
doi: 10.1098/rspa.2008.0328
, 685-708465 2009 Proc. R. Soc. A

 
S.P Mai and N.A Fleck
 
actuation response
Reticulated tubes: effective elastic properties and
 
 

References
ml#ref-list-1
http://rspa.royalsocietypublishing.org/content/465/2103/685.full.ht

 This article cites 12 articles

Subject collections
 (60 articles)mechanical engineering   �

 
Articles on similar topics can be found in the following collections

Email alerting service  herethe box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in

 http://rspa.royalsocietypublishing.org/subscriptions go to: Proc. R. Soc. ATo subscribe to 

This journal is © 2009 The Royal Society

 on 8 August 2009rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/content/465/2103/685.full.html#ref-list-1
http://rspa.royalsocietypublishing.org/cgi/collection/mechanical_engineering
http://rspa.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsa;465/2103/685&return_type=article&return_url=http://rspa.royalsocietypublishing.org/content/465/2103/685.full.pdf
http://rspa.royalsocietypublishing.org/subscriptions
http://rspa.royalsocietypublishing.org/


 on 8 August 2009rspa.royalsocietypublishing.orgDownloaded from 
Reticulated tubes: effective elastic properties
and actuation response

BY S. P. MAI AND N. A. FLECK*

Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK

The structural performance is explored for a reticulated circular tube made from a
periodic lattice: triangulated; hexagonal; Kagome; and square lattices. The finite-element
(FE) method is used to determine the macroscopic bending, torsional and axial rigidities
of each tube. Additional insight is obtained by examining the structural mechanics of the
pin-jointed version of each topology. For all pin-jointed lattices considered, no states of
self-stress exist. However, collapse mechanisms do exist for all reticulated tubes, and for
the Kagome and hexagonal lattices some of these mechanisms produce macroscopic
generalized strain. These strain-producing collapse modes are additional to those
observed in the planar version of these lattices. Consequently, the structural rigidities of
tubes with walls made from the rigid-jointed Kagome lattice or hexagonal lattice are less
than those predicted from the in-plane effective properties of these two lattices. The
morphing capacity of reticulated tubes is also explored by replacing a single bar with an
actuator in the FE simulations. The actuation stiffness of the structure is defined by the
stiffness of the reticulated tube in resisting extension by the actuated bar. The actuation
stiffness is explored as a function of the type of lattice, number of unit cells around the
circumference, orientation of the actuated bar and of the bar stockiness. In all cases, the
macroscopic shape change of the tube can be idealized as a combination of a local
rotation, axial extension, axial twist and shear displacement of the cross-section.

Keywords: reticulated tubes; periodic lattices; finite-element method;
effective elastic properties; mechanisms; actuation
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1. Introduction

Recently, lattice materials have emerged as an attractive candidate for
application in shape morphing technology (Dos Santos e Lucato et al. 2004;
Wicks & Hutchinson 2004; Symons et al. 2005a,b). In this study, we shall explore
the morphing capability of reticulated tubes by replacing a single bar in the
wall of the tube with an extensional actuator. Consequently, the structural
stiffness of reticulated tubes is of direct interest. The structural rigidity of
prismatic structures such as circular cylinders is traditionally calculated from the
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Figure 1. Reticulated tubes made from periodic lattices. (a) Triangulated, (b) hexagonal,
(c) longitudinal Kagome, (d ) circumferential Kagome, (e) square lattices. (I, axial actuation;
II, diagonal actuation; III, circumferential actuation.)
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Table 1. Relative density and in-plane effective elastic moduli of two-dimensional planar lattices.
(E, Young’s modulus of the solid material; E �, G�, Young’s and shear moduli of the two-
dimensional lattices. r, density of the solid material; r�, density of the cellular lattices. t and l are
the thickness and length of the individual bar member, respectively.)

two-dimensional
lattices

relative density
�rZr�=r

relative Young’s

modulus �EZE �=E

relative shear

modulus �GZG�=E Poisson ratio n�

triangulated 2
ffiffiffi

3
p

ðt=lÞ �r=3 �r=8 1/3

hexagonal ð2=
ffiffiffi

3
p

Þðt=lÞ ð3=2Þ�r3 ð3=8Þ�r3 1

Kagome
ffiffiffi

3
p

ðt=lÞ �r=3 �r=8 1/3

square 2ðt=lÞ �r=2 (parallel) �r3=16 (parallel) 0
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in-plane effective properties of the wall. While this is accurate for solid walls, it is
unclear whether the approach remains valid for walls made from a reticulated
framework, such as a hexagonal honeycomb. We shall address this unresolved
issue in the paper and show that tubes with walls made from a lattice material
can have a substantially degraded structural rigidity due to the activation of
additional compliant modes.

