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Brittle fracture due to an array of microcracks

By N. A. FLECK
Department of Engineering, Cambridge University, Cambridge CB2 1PZ, U.K.

The method of distributed dislocations is used to analyse the response of an infinite
elastic solid containing a single periodic array of inclined curved cracks. Uniform
remote loading is applied to the body, and the cracks are of arbitrary but identical
shapes. Expressions are derived for the stress intensity factors at each crack tip, the
crack displacement profile and the extra compliance of the body due to the presence
of the cracks. For an array of straight cracks, the stress intensity factors, and the
extra compliance are found as a function of crack orientation and spacing.

Using this framework, we examine brittle fracture by the development of a
periodic array of cracks in a solid which suffers all combinations of remote
proportional loading. The solution for remote shear is explored in detail. The various
types of response are summarized in a fracture map, and are compared with
experimental observations for polymers and rocks.

1. Introduction

When an elastic body containing a random distribution of flaws is subjected to
remote shear, failure may occur by the growth and coalescence of tensile microcracks
in a band. This failure mechanism is known to occur in the case of the amorphous
thermoplastics polycarbonate and polymethyl methacrylate (Fleck & Wright 1989)
and in rocks (see, for example, Ramsay 1967 ; Pollard et al. 1982), where the cracks
are referred to as echelon cracks. The typical morphology of the microcracks is shown
in figure 1. Failure under remote shear due to tensile microcracking also occurs in
fibrous composites with polymeric or ceramic matrices (Purslow 1981 ; Evans 1985).
When a fibre is pulled out from the composite, or when two layers delaminate, the
matrix can suffer shear failure by this cracking process (see figure 1).

This failure process of shear localization is similar in qualitative terms to shear
localization phenomena in metals where the matrix material is plastic (Yamamoto
1978; Anderson et al. 1989 ; Fleck et al. 1989), or is viscous (Fleck 1988). Failure is
due to the nucleation, growth and coalescence of voids or cracks in a localized band,
with material outside the band behaving essentially in a rigid manner.

In this paper, we calculate the evolution of a periodic array of cracks under remote
proportional loading. Straight cracks are assumed to nucleate to a length 2a, which
is much smaller than the crack spacing 2b. The initial orientation of the cracks is
taken to be normal to the direction of maximum principal tensile stress. We assume
each crack of the periodic array grows into a curved shape without kinking, under
the condition that the local mode II stress intensity factor K;; at the crack tip
vanishes. This has been substantiated by many experiments (see, for example,
Erdogan & Sih 1963). The solution method adopted is that of solving a singular
integral equation for a distribution of dislocations, using a similar technique to that
developed by Erdogan & Gupta (1972).

The outline of the paper is as follows. The governing integral equation is
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Figure 1. Typical morphology of an array of microcracks in a brittle solid, under predominantly
remote shear. (@) Amorphous polymers, (b) isotropic rocks, and (c¢) fibre composites.

formulated, and the numerical solution procedure is outlined. Some results for an
array of inclined straight cracks are given and the issue of crack stability for a strip
of finite height under fixed remote displacements is addressed. The evolution of crack
shape for the case of remote simple shear is given in some detail, and compared with
the case of an array of collinear cracks under remote tension, as found by Koiter
(1959). Finally, the evolution of crack shape is described for a variety of remote
loadings, and a fracture map is constructed. This fracture map summarizes the
cracking pattern as a function of remote loading; it is used in two case studies to
predict the nature of the remote loading from observation of the shape of the fracture
surfaces.

2. Formulation of the integral equation

We may solve the problem of a periodic array of curved cracks under remote stress
o by the method of superposition of dislocations. Let b,(§) and b,(§) be the z and
y components of an edge dislocation arranged in a periodic array in the complex
plane, z = x+iy. The dislocations are located as shown in figure 2 at z,+2nb where
2y = Xy+1y, is the location of the dislocation adjacent to the origin, 2b is the
dislocation spacing, and » is an integer taking all values. We assume the material is
isotropic and linearly elastic, with a shear modulus # and Poisson ratio ». The stresses
o;; and displacements u; induced by the dislocation can be obtained by Muskhelishvili
methods and are given for plane strain conditions as,

o+, =2(d(2 +¢'(2)
0, —0,+i2o,, = 2[(z—z)¢ (z >+9’( -4 ()], (2.1)
2p(u, +iu,) = (3—4v) §(2) +(2—2) ¢'(2) —£2(2),

where the Muskhelishvili potentials ¢(z) and £(z) are expressed in terms of A(z,) =
u(b,—ib,)/4n(1—v) as,

