover, v

_
peak from Eq. (11) is another

good estimate of v
_

wet, suggesting that consistent with the Taylor (1963) estimate, cavitation occurs at the wet
face approximately when it acquires its peak velocity.

It is also of interest to examine the fidelity of the models during deceleration of the wet face. In order to
facilitate such a comparison we consider a plate of mass Mwet = 80 kgm�2 on a massless plastic foundation
of time invariant strength rc

YD ¼ 14:6 MPa. This plate is loaded by a water blast of the form (5) with
p0 = 100 MPa and t0 = 0.1 ms, and the resulting velocity of the plate, vwet, as a function of time, t, is plotted
in Fig. 6. The parameters used in these calculations are representative of case II of Table 1. Predictions of three
sets of analyses are presented in Fig. 6 as follows:
0
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(i) The exact solution to the equations presented in Section 3.1 and labeled as the exact model in Fig. 6.
(ii) The predictions of the linearized equations of Appendix B.

(iii) Predictions of finite element (FE) simulations.

Details of the fluid–structure interaction finite element simulations are provided in Section 4. Here it suffices
to clarify that, unlike in the analytical models, in the finite element simulation for Fig. 6, the wet face is mod-
eled as an elastic material with density and elastic properties representative of steel and thickness 10 mm (so as
to give Mwet = 80 kgm�2). The strength of the core is modeled by a traction boundary condition on the plate’s
dry side, set at zero until motion commences there, and jumping thence to 14.6 MPa. The good agreement
between the model and FE simulations (Fig. 6) affirms the fidelity of the model and the linearized version
of the predictions presented in Appendix B.
4. Finite element assessment

The three-dimensional numerical model has been described by Liang et al. (2007). It consists of a water
column above the wet face. Contact is enforced at the interface between the water and the panel, and the
free-standing sandwich plate is modeled via symmetry boundary conditions as depicted in Fig. 7. A uniform
pressure boundary condition is imposed on the top surface of the water column. The commercial code, ABA-
QUS/Explicit (2006), is used. Eight-node three-dimensional brick elements with reduced integration (C3D8R)
are employed to model the water, while four-node shell elements (S4R), with five integration points through
the thickness, are used to model the faces and the core members. The water is assumed to be linear elastic
under compression, with zero tensile strength and zero shear modulus, such that qw = 1000 kgm�3 and
cw = 1500 ms�1.

All calculations are performed for unit cells of fixed mass per unit area, mtotal = mwet + mdry + mcore =
160 kgm�2, corresponding to a solid plate thickness, Heq = 2 cm. This choice lends consistency with prior
assessments by Xue and Hutchinson (2004) and Liang et al. (2007). The cores have thickness in the range
0.1 m 6 Hc 6 0.3 m. The I-core configuration is used with dimensions that allow both strong and soft
responses to be probed. The core relative density is varied in the range 1:3% 6 �q 6 4%, and the ratio of
dry to wet face thickness is 1 6 hdry/hwet 6 4 (Liang et al., 2007). The spacing between the webs of the I-core
is 0.1 m. The impulses used all have decay time t0 = 0.1ms and pressure in the range
100 MPa 6 p0 6 200 MPa. The material properties are representative of those for 304 stainless steel,
elaborated by Stout and Follansbee (1986), Liu and Guo (2000) and Zok et al. (2004). They include strain
and strain-rate hardening with an effective plastic wave velocity of cpl � 1 kms�1. A previous assessment by
Side view

Water

Pressure history

End view

Fig. 7. A sketch of the boundary conditions employed in the analysis of a free-standing sandwich plate impinged by a water blast.



Fig. 8. The combination of shapes used for the core needed to capture the buckling modes of a 304 stainless steel I-core panel observed by
Ferri et al. (2006).
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Ferri et al. (2006) has provided input about the importance of imperfections in the core member. The essential
result is that, to capture the buckle-wave dynamics effectively (Vaughn and Hutchinson, 2006), imperfections
are required with a combination of eigenmodes. A representative combination is depicted in Fig. 8, and the
amplitude of each eigenmode imperfection can be found in the work of Ferri et al. (2006). In these three-
dimensional FE simulations, the wet and dry faces do not have spatially uniform velocities and hereafter,
for the FE calculations, we define vwet and vdry as the velocities of the wet and dry faces averaged over the
respective faces. The component of velocity in the vertical direction in Fig. 7 is averaged, so that the vertical
momentum of the face is correctly represented by the averaged velocity.