As a first step, the macroscopic structural rigidity is explored for circular tubes
with walls made from a number of competing topologies of lattice material:
triangulated; hexagonal; Kagome; and square lattices (figure 1). The triangu-
lated, hexagonal and Kagome lattices have isotropic, in-plane properties due to
their 1208 symmetries, while the square lattice is orthotropic. The structural
rigidity is determined for axial extension, bending and torsion by finite-element
(FE) analysis, and is then compared with the analytical prediction based on the
in-plane effective properties.

The in-plane properties of a wide range of two-dimensional lattices have been
explored in recent publications (Gibson & Ashby 1997; Romijn & Fleck 2007);
in contrast, little is known about their behaviour in a three-dimensional
structure. These effective properties scale with the relative density �r as
summarized in table 1; the expressions are taken from Gibson & Ashby (1997)
for the triangulated, hexagonal and square lattices, and from Romijn & Fleck
(2007) and Srikantha Phani et al. (2006) for the Kagome and square lattices.

The in-plane stiffness of the lattices is sensitive to the nodal connectivity, as
follows. The low nodal connectivity ZZ3 of the hexagonal lattice endows the
lattice with a compliant deviatoric response, such that the in-plane Young’s
modulus and shear modulus scale with �r3. This can be traced to the fact that
the response is governed by bending of the individual bars. The Kagome and
triangulated lattices have higher nodal connectivities of 4 and 6, respectively,
and their effective properties scale linearly with �r: these microstructures stretch
under in-plane macroscopic loading. The square lattice stretches under axial
deformation, and so its axial Young’s modulus E � scales with �r. In contrast, its
bars bend under shear loading parallel to the principal axes, and so the shear
modulus G � scales with �r3.

Recently, the actuation response of planar grids and of three-dimensional plates
has been studied. For example, Wicks & Guest (2004) have explored the actuation
behaviour of the two-dimensional triangulated, Kagome and hexagonal lattices.
Proc. R. Soc. A (2009)
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They extended a single bar by imposing a thermal strain, and they found that the
stiffness of the surrounding structure is the highest for the triangulated lattice and is
the least for the hexagonal geometry. The triangulated structure deforms
predominantly by bar stretching while the hexagonal lattice undergoes bar bending.
The Kagome lattice deforms by a mode in which some bars bend and others stretch
near the actuated bar, and thereby has an intermediate actuation stiffness.

Likewise, the morphing capability has been determined for a Kagome double-
layer grid by Symons et al. (2005a,b), and for a sandwich plate comprising a
tetrahedral truss core, a solid face and a Kagome face by Hutchinson et al. (2003)
and by Dos Santos e Lucato et al. (2004). Symons et al. (2005a,b) compared the
actuation response of a pin-jointed Kagome double-layer grid with the rigid-
jointed version. They demonstrated that the rigid-jointed version of a statically
and kinematically determinate pin-jointed structure inherits a morphing
capability: it combines a high passive stiffness under remote macroscopic loads
with minimal resistance to actuation of one or more bars. This motivates us to
determine whether pin-jointed reticulated tubes contain internal collapse
mechanisms and states of self-stress, and to determine the implications of this
upon their structural rigidity and morphing capability.

The scope of the present paper is as follows.

(i) Circular lattice tubes are described with wall topology comprising
triangulated, hexagonal, Kagome or square lattices. Linear algebra is
used to determine the number of states of self-stress and internal collapse
mechanisms in the pin-jointed versions.

(ii) The structural rigidities (axial, bending and torsional) are calculated for
rigid-jointed lattice tubes using FE simulations, and are compared with
the existing analytical predictions based on the in-plane effective
properties of two-dimensional lattices.