() = Alnsin ((n/2b) z———zo))
Q(z) = Alnsin ((/2b) (z—2z,)) — A (n/2b) (2,—2,)) cot ((T/2b) (z—2,)). (2.2)

These potentials give the required periodicity in stresses, and the desired multi-
valuedness in displacements on prescribing a Burgers circuit around any of the
dislocations. Near the dislocations the stresses vary as (z—z,)"', and at large |y
stresses decay as 27!, as required.

Now consider the dlslocatlons located on a periodic array of curves of spacmg 2b,
with a single dislocation on each curve. Each curve defines the shape of a crack. We
shall consider the problem of a distribution of dislocations on each curve such that
the traction on each curve is equal and opposite to that given by the remote
homogeneous stress field. Then, the curves become traction free and are equivalent
mathematically to cracks.

Proc. R. Soc. Lond. A (1991)
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Figure 2. Crack geometry.

Define the shape of the curve shown in figure 2 in terms of distance p from the
origin. We assume that the inclination g of the curve is known as a function of p; this
defines the shape of the curve. Writing (¢, #) as the tangential and normal directions
to the curve, the stress components at a point p on the curve due to a dislocation at
a point § is derived from (2.1) and (2.2) as,

Tn(p)+i0y,(p) = A(§) Hy(25,2) + A(£) Hy (2, 2), (2.3)

where

H,(2y,2) = (m/2b) cot ((m/2b) (2—2,)) (1 — %) + (/2b)? €12/ [sif ;o}% (?z —22,))]

and  Hy(z,,2) = (n/2b) cot ((/2b) (Z—7,)) + (n/2b) €'2®) cot ((1/2b) (z— 2,)).

The array of cracks is represented by a distribution of dislocations laying along
each curve such that the net traction vanishes on each curve. That is, the
distribution of dislocation 4(£) must satisfy the condition along the curve O,

alp) +ipm(p>+f A(E) Hy (e, )+ A(E) Hy (20, 2) dE = 0. 2.4)
C

Here, p, and p,, are the normal and shear stresses due to the remote loading 37 ; they
are given by )
Pt ipy, = 3oy —o7 +i205,) 0 + Lo + o). (2.5)
To proceed, we express z and 2, in terms of p and £ respectively. After separating
out the Cauchy integral, (2.4) may be rewritten as

pa0) i) = 200040 2t [* @ Ky 0+ A0 L 08 (ol <),
(2.6)
where
K(zy,2) = (m/2b) (1—e2$9) cot ((m/2b) (2, —2)) + (1/2b)? 1260 [Siff;’ : (:/)% (? —2) )]
and

Lizg.2) = (1/2b) cot ((1/2b) (2 —2)) + (/2b) 6% cot (1/2b) (2, —2)) — 26149 /(£ —p).
Proc. R. Soc. Lond. A (1991) '



58 N. A. Fleck

The first integral in (2.6) is the Cauchy principal value integral, and K, . contain
removable singularities at § = p. For the case of straight cracks at an inclination f
to the x axis, equation (2.6) can be simplified to,

Pt 1Pp = 2eiﬁfl 4 J K& p)+AE)LE p)dE (ol <a), (2.7)
where K(&, p) 7t/2b (1—e'?#) cot ((1t/2b) (£ —p))
+e'?(e!f —e ) (1/2b)* £=p

sin® ((m/2b) e (£ —p))’
L(&, p) = (1/2b) [cot ((m/2b) e (£ —p)) +e'* cot ((n/2b) (£ —p)) —4be” /n(§—p)]
and Pp+ip,, = HoP —oF +i205,) e + 307 +07).