Results for the time variation of vwet and vdry are presented for the four cases considered in Sections 3.3 and
3.4 as listed in Table 1. From a preliminary comparison (Fig. 9), it is apparent that cases I, III and IV have a
soft response: the wet face velocity always exceeds that of the dry face (Fig. 1). In contrast, case II exhibits a
strong response such that the two face velocities equalize, at tcommon � 0.7 ms. To demonstrate that extra
momentum is acquired from the cavitated water, a comparable case I result is obtained by imposing an initial
wet face velocity equal to v

_
wet (67.1 m/s), but without the water (Fig. 10), i.e. an impulsive load.
5. Comparison with analytic model

5.1. Core characterization using dry face velocities

Comparisons between the face velocities obtained by finite elements and analytic estimates are included in
Fig. 9. The bimodal response of the core is most apparent in the dry face velocity. For example in case I
(Fig. 9a), at short times, t < tpulse, the acceleration is rapid and constant with _vdry ¼ 56 kms�2. Thereafter,
at tpulse, there is an abrupt change: whereupon the acceleration reduces to, _vdry ¼ 4 kms�2. The characteristic
time is tpulse = 0.31 ms. The corresponding times for all other cases are summarized on Table 1. These differing
accelerations are directly connected with the two levels of core strength. With employment of Eq. (14), the
effective dynamic strength of the core can be ascertained, before and after tpulse, as rpulse and rss, respectively.
Note that there is some leeway in the fitting of constant accelerations to the finite element results for the
motion of the dry face, and judgments have to be made. The resulting estimates of the core strength are pre-
sented in Table 1 and the consequent analytical predictions of the dry face velocities, obtained by integrating
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Fig. 9. The results of finite element simulations of the wet and dry face velocities for the four cases listed in Table 1. Also shown are the
analytic predictions for times t < ttrans. Cases I, III and IV exhibit soft response in the time scale of interest, whereas case II is strong, with
wet and dry face velocities equalizing within the time scale of interest.
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Eq. (14), are plotted in Fig. 9. The credibility of the estimated core strengths can be judged from the agreement
on the motion of the dry face. The agreement withstands such scrutiny.

The strengths rpulse and rss and the pulse time tpulse are also normalized using Eqs. (1)–(3). The plastic wave
speed is cpl = 1 kms�1 and the yield strength, rY, is calculated to account for strain-rate sensitivity according
to the formula
rY ¼ r0
Y 1þ _ep

_e0

� �m� �
ð17Þ
relevant to the stainless steel in the simulation (Stout and Follansbee, 1986; Liu and Guo, 2000; Zok et al.,
2004). The plastic strain rate is _ep and the parameters used in the calculations are r0

Y ¼ 210 MPa,
_e0 ¼ 4916 s�1 and m = 0.154. Since the strain rates are highest prior to the initiation of motion of the dry face,
the plastic strain rate is calculated by taking the peak wet face velocity, v

_
peak, and dividing this by the core

thickness. Values for v
_

peak from the finite element simulations and the resulting yield strength, rY, from
Eq. (17) are provided in Table 1. The assessment establishes the values of the coefficients w, /, v indicated
in Table 1. Note that the coefficients for the stress quantities, w and v are approximately unity and 0.08,
respectively, confirming the validity of the normalizations presented in Section 2. However, the pulse time
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coefficient / is not constant over the four cases and lies in the range, 0.8 6 / 6 1.5. The smaller values arise for
the low density core cases, whereas the highest value is associated with the high density, stronger core. Of the
low density core cases, the two that have symmetric face sheets (cases I and IV) provide values for / equal to
unity, whereas the plate with the very thin wet face gives the result 0.8. The deviation from unity may thus be
systematic, but additional assessments are needed.
5.2. Comparisons of wet face velocities

Results for wet face velocities obtained from the analytical model (exact solution and the linearized approx-
imations of Appendix B) are compared with FE predictions in Fig. 9. The comparisons are conducted using
the core properties assessed from the dry face velocities as discussed in Section 5.1 and listed in Table 1. The
following features are most apparent.

The model consistently underestimates the peak velocity of the wet face, due to complexities in the FSI dur-
ing fluid reattachment (Liang et al., 2007). The underprediction is most significant for Case III, having a soft
core and a very light wet face (Fig. 9c). Despite this discrepancy, the ensuing velocities correspond reasonably
well. This situation arises because the model compensates with a lower initial deceleration during the period
t < tpulse as the lumped mass model only partially accounts for the inertial strengthening of the core. More-
over, during the ensuing period, the model tracks the deceleration quite well. Unexpectedly, the correspon-
dence is comparable for the exact solution and the linearized approximations.