(iii) The morphing capacity of reticulated tubes is explored by replacing a
single bar with an extensional actuator in FE simulations. The actuation
stiffness is compared with that of the infinite, planar lattice and the
macroscopic mode of actuation is quantified in terms of a rotational hinge,
an axial extension, axial twist and transverse shear of the cross-section.
(a ) Geometry of reticulated tubes

Consider a circular cylindrical tube of length L and radius R, generated
by the wrapping of a periodic lattice: triangulated (topology A); hexagonal
(topology B); Kagome (topologies C and D); or square (topology E) as defined
in figure 1. The joints and axial bars of the tubular lattices lay on a circular
cylinder, with the non-axial connecting bars deviating from this surface. All bars
are straight and of length l, and for definiteness have a square solid cross-section
of dimension t!t. The second moment of area is IZt 4/12 and the radius of
gyration is gZI 1=2=tZ t=2

ffiffiffi

3
p

. We shall present our results in terms of the
stockiness shg/l, to increase the applicability of our findings to bars of other
cross-section, as discussed by Wicks & Guest (2004). A Cartesian reference
frame is defined in figure 1, with the x3-direction along the longitudinal axis of
each tube.
Proc. R. Soc. A (2009)
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The triangulated, Kagome and hexagonal lattice tubes are arranged such that
a portion of their bars lie along the longitudinal or circumferential directions. We
explore the significance of this for the Kagome lattice: topology C denotes the
longitudinal orientation and topology D denotes the circumferential orientation
(figure 1c,d, respectively). For the triangulated and hexagonal lattices, we limit
attention to the longitudinal orientation (see figure 1a,b, respectively).

The geometry of each tube is specified by the relative density �r of the parent
planar lattice, and by the number of bars p circumnavigating the tube. Suppose
we complete one full circuit of the tube along the circumferential orientation by
moving from one bar to the next. The shortest such journey involves p bars. The
examples shown in figure 1 are for pZ8. The radius R of the mid-surface of
the tube scales with (l, p) according to

RZ

ffiffiffi

3
p

l

4 sinðp=pÞ ; ð1:1aÞ
for topologies A–C and

RZ
l

2 sinðp=pÞ ; ð1:1bÞ

for topologies D and E. It is clear from the above two formulae that for a fixed
value of length l of the bar member, the circumferential curvature 1/R of the
lattice tube tends to zero as p tends to infinity. In this limit, the tubes become
infinite planar lattices.
2. Structural analysis of pin-jointed lattice tubes

We begin by treating the lattice tubes as pin-jointed and use linear algebra to
determine the number of independent states of self-stress and the number of
independent collapse mechanisms. Insight into the structural performance of the
rigid-jointed versions is thereby obtained. Here, we are interested in the practical
case of tubes of finite length and we shall investigate the dependence of the
number of collapse mechanisms and states of self-stress upon the number of
circumferential bars p and upon the number of unit cells q along the tube length. It
is recognized that methods exist to analyse the infinitely long, pin-jointed lattice
tube: a Bloch-wave analysis could be used to identify harmonic collapse modes
that do not produce macroscopic strain, and the infinite wavelength limit could be
used to explore macroscopic strain-producing collapse modes such as axial
extension of the tube. Analyses of these types have been performed for planar two-
dimensional lattices (see Hutchinson & Fleck 2006), but are not pursued further
here: the main details are gleaned from an analysis of finite tubes.

A unit cell of each lattice tube is shown by dashed lines at the left-hand end of
the tube (figure 1a–e). The unit cells shown give the smallest arrangement of
bars, which can be tessellated along the longitudinal and circumferential
directions in order to construct the full structure. (Smaller unit cells could be
constructed by tessellation along intermediate directions.) For example, the unit
cell of topology A (the triangulated tube) has two axial bars and four diagonal
bars, while that of topology D (the circumferential Kagome tube) contains four
circumferential bars and eight diagonal bars (compare figure 1a,d ). A small
number of additional bars are added to the other end of the tube in order to
Proc. R. Soc. A (2009)
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Table 2. Structural properties of pin-jointed lattice tubes A–E : nodal connectivity Z; number of bars
b; number of joints j; and number of internal collapse mechanismsm. (p is the number of bars around
the circumference, while q denotes the number of unit cells along the length of each lattice tube.)