3. Solution of the integral equation

A procedure similar to that outlined by Erdogan & Gupta (1972) is used to solve
the integral equation (2.6) and (2.7). Consider first the case of curved cracks.
With the change of variables £ = at, the distribution 4(£) is taken to be
elf® N-1
A@ = X oI, E=a, (3.1)
(L=1%) j=0
where 7)(t) is the Chebyshev polynomial of the first kind of degree j and the cs are
complex coefficients which must be determined by the solution process. The number
of terms N is chosen to be sufficiently large to give an accuracy of 0.1% (typically,
N = 40). The symmetry of the problem dictates that the cracks of length 2a possess
point symmetry about their centres. Thus A(£) is an odd function. For reasons of
optimizing the numerical implementation of the method we use a complete
representation for 4(§) and include the even terms. An alternative formulation of the
integral equation assumes explicitly that the even coefficients vanish; such a
formulation does not provide for much economy in computational time or for much
gain in accuracy, as discussed by Erdogan & Gupta (1972). The alternative
formulation was therefore not used in the present study.
When substituted into (2.6) the representation for 4 leads to an equation of the
form

N-1 N-1 N-1
pn(pr)'l"lpnt(pr) = Z 11(7',j)5]+ Z 12(7'9j)0j+ E Is(r,j)gj, (7 = 1, ,N_l),
j=1 =0 =0
(3.2)
where the terms I, to I, are
. 2n N exp (i ) — P& .
. maX
Lir,j)=— X '/ Ew Tj(tk)K(zo(gk)s z(p,)), (3.3)
N o
. ma ¥
L(r,) = 5 e 1,1,) Lizo(E), 2p,)

k=1
& =at,, p,=au, t,=cos((t/2N)(2k—1)), wu,= cos(nr/N).
Proc. R. Soc. Lond. A (1991)



Brittle fracture due to an array of microcracks 59

Equations (3.2) and (3.3) follow directly from (2.6) by using the numerical
integration scheme of Erdogan & Gupta (1972). The main formulas are

oAy di m & fite)
e ~ — E ,
T Nl le—u, (3.4)

b=, (1—1?)
t, = cos (n/2N) (2k—1), w, =cos(nr/N) (r=1,...,N—1)

and the Gauss—Chebyshev integration formula

S (NPT ~ |
JI (1 _tz)édt ~ Nkz_:lf(tk), Ty(ty) =0, (3.5)

where f(t) is analytic in [f| < 1.
In addition to equation (3.2) is the closure condition that the cracks produce no net
slip in the solid, or

J A(g)dE=0. (3.6)
The integral may be evaluated using the Gauss—Chebyshev formula to give
N-1 N
Y e Ti(t,) e, = 0, t, = cos((n/2N)(2k—1)), k=1,...,N. (3.7)
=0 k=1

We have now reduced the integral equation (2.6) to a linear system of 2N—2
equations from (3.2), and 2 equation from (3.7) in 2N unknowns for Re{c;} and
Im{c;}. This set of 2NV unknowns is used to satisfy the left-hand side of (3.2) at the
N—1 collocation points p, = au, (r =1,...,N—1).

3.1. Crack advance algorithm

We calculate the continuous evolution of the crack profile under remote
proportional loading. Each crack advances with no kinking, under the condition that
K;; vanishes at the crack tip.

The crack is assumed to advance in steps Aa, with the curvature « constant over
each increment Aa. Thus the crack is represented by a curve of piecewise constant
curvature. This representation gives simple expressions for f(p) and z(p); for a
segment of the curve starting at p; we have

Bp) = Bi+ki(p—py), 2(p) = 2 — (i/K;) (¥ —e'fi), (3.8)

where the subscript i refers to the value at the beginning of the segment.

The solution procedure is as follows. We consider an initial straight crack of short
length a/b = 0.1, where 2a is the crack length and 2b is the crack spacing. The angle
of the initial crack g, is chosen to be normal to the direction of maximum principal
tensile stress. Since the cracks are small initially, they interact only very weakly and
suffer similar loading to that of an isolated crack.

The cracks are advanced in steps Aa/b = 0.2 typically, such that K;; vanishes at
the new crack tip. For each crack advance step, a Newton—Raphson scheme is used
to search out a value for « such that K;;/K; vanishes at the new crack tip. With crack
advance, the cracks interact to an increasing degree and the number of equations 2N
must be increased. Typically, 2N = 160 when the cracks approach to within 0.16 of
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60 N. A. Fleck

each other and the calculation is stopped. As expected from symmetry, A(§) is
calculated to be an odd function: the even coefficients c,, ¢,, ¢4, ..., vanish.
Calculations were performed on a VAX workstation and required approximately
10h of cpU time for growth of the cracks to coalescence.