Reasonable correspondence for Case II, with a strong core, can be achieved only with a value for tpulse sig-
nificantly in excess of Hc/cpl, implying / > 1. Such an approach is, however, not supported by the buckle-wave
mechanics in the I-core (Vaughn and Hutchinson, 2006). When a value tpulse = Hc/cpl is used, implying / = 1,
the analytic model overpredicts the wet face velocities for most of its response. The discrepancy arises because
the core strength remains higher than expected after t = Hc/cpl. This effect is presumably due to underestima-
tion of core inertia effects associated with including half of the core mass into the wet face.
6. Concluding remarks

The assessment indicates that an analytic model has good prospects for high fidelity predictions of the water
blast response of panels with soft prismatic I-cores. Most significantly, over the range examined, the two
dynamic strength coefficients (w � 1 and v � 0.08) are insensitive to the details of the I-core sandwich beam
geometry and blast pressures. The coefficient related to the temporal dependence of the dynamic core strength,
tpulse, varies over the range 0.8 6 / 6 1.5 depending upon the core density. While use of / � 1 provides rea-
sonable estimates in all soft core cases, additional simulations are recommended to understand possible devi-
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ations from unity and how they depend on aspects of the core geometry, the relative wet and dry face thick-
nesses and the magnitude of the blast pressure.

The relatively accurate predictions of the wet face velocity found for soft cores suggests that this model for
a free-standing sandwich beam can be used as input to supported panel-level models. Such coupled models will
enable predictions of metrics such as the reaction forces and the panel deflections.
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Appendix A. Continuity and momentum conservation after the breaking wave impinges on the sandwich plate

This appendix provides the derivation of the continuity Eq. (12) and the corresponding momentum conser-
vation Eq. (13). Let x be the original position of a fluid particle with current location X. At the instant tc when
the breaking wave impinges on the sandwich plate and cavitation takes place at the wet face, the wet face has
velocity v

_
wet and the cavitated fluid has velocity vr(x). Because cavitation on the wet face does not extend to

finite time, vrð0Þ ¼ v
_

wet, see Fig. 4d. The cavitated water has the velocity vr(x) after the time tx(x), when it first
cavitated. We neglect particle fluid motion until cavitation takes place, since strains in the uncavitated fluid are
negligible compared to strains in the cavitated fluid. Therefore, the current position of a fluid particle is given
by its original position x plus its displacement after cavitation. After time tc, a reconstitution wave emerges
fom the wet face, see Fig. 4e. The wavefront of this reconstituted wave is located at xe at time t. Equivalently,
te(x) is the time at which the reconstituted wavefront reaches a fluid particle originally located at x. The veloc-
ity of a fluid particle located at x is a constant for tx(x) 6 t 6 te(x). Thus, the position of the fluid particle in
the cavitated zone at time t is given as
X ¼ xþ vrðxÞ½t� txðxÞ� ðA1Þ

while the wet face is located at Xwet specified as
X wet ¼
Z t

txð0Þ
vwetð̂tÞ d̂t: ðA2Þ
The water located in the region xe 6 x 6 0 has reconstituted to its fully dense state and has reattached to the
wet face. Consequently, the current location Xe of the particle originally located at xe is
X e ¼ X wet þ xe ¼
Z t

txð0Þ
vwetð̂tÞ d̂t þ xe: ðA3Þ
However, Xe is given also by (A1) and thus combining (A1) and (A3) gives
Z teðxeÞ

txð0Þ
vwetð̂tÞ d̂t ¼ vrðxeÞ½teðxeÞ � txðxeÞ�; ðA4Þ
which reduces to
X wetðteðxeÞÞ � X wetðtxð0ÞÞ ¼ vrðxeÞ½teðxeÞ � txðxeÞ�: ðA5Þ

Since we neglect strains in the uncavitated water, Xwet (tx(0)) = 0 and differentiation of (A5) with respect to
time t = te gives
vwetðtÞ ¼ vrðxeÞ 1� dtxðxeÞ
dxe

dxe

dt

� �
þ dvrðxeÞ

dxe

dxe

dt
½t� txðxeÞ�: ðA6Þ
Since the cavitation front speed dxe
dtxðxeÞ is several times the speed of sound in water and hence much faster than

the reconstitution wave speed dxe
dt , the second term in the first bracket on the right hand side of Eq. (A6) is small

compared to unity and can be neglected. The result is Eq. (12).
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Consider a time t > tx(0) when the reconstitution front is at a position xe and the outer cavitation front is at
a position xcav. Momentum conservation from time tx(0) to time t then gives
½Mwet � qwxe�vwet þ qw

Z xe

xcav

vrðxÞ dxþ qw

Z xcav

�1
vðx; tÞdx

¼ qw

Z x0
cav

�1
vðx; tÞdxþ qw

Z 0

x0
cav

vrðxÞdxþMwet v
_

wet � rc
YD½t� txð0Þ�; ðA7Þ
where x0
cav is the value of xcav at t = tx(0) and we have assumed that the velocity of the water within the recon-

stituted zone spanning xe 6 x 6 0 is spatially uniform and equal to vwet. (i.e. we neglect, in the reattached
water, the presence of acoustic waves and the possibility of secondary cavitation). Now recall that that there
is no momentum transfer between the water that has not yet cavitated (x < xcav) and the rest of the system.
Therefore, momentum is conserved in the pool of uncavitated water as it cavitates and thus
qw