lattice tubes Z b j m

topology A (triangulated) 6 (3qC1)p (qC1)p 2pK6
topology B (hexagonal) 3 (3qC1)p (2qC1)p (3qC2)pK6
topology C (longitudinal Kagome) 4 3qp (3qC1)p/2 (3(qC1)p/2)K6
topology D (circumferential Kagome) 4 (6qC1)p (3qC1)p (3qC2)pK6
topology E (square) 4 (2qC1)p (qC1)p (qC2)pK6
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complete the lattice pattern for each topology. These additional bars are shown
in grey-dashed lines at the right-hand end of each tube (figure 1a–e) in order to
close the pattern rather than leave dangling bars connected by single nodes. We
shall show below that these additional bars are not sufficient to eliminate local
mechanisms at the end of the tube, and so-called ‘patching bars’ are also needed.
Formulae for the number of the bars b and number of joints j are given as a
function of (p, q) in table 2, for each topology.

The methodology of Pellegrino & Calladine (1986) and Pellegrino (1993) is
now applied to construct the equilibrium matrix for each pin-jointed topology.
The rank and the fundamental subspaces of the equilibrium matrix are obtained
via the singular value decomposition (SVD), as implemented within the software
package MATLAB (MathWorks 2004 MATLAB user’s guide, v. 7). The rank of the
equilibrium matrix is closely related to the number of states of self-stress s and to
the number of internal mechanisms m, as follows. The Maxwell–Calladine
relation (see Calladine 1978) reads as

m Z sC3jKbK6; ð2:1Þ
where b is the total number of bars and j is total number of joints in the
structure. An SVD analysis of all topologies A–E reveals that there are no states
of self-stress (sZ0) within any lattice tube. Consequently, m is given directly in
terms of (b, j ) by equation (2.1). Recall that (b, j ) can be expressed in terms of
(p, q) via the formulae given in table 2. Thus, m scales with (p, q), and these
dependencies are included in the table.

We note from table 2 that the number of collapse mechanisms increases linearly
with the number of unit cells q along the length of the tube, except for the
triangulated lattice, topology A. This lattice has mZ2pK6 collapse mechanisms,
independent of q. By patching additional pK3 suitable bars to each end of this tube
(not shown in figure 1a), these collapse mechanisms can be eliminated, and the
structure can be made kinematically determinate (it is already statically
determinate since sZ0). No such simple end-patching procedure can be applied
to make the remaining topologies kinematically determinate.
3. Structural rigidity of lattice tubes

The macroscopic structural rigidity of reticulated tubes has been explored by
FE simulations (the commercial FE software ABAQUS (ABAQUS standard user’s
mannual, 2004 v. 6.4) is used), and the calculated values have been compared
Proc. R. Soc. A (2009)
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Figure 2. Imposed displacements on the lattice tube. (a) Axial tension, (b) transverse bending and
(c) axial torsion.
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with analytical predictions using the in-plane effective properties of the two-
dimensional lattices. The five types of lattice tubes shown in figure 1 were
subjected to axial tension, axial torsion and bending about the x1-axis (figure 2b),
and the associated structural rigidities were obtained. In all cases, the tube length
L is much larger than the bar member length l; for topologies A, B, C and E, the
tube length is LZ100l, while for topology D, LZ84.1l. Each bar is simulated by a
single two-noded Euler–Bernoulli beam element. These linear elastic elements have
cubic interpolation formulae and are of element type B33 in ABAQUS notation.
Appropriate displacements are prescribed on the ends of each tube in order to
generate axial tension, transverse bending and axial torsion, as sketched in
figure 2a–c, respectively. The FE method is used to obtain the work-conjugate
resultant loads. All simulations assume infinitesimal displacements.
(a ) Imposed loading on tubes

(i) Axial tension

The two ends of the reticulated tube are extended by a relative displacement
of 2u along the x3-direction, as shown in figure 2a. The effective axial rigidity in
tension (EA)eff of the tube is defined in terms of the computed axial resultant
Proc. R. Soc. A (2009)
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force T as