3.2. Calculation of stress intensity factors, crack opening and the extra compliance
A direct calculation shows that the stress intensity factors are given by

K, +iK,; = (2n): lim (—e):e#® A(a+¢),

e>0"

which, with (3.1), reduces to
N 1N—l
K, +iK =2nta® X ¢;. (3.9)
=0

Thus, the stress intensity factors are known directly from the solution for {c;}.

The crack opening displacement is defined as the jump in displacement normal to
each crack #, and transverse to each crack 4,. This displacement profile is calculated
by integration of the dislocation density,

a

ay(p) +1d,(p) = ew(”)J b, (€) +ib,(§) dE. (3.10)
P
Using the relation between dislocation density A(£) and the Burgers vector
A(¢) = p(b,—ib,)/4n(1—v), and using the representation for 4(§) (equation (3.1)),
equation (3.10) becomes

. idm(l— _ 1 L) N-1
4, (p) +14,(p) = }(—Qelﬂ(p)aj AR

P 3 ¢, Tyt)dt. (3.11)

1
pra (L=13)F 1=

The integral on the right-hand side is evaluated numerically using a Gauss—Kronrod
rule.

We now introduce the notion of an additional compliance due to the array of
cracks. Under remote loading oy, o, the presence of the cracks gives rise to an
additional displacement Au,, Au, between remote material above the crack band and
remote material below the cracked band. Let N be the unit normal to the crack
array, such that N is aligned with the y direction of figure 2. Since the solid is linear
we can define an extra compliance (;; which relates Au; to the remote traction
oy N; by

Au, E/2b(1—1?) = C;; 07 N,.. (3.12)
The extra compliance is a real, symmetric positive-definite tensor. Its components
may be calculated from the following expression which is proved in the Appendix.

a
2b(oy Au, + 05, Au,) = J Ny Oy iy + (ny, 05, + 1, 0) i, dE (3.13)
—a
where n(§) is the unit normal to the cracks and ,(£),,(£) are the crack opening
displacements in the x and y directions respectively. The components C,,, C,,,
0,, = C,, are obtained by considering three loading cases: (i) o5’ = 1, other o7 = 0;
(ii) o5, = 1, other o} = 0; and (iii) oy = o, = 1, other o7 = 0. These loading cases
are used to solve the system of equations (3.12) in the unknowns C;;.

Proc. R. Soc. Lond. A (1991)



Brittle fracture due to an array of microcracks 61

The integrals on the right-hand side of (3.13) were evaluated using the
Gauss—Chebyshev integration rule after some manipulation.

3.3. Case of straight cracks

The analysis of an array of straight cracks is somewhat simpler than that for
curved cracks, and the integral equation (3.2) reduces to

N-1 N-1 N-1

Putipn = X Ji(rj) g+ Z Jy(rj) e+ B Jy(rg)e; (r=1,....,N=1), (3.14)
=1 j=0 =0

2

N N
where i) = 2 5 A gy = T2t B T (1) Katy, au,),
k=1 b — Uy N5

=[5

Jy(r,g) = nﬁae‘iﬂkg Tj(ty) L(aty, aw,), u, = cos (nr/N),t, = cos ((n/2N) (2k—1)).
-1

The Fredholm kernels K, L for the straight crack are given by equation (2.7).

Since the distribution dislocation for each crack does not produce a net slip in the
solid, equation (3.6) applies. On substitution of the representation (3.1) for 4(§), the
integral in (3.6) may be evaluated for an array of straight cracks to give

¢y = 0. (3.15)

The N—1 equations (3.14), plus equation (3.15) are solved by gaussian elimination ;
the stress intensity factors and crack opening profile are calculated using (3.9) and
(3.11), as before. We can perform the integrals for the extra displacement in closed
form, and equation (3.13) becomes

2b(oy Au, +oy, Au,) = n, o5, dy+ (n, 05, +n,07)d,, (3.16)
where d,+id, = (12(1 —v)n2a®/u)ec,.