Z xcav

�1
vðx; tÞdx ¼ qw

Z xcav

�1
vrðxÞdx: ðA8Þ
Eq. (A7) then reduces to
½Mwet � qwxe�vwet þ qw

Z xe

�1
vrðxÞdx ¼ qw

Z 0

�1
vrðxÞdxþMwet v

_
wet � rc

YD½t� txð0Þ� ðA9Þ
and differentiation with respect to time provides Eq. (13).
Appendix B. Approximate expressions for wet face velocity

We first present expressions for tx(x), vr(x), tc and v
_

wet that are accurate to first order in rc
YD=p0 and then

proceed to derive an approximate expression for vwet(t).
The cavitation time tx(x) at a location x in the water is obtained by setting the pressure to zero in (7) and

solving the implicit equation p(x, tx) = pc = 0. To first order in rc
YD=p0, this is given as
tx ¼
t0

1� b
ln

1

2b
ð1� bÞe

ðbþ1Þx
cw t0 þ ð1þ bÞe

ðb�1Þx
cw t0

h i� �
þ t0

2b
1� b

2b
e

2x
cw t0 þ 1þ b

2b

� � b
1�b

� 1

( )
rc

YD

p0

ðB1Þ
while the approximate expression for the residual velocity vr(x) follows by substituting (B1) in Eq. (9) as
vrðxÞ ¼
2p0

qwcw

1

2b
ð1� bÞe

2bx
cw t0 þ ð1þ bÞe

2ðb�1Þx
cw t0

h i� � 1
b�1

1� 1

2b
1� b

2b
e

2x
cw t0 þ 1þ b

2b

� � b
1�b

� 1

" #
rc

YD

p0

( )
: ðB2Þ
The time tc = tx(0) at which the water cavitates at the wet face x = 0 is obtained by solving Eq. (7) as
p(0, tc) = 0. To first order in rc

YD=p0, this follows as
tc ¼
t0 ln b
b� 1

þ t0

2

1

b

� � 1
1�b

� 1

b

" #
rc

YD

p0

ðB3Þ
and the associated wet face velocity v
_

wet obtained by setting x = 0 and tc given by (B3) in Eq. (9) is
v
_

wet ¼
2p0

qwcw

b
1

1�b 1� 1

2

1

b

� � 1
1�b

� 1

b

" #
rc

YD

p0

( )
: ðB4Þ
Approximate formulae for the wet face velocity can be derived from two observations:

(i) Due to the rapid propagation of the incoming cavitation front in the water tx(x) is essentially constant
over the time scale governing the deceleration of the wet face. Consequently, tx(x) is taken to equal tc

given by (B3).
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(ii) The thickness of the reattached water remains sufficiently small that the residual velocity (Eq. 9) over a
length �xe is given as
vrðxÞ ¼ v
_

wet 1þ x
cwt0

� �
: ðB5Þ
When these approximations are utilized, Eqs. (12) and (13) can be solved analytically to give
vwetðtÞ ¼ v
_

wet 1þ xe

cwt0

þ dxe

dt
ðt� tcÞ

cwt0

� �
; ðB6Þ
where
xe ¼
Mwet

qw

½1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

� ðB7aÞ
and
k ¼ rc
YDqwcwt0ðt� tcÞ

M2
wet v

_
wet

: ðB7bÞ
Substitution of (B7) into (B6) then provides
vwet ¼ v
_

wet 1þ Mwet

qwcwt0

1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

� k

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

� �� �
; ðB8Þ
where v
_

wet is given by Eq. (B4).
When dynamic buckling of the core is accounted for by assuming a time-dependent core strength as spec-

ified by Eq. (5), the analysis proceeds in two steps. In the first step, tc 6 t 6 tpulse, the preceding formulae can
be used in their present form with rc

YD ¼ rpulse given by Eq. (1). In the second step, t P tpulse, Eq. (B7b) is
replaced by
k ¼ qwcwt0

M2
wet v

_
wet

rssðt� tcÞ þ ðrpulse � rssÞðtp � tcÞ 2� tp � tc

t� tc

� �� �
ðB9Þ
and the wet face velocity is then computed from a modified form of Eq. (B8):
vwet ¼ v
_

wet 1þ Mwet

qwcwt0

1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

� k

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

� �� �
þ ðrpulse � rssÞðtp � tcÞðt� tpÞ

Mwetðt� tcÞ
: ðB10Þ
The total momentum in the panel, including that in the attached water layer is given as
I tot ¼ ½Mwet � qwxeðtÞ�vwetðtÞ þ ðtpulse � tcÞrpulse þ ðt� tpulseÞrss: ðB11Þ
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