ðEAÞeff h
TL

2u
: ð3:1Þ

It is instructive to compare the axial rigidity of the lattice tube with that of a
solid-walled tube of equal radius R and wall thickness t to that of the lattice tube.
The solid wall is endowed with the effective in-plane moduli (E �, G�) of the two-
dimensional lattice plate (given in table 1). The cross-sectional area As, second
moment of area Is and polar moment of area Js of the solid-walled tube are given
by the usual thin-wall approximations

As Z 2pRt; Is ZpR3t; Js Z 2pR3t: ð3:2Þ
The effective axial rigidity (EA)eff of the lattice tube is normalized by the axial
stiffness E �As of the equivalent continuum tube to obtain

EAh
ðEAÞeff
E �As

: ð3:3Þ

(ii) Transverse bending

The lattice tube is subjected to transverse bending by rotating the cross-
section of the tube by Cf at the right-hand end and Kf at the left-hand end.
This rotation is imposed by a distribution of axial displacement, which is linear
in the x2-direction. The FE calculation gives us the imposed moment M on the
end cross-section. The imposed curvature on the tube is kZ2f/L and the non-
dimensional bending rigidity of the tube is

EIh
ðEIÞeff
E �Is

Z
M

kE �Is
: ð3:4Þ
(iii) Axial torsion

The two ends of the lattice tube are given a relative rotation 2u about the
longitudinal, x3-axis. This is achieved by imposing a circumferential displace-
ment to each node of the end faces. The tube responds with an axial torque Q,
and the non-dimensional torsional rigidity of the tube is

GJh
ðGJÞeff
G�Js

Z
Q

2uG�Js
: ð3:5Þ
(b ) Predictions of structural rigidity for each type of lattice tube

FE calculations have been performed on each topology of figure 1 in order to
obtain the dependence of (EA, EI, GJ) upon �r for the particular choice pZ8. The
effect of the number of circumferential bars p upon the response is explored
subsequently for the longitudinal Kagome tube in torsion.

The non-dimensional structural rigidities (EA, EI, GJ) are approximately equal
to unity for the triangulated tube (topology A) and for the square-lattice tube
(topology E), for all �r. (There is no need to show these results graphically.) The
triangulated tube has a stretching-dominated response under axial tension, torsion
and bending; in contrast, the bars of the square-lattice tube stretch when the tube is
subjected to axial tension or bending, while the bars bend when the tube is twisted.
Proc. R. Soc. A (2009)
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Next, consider the hexagonal tube, topology B, with pZ8. The normalized
structural rigidities are almost independent of �r (figure 3a). Recall that the two-
dimensional hexagonal lattice deforms by bar bending under in-plane deviatoric
loading (Gibson & Ashby 1997). The hexagonal tube under axial torsion has the
same deformation mode as that of the unwrapped hexagonal plate under shear: the
axial bars deform by bending and GJ is close to unity. Under macroscopic tension
and macroscopic bending, the hexagonal tube is somewhat more compliant than
Proc. R. Soc. A (2009)
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that given by the in-plane effective stiffness of the two-dimensional lattice. This is
traced to the fact that the bars aligned with the axis of the tube undergo local
bending, while they remain straight in the two-dimensional planar lattice.

Now consider the longitudinal Kagome tube (topology C ; figure 3b). The non-
dimensional axial and bending rigidities are approximately equal to unity,
EAZEIZ1. The interpretation is that the longitudinal Kagome tube under
macroscopic tension (and bending) has the same stretching-dominated response
as that of the planar Kagome plate. In contrast, the normalized torsional rigidity
GJ scales with �r2 (figure 3b). Similarly, all the non-dimensional structural
rigidities of topology D (the circumferential Kagome) scale with �r2 (figure 3c).
The dependence of these structural rigidities upon �r2 implies that the
deformation mode of the tubes involves bar bending, whereas the planar
response is stretching governed.

To gain additional insight into the above compliant modes of the Kagome
tubes, the sensitivity of the structural rigidity to the number p of bars on the
tube circumference is explored for the longitudinal Kagome tube in axial torsion.
The normalized torsional rigidity GJ of topology C is shown in figure 4, as a
function of p for selected relative densities. GJ increases to unity as p tends to
infinity: at large p the circumferential curvature of the tube diminishes and the
planar response is recovered.