Finally, the extra compliance (; is calculated in a similar manner to that described
for the curved cracks.

4. Some results for straight cracks

In this section we shall examine the degree to which an array of straight cracks
shield each other. Consider a cracked band subjected to remote tension, o;’. For
cracks with a normal vector at a small angle to the direction of remote uniaxial
tension we shall show that there exists a range of crack spacings over which the
cracks repel each other. When the cracks are closer together or farther apart they
attract each other.

The stress intensities and extra compliance are then given as a function of crack
spacing and crack orientation.

4.1. Crack—crack repulsion

Consider an array of straight cracks at orientation f = —5° under remote tensile
loading o° = o, as shown in figure 3. When the cracks are widely spaced the mode
IT stress intensity factor K; is negative and the cracks attract each other: with crack
advance branch cracks will form towards the neighbouring crack tip. The same
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Figure 3. Effect of crack spacing upon stress intensity factors. When K|, is positive the cracks kink
away from each other, and the cracks repel. When K, is negative, the cracks attract each other.
Crack angle = —5°. (a) a/b =0.99, (b) a/b =0.74. , Ky ——, Ky
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Figure 4. Stress intensity factors for an infinite array of straight cracks under () remote tension,
and (b) remote shear. , Ky ——, Ky (1) f=0°; (i) f=—5°% (ili) #=—45°; (iv) K;, K}, for
p=-90° K, for p=0°; (v) f=—90° (vi) K, for §=0°.

finding is observed for cracks very close together. However for a crack spacing in the
range 0.74 < a/b < 0.99, K|, is positive and the cracks repel each other. This is
consistent with the common observation that cracks coalesce by one crack tip
growing into the flank of another crack rather than by crack tip joining crack tip.
Melin (1983) came to the same conclusion by use of a perturbation analysis.

Proc. R. Soc. Lond. A (1991)
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Figure 5. Extra compliance for an array of straight cracks. (a) C;, (b) C,, and (c) C,, as a function
of crack length and crack orientation. , f=—45° —— B=—5% ——, f=0° - ,
B =—90°; —-—, isolated crack solution, B =0° —90° (i) B =0° —90°; (i) #=—90°.

4.2. Effect of crack orientation and crack spacing on stress intensity factors and extra
compliance

The stress intensities and extra compliance for any array of straight cracks are
given in figures 4 and 5 respectively, plotted as a function of crack length.

In all cases for a/b less than approximately 0.1, the cracks behave as isolated
cracks and the stress intensity factors scale with the square root of crack length. For
the special case # = 0°, analytic expressions have been found by Koiter (1959) for the
stress intensities and the extra compliance

KI _ % o’
[Ku] = (2btan (ma/2b)) [0_%],

C,=05 = —(4/m)In (cos (ra/2b)), €= Cy =0.

The numerical results agree with these expressions, forming a check of the
calculation. As a/b approaches unity K, Ky; and Cy; = Cy, become unbounded, and
the cracks coalesce.

Now consider the cracks rotated slightly so that # = —5°. The solutions for K; due
to o and K; due to o7, are similar to the corresponding solutions for g = 0°. Also,
the extra compliance Cy; changes little as f is decreased from § = 0° to g = —5°

For the case of # = —45° and remote tension oy, the widely spaced cracks suffer
equal normal and shear loading on axes aligned with the cracks. Over the whole

(4.1)

Proc. R. Soc. Lond. A (1991)



64 N. A. Fleck

range of a/b considered, 0 < a/b < 2, the stress intensities normalized by at are
essentially constant; in this sense the cracks do not interact strongly. The mode II
stress intensity K;; is positive suggesting that the cracks will branch away from the
neighbouring crack: the cracks repel each other.

Under remote shear, widely spaced cracks at g = —45° suffer tensile loading
normal to the crack with zero shear parallel to the crack. As a/b is increased the
cracks interact slightly : K,/7(na)? increases from unity to 1.3 as a/b is increased from
0 to 2. The mode II stress intensity K is negative for 0 < a/b < 2, suggesting that
the cracks attract each other with subsequent crack growth.