Recall from §2 that the Kagome tubes possess a number of collapse
mechanisms and some of these can generate macroscopic strain. These strain-
producing mechanisms in the pin-jointed limit become local bar-bending modes
of the rigid-jointed Kagome. We proceed to examine the local bar-bending modes
in the deformed FE mesh of the rigid-jointed Kagome tube at low relative
density; significant beam curvatures develop near the joints, thereby indicating
the collapse mechanism in the pin-jointed variant.
(c ) Macroscopic strain-producing mechanisms of pin-jointed Kagome tubes

The deformed shape of a rigid-jointed longitudinal Kagome tube, of relative
density �rZ0:01, has been determined by FE analysis, for the choice pZ8, qZ50.
To aid identification of the collapse mode, the cylindrical tube in the undeformed
and deformed states is unwrapped to eliminate its circumferential curvature. The
undeformed Kagome lattice is shown as dashed lines in the unwrapped state,
whereas the deformed lattice is shown as solid lines (figure 5). In order to indicate
the radial component of nodal displacement (normal to the initial cylindrical
surface), additional labelling of the nodes is required: nodes denoted by filled
circles move inwards, those denoted by double circles move outwards while those
denoted by open circles move radially by less than 5 per cent of the maximum
radial displacement of any node. It is clear from figure 5 that the torsional
collapse mode involves a combination of circumferential torsion (affine
deformation) and a superimposed short-wavelength twist of neighbouring
triangular elements about an axis within the cylindrical surface. This short-
wavelength twisting motion generates additional macroscopic torsion of the tube
and significantly degrades the torsional rigidity of the rigid-jointed tube.

A similar explanation can be invoked for the low torsional rigidity of the
circumferential Kagome tube. The deformed lattice for the rigid-jointed version
at �rZ0:01, pZ8, qZ25 is shown in the unwrapped state in figure 6a. We note
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/


tube axial direction

Figure 5. Unwrapped view of the infinitesimal collapse mode of the longitudinal Kagome tube in
torsion. Open circles, nodes move within the surface of the initial undeformed cylinder; double
circles, nodes move radially outwards from the undeformed cylinder; filled circles, nodes move
radially inwards from the undeformed cylinder.

1 101 102

10–4

10–2

1

GJ

p

Figure 4. Longitudinal Kagome tube: normalized torsional rigidity GJ against p for selected
relative densities.
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again that the deformed state comprises an affine torsional motion within the
surface of the initial cylinder, and an additional superimposed short-wavelength
twist of neighbouring triangular elements. The twisting moves joints in the radial
direction such that they move out of the plane of the unwrapped configuration.
This additional compliant mode reduces the torsional rigidity of the tube. The
structural rigidity in tension and in bending of the circumferential Kagome tube
is also degraded by the presence of additional collapse mechanisms. A side view
of the rigid-jointed circumferential Kagome lattice (�rZ0:01, pZ8, qZ25) in the
initial and deformed states is shown in figure 6b for macroscopic tension and in
Proc. R. Soc. A (2009)
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move radially inwards from the undeformed cylinder.) Side view of the infinitesimal collapse modes
of the circumferential Kagome tube in (b) tension and (c) bending.
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figure 6c for macroscopic bending. In the initial configuration, adjacent bars are
not co-directional. Consequently, under macroscopic tension of the tube, the bars
undergo short-wavelength relative rotations to become more co-directional with
their neighbours (figure 6b). Likewise, under macroscopic bending of the tube,
Proc. R. Soc. A (2009)
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those bars under tension are pulled into a straighter configuration while those
bars under compression rotate away from each other into a more angular
configuration (figure 6c).
4. Single-bar actuation in reticulated tubes

The actuation stiffness of the lattice tubes is now explored. For each tube,
a single bar at mid-length of the tube is replaced by an extensional actuator. The
actuated bar lies along the axial direction, labelled (I), along the diagonal
direction (II) or along the circumferential direction (III), as defined in figure 1.
The actuation motion is achieved by deleting the relevant bar and by imposing a
small relative extension ua of the joints at the ends of the removed bar. The
above FE procedure is used to compute the work-conjugate force fa on these two
joints. The actuation stiffness k of the structure is the ratio

kh
fa
ua

: ð4:1Þ

This stiffness is normalized by the axial stiffness Et2/l of a single bar to obtain

�k Z
kl

Et2
; ð4:2Þ

where t2 is the cross-sectional area of one bar and E is Young’s modulus of the
parent material.

The normalized actuation stiffness �k is closely related to the ‘internal
resistance to actuation’ Ŵ as defined by Wicks & Guest (2004) and Wicks &
Hutchinson (2004). They define Ŵ as the elastic energy stored in the lattice and
actuated bar, normalized by the elastic energy stored in an actuated bar, if
the remainder of the structure is rigid. Elementary algebra reveals that
�khŴ=ð1KŴ ÞzŴ for small Ŵ .

(a ) The actuation stiffness of each type of lattice tube

FE simulations have been performed on rigid-jointed tubes of length LZ100l for
topologies A, B, C and E, and LZ84.1l for topology D. (Preliminary numerical
experiments confirmed that the chosen length of lattice tube is adequate to
eliminate the effect of tube length upon the actuation stiffness.) The non-
dimensional actuation stiffness �k is determined as a function of the bar stockiness
sZg/l within the practical range of 0.005–0.045. First, �k for the three topologies
A–C (with pZ8 circumferential bars) is plotted as a function of the bar stockiness s
in figure 7a for actuation of an axial member and in figure 7b for actuation of a
diagonal member. Likewise, �k for the circumferential Kagome lattice (D) and the
square lattice (E ) (with pZ8) is given in figure 8. Second, the sensitivity of �k to the
value of p is explored for the single case of the longitudinal Kagome tube (figure 9).

In order to aid interpretation of the results for the lattice tubes, additional
calculations have been performed for the actuation stiffness �k for two-dimensional
planar lattices. In the FE simulations, the actuator is located at the centre of the
lattice, and is parallel to the longer dimension of the structure. The planar lattice is
modelled as a rectangle of width WZ100l; the height is HZ30

ffiffiffi

3
p

l for the
triangulated, Kagome and hexagonal lattices, whereasHZ60l for the square lattice.
Wicks & Guest (2004) have demonstrated that these dimensions are sufficiently
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Figure 7. Normalized actuation stiffness of lattice plates and lattice tubes: triangulated, longitudinal
Kagome and hexagonal. Actuation of (a) an axial bar and (b) a diagonal bar. In all cases, pZ8.
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large to represent an infinite plate for the triangulated, Kagome and hexagonal
topologies (for sR0.005). The normalized actuation stiffnesses �k of the planar
lattices are included in figures 7–9 as solid lines for reference purposes. We note in
passing that our results for the planar lattices A–D are in excellent agreement with
those of Wicks & Guest (2004).

(i) Results

First, consider axial actuation of the tubular lattices. �k scales with s to
the power of 1/2, 1, 1 and 2 for the triangulated, longitudinal Kagome, square
and hexagonal topologies, respectively (figures 7a and 8). These values lay below
those for the corresponding planar lattice by a factor of approximately 4.

Second, consider �k for diagonal actuation of the tubular lattices. �k scales with
s to the power of 3/2, 2, 2 and 2 for the triangulated, longitudinal Kagome,
circumferential Kagome and hexagonal topologies, respectively (figures 7b
and 8). For the hexagonal lattice tube, �k is below that for the two-dimensional
Proc. R. Soc. A (2009)
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planar lattice by a factor of approximately 4, as already noted for the case of
axial actuation. In contrast, there is a much larger drop in stiffness upon
switching from a two-dimensional lattice to a tubular lattice for the triangulated,
longitudinal Kagome and circumferential Kagome topologies. Recall that �k scales
with s to the power of 0, 1 and 1 for the planar triangulated, longitudinal Kagome
and circumferential Kagome topologies, respectively.

Third, consider �k for circumferential actuation of the tubular lattices with square
and circumferential Kagome topologies (figure 8). Again, the tubes are much more
compliant than the two-dimensional plates. For both lattices, �k scales with s to the
power of unity for the two-dimensional plate and to the power of 2 for the tube.

Finally, consider the sensitivity of �k to the number of circumferential bars p
for the longitudinal Kagome tube (figure 9). When an axial bar is actuated, �k is
proportional to s for all values of p, and tends towards the two-dimensional
Kagome plate limit with increasing p (figure 9a). In contrast, �k is highly sensitive
to p for the case of actuation of a diagonal bar (figure 9b). For low values of p, �k
scales as s2 whereas for large p, �k increases linearly with s.