The compliance coefficients C,; and C,, for f = —45° are less than for § = 0° for all
a/b investigated, as we would expect. The orientation f = —45° gives strong
coupling between remote loading in one direction and the extra displacement in the
other direction. Thus, C,, is of similar magnitude to C}; and C,,.

Last, consider cracks orientated at f = —90°. The presence of the cracks has no
influence on the stress field under remote loading o’. Under shear loading o3, Ky
is finite and negative, and increases approximately as the square root of crack length.
The only non-zero compliance component C,, is little different from the case
p =—45° The K solutions for f=—90° and remote shear have been given
previously by Benthem & Koiter (1973) and by Kamei & Yokobori (1974). Kamei
& Yokobori (1974) used the dislocation distribution method and the results of the
current study are in agreement to within the 1% stated accuracy of their results.
For large a/b Benthem & Koiter find

Ky~ —7(na) 3/11: (a+0.2865b)/ (ab): (4.2a)
~ —7(3a): (a/b):+ O(b?) (4.20)

The first term on the right-hand side of (4.2b) may be derived by considering the
material between the cracks to behave as a beam under bending and shear. The stress
intensity factor K;; is calculated by considering the energy released, ¢ - 8a, when each
crack is advanced an increment da and by using the well-known formula

(B/(1—=v"))% = K};, (4.3)

where ¥ is the energy release rate per crack tip. The extra compliance by this method
is
= (a/b)®. (4.4)
Comparison with numerical calculation shows that equations (4.26) and (4.4) are
accurate to within a few percent for b/a less than 0.1.

5. Evolution of crack array under shear

In this section, results are presented for the growth of a crack array under remote
shear. The issue of crack stability for a cracked strip of finite height under prescribed
remote displacement is addressed. Finally, the response of the crack array under
shear is used to model the contribution to toughening of a macrocrack by microcrack
bridging.

5.1. Growth of a crack array under shear

An incremental crack advance calculation was performed where an array of
initially straight cracks of length a,/b = 0.1 was grown under shear until the cracks
coalesced at a/b =2.70. We assumed that the cracks nucleated normal to the
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Figure 6. Evolution of mode I stress intensity K; and normal crack opening at crack mid-point #,,
for an array of cracks under remote shear. Initial crack length a@,/b = 0.1, initial orientation
B =—45°
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Figure 7. Extra compliance for an array of cracks which grow under remote shear.
Au, E[2b(1—1?) = Oy, 00 +C 07, Au, E/2b(1—1?) = Cy, 05+ Cyy 0.
direction of principal tensile stress at f = —45°. The cracks were allowed to evolve
to arbitrary shape of piecewise constant curvature in steps Aa/b = 0.2, such that K,
vanishes at the crack tip. Results are presented in figures 6 and 7.

The mode I stress intensity K; and crack opening @, at crack mid-point increase
dramatically with increasing crack length until the cracks coalesce (figure 6). As
shown in the insert of figure 6 the curvature of the cracks is always positive, and
the maximum height of any crack in the y-direction is 0.84 times the crack spacing
2b.

The components of extra compliance are of similar magnitude and increase
monotonically with crack extension (figure 7). Initially C}, is larger than the other
components. At a/b greater than approximately 1.25, C,, becomes dominant.
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Figure 8. Stability of a crack array in a strip of height 2/ under prescribed shear displacement, .
For comparison, the dotted line gives the boundary of stability for an array of straight collinear
cracks under prescribed normal displacement. (a) I/b, collinear cracks under prescribed normal
displacement, (b) //(1—v)b, shear case.

5.2. Stability of a cracked strip of finite height under remote shear

Consider a crack array in a strip of finite height 2/ and infinite length as shown in
figure 8. The material is assumed to be perfectly brittle with the condition for crack
advance K; = K;, and K;; =0, where K, is the plane strain fracture toughness.
Under prescribed loading at y = +1, the crack array is unstable in the sense that

[dK,/dal,; > 0. (5.1)

We shall show that there exists a finite strip height below which the crack array is
stable under prescribed displacements at y = +1.

First, the compliance of the strip C® is decomposed into the compliance of the
uncracked strip C° and the extra compliance due to the presence of the crack array
C¢. To a very good approximation the extra compliance may be identified with the
extra compliance for the crack array in an infinite solid, i.e. C* = C. Thus,

C3(a/b) = C°+ C(a/b). (5.2)

For the case of a cracked finite strip under simple shear the average shear stress 7 on
the faces of the strip due to a prescribed relative displacement u between top and
bottom faces is given by

w = (7/p) 21+ (2b(1—v*)/B) pCyy(a/b)). (5.3)

The two terms on the right-hand side of (5.3) represent the uncracked and extra
compliances of the strip.
The stress intensity factor K; at each crack tip in the crack array is given by

K, = 1bif(a/b), (5.4)
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where the non-dimensional function f(a/b) depends upon the particular crack
geometry.

We shall first derive the stability condition and then apply it to the case of an
array of curved cracks growing under remote shear. For stability under prescribed
displacements we require

[dK,/da], < O. (5.5)

Let each crack tip advance by da under constant remote ». Then, equation (5.3) gives
dr| 2b(1 —v®) poC 2b(1—v?) -t

[da]u = T( 7 » 20+ 7 Ch (5.6)

and equation (5.4) yields
[dK,/dal, = [dr/da], bf(a/b)+(7/6) f (a/b). (5.7)

At the onset of instability the inequality in (5.5) is replaced by an equality sign, and
(6.7) may be rewritten via (5.6) as

1/ (1=v)b = Y(f(a/b)/f (a/b)) Cy(afb) —3Cy(a/b) (5.8)
The functions f(a/b) and C,,(a/b) for an array of curved cracks growing under remote
shear tractions (or displacements) and o’ = 0 are given in figures 6 and 7. The
corresponding stability plot is constructed using (5.8) and is shown in figure 8.
Consider a strip of height I/(1 —»)b = 5, as shown in figure 8. After nucleation to an
initial crack length given by points A on the figure, the cracks are unstable. They will
advance dynamically until they attain a length comparable with that given by the
stability boundary, point B. With further remote shear displacement of the strip
boundaries, the cracks grow stably until point C is reached, and the crack array
becomes unstable again. The cracks then coalesce. We only expect to observe cracks
in the range B - C. Note that the cracks do not kink at the onset of instability since
K;; equals zero at this instant; the compliance at the onset of instability depends
only on the current geometry and not on the loading increment. It is clear from figure
8 that for [/(1 —v)b less than 8, the crack array is stable only at intermediate crack
lengths.
Results for a collinear crack array in a strip of height 2/ under remote tension are
included in figure 8. An expression for the critical strip height at the stability limit
follows directly from Koiter’s analysis (1959)

1/b = (4/m)1n (cos (na/2b)) + (8/m) sin® (na/2b). (5.9)

By comparison with the crack array under shear, the crack array under tension is
unstable unless I/b is very small, that is less than unity. At such small //b values the
approximation C° = C may break down.

5.3. Crack bridging due to an array of microcracks

Advance of a microcrack through a brittle solid such as a polycrystalline ceramic
or a polymer is often associated with microcracking ahead of the crack tip. Ortiz (1988)
has calculated the remote strain energy release rate 4, required to advance a tensile
model T macrocrack with a microcrack zone at its tip. For microcracks which are
small initially compared with their spacing, he finds that %, is little different from
the toughness %;, of the undamaged material. Ortiz shows that the decrease in %,
due to pre-existing microcracks ahead of the main crack is of similar magnitude to
the increase in ¥, associated with crack tip shielding by the microcracks.
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Figure 9. Remote traction versus extra displacement response of a crack array under remote
proportional loading. This response provides the elastic spring stiffness for a microcrack zone at the
tip of a macroscopic crack. , tension case (o5, = oy = 0); ———, shear case (6’ = gy = 0); ==+ ,

equal tension and shear (o =0, 0%, = 07°).

Here we assume that the macroscopic crack grows by the advance and coalescence
of microcracks ahead of the main crack tip, and we neglect shielding effects. It is
envisaged that an array of microcracks of constant spacing 2b exists ahead of the
main crack tip. Remote from the crack tip the microcracks are of vanishingly small
initial length a,/b < 1. But as the crack tip is approached the microcrack length
increases, until coalescence occurs at the main crack tip. A straightforward energy
argument gives the strain energy release rate %, required to advance the macroscopic
crack by a unit distance in a self-similar direction

Y1l b1 = (ap—