(ii) Interpretation of the actuation stiffness in terms of the deformed shape
of tubes

Insight into the actuation stiffness is obtained by examining the deformed shape
of lattice tubes at low bar stockiness. We consider each topology in turn. The
triangulated tube actuates in a more compliant manner than that of the planar
lattice due to the radial bending of arrays of adjacent diagonal bars (figure 10). The
loading is reminiscent of shear-lag, with the progressive decay in axial force of a line
of axial bars by the bending of the neighbouring diagonal bars.

The hexagonal tube has a slightly lower actuation stiffness than that of the
hexagonal plate, but the overall mode of deformation is the same. The
deformation mode involves the bending of bars near to the actuated bar, and
Proc. R. Soc. A (2009)
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is omitted here for the sake of brevity; the mode for the hexagonal plate is shown
in fig. 6 of Wicks & Guest (2004).

The longitudinal Kagome tube under actuation of an axial bar deforms in a
similar manner to that of the planar Kagome plate (compare figure 11a with fig. 7
of Wicks & Guest 2004). In contrast, diagonal actuation of the longitudinal
Kagome tube generates a local deformation mode involving the bending of a
Proc. R. Soc. A (2009)
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Figure 10. Unwrapped view of the deformation mode of the triangulated tube due to actuation of
(a) an axial bar and (b) a diagonal bar. pZ8, sZ0.005. Open circles, nodes move within the
undeformed cylinder; double circles, nodes move radially outwards from the undeformed cylinder;
filled circles, nodes move radially inwards from the undeformed cylinder; t, bars deform
predominantly by tension; c, bars deform predominantly by compression; B, arrays of diagonal
bars deform predominantly by bending.
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small number of bars in the radial direction (figure 11b). This is a more compliant
and more local mode than that observed for actuation of an axial bar of the
longitudinal Kagome tube. Likewise, actuation of the circumferential Kagome
tube by extension of a circumferential bar or a diagonal bar generates a local
compliant bending mode, as shown in figure 11c. The actuation stiffness of the
circumferential Kagome tube is almost identical to that for diagonal actuation of
the longitudinal Kagome tube (compare figures 7b and 8).

The square-lattice tube under axial actuation has a similar deformation mode
to that of the longitudinal Kagome tube: a long wavelength shear-lag mode
exists, with negligible radial motion of the nodes. An unwrapped view of the
deformed square lattice is given in figure 12a. Wicks & Guest (2004) have
developed a simple analysis of this deformation mode for the planar Kagome
lattice; we modify this analysis in appendix A for the case of the two-dimensional
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Figure 11. Unwrapped view of the deformation modes of the longitudinal Kagome tube due to
actuation of (a) an axial bar, (b) a diagonal bar. (c) Unwrapped view of the deformation mode of the
circumferential Kagome tube due to actuation of a circumferential bar. In all cases pZ8, sZ0.005.
Open circles, nodes move within the undeformed cylinder; double circles, nodes move radially
outwards from the undeformed cylinder.
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Figure 12. Unwrapped view of the deformation modes of the square-lattice tube due to actuation
of (a) an axial bar and (b) a circumferential bar. pZ8, sZ0.005. Open circles, nodes
move within the undeformed cylinder; double circles, nodes move radially outwards from the
undeformed cylinder.
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square lattice and thereby obtain expressions for the actuation stiffness and the
size of deformation zone. The actuation stiffness of the square-lattice tube is
slightly below that of the Kagome plate (figure 8). The square-lattice tube under
circumferential actuation has a similar deformation mode to that of
circumferential actuation of the circumferential Kagome tube; it involves bar
bending near the actuated bar (compare figures 11c and 12b). The actuation
stiffnesses for these two topologies are almost identical (figure 8).
(b ) The generalized hinge at the actuated section of a reticulated tube

The FE simulations reveal that actuation of a bar in the reticulated tube gives
rise to a generalized hinge at the actuated cross-section of the tube. This hinge
involves an axial extension Du3, two shearing displacements (Du1, Du2), an axial
twist Du3 and two bending rotations (Du1, Du2) (figure 13). The magnitudes of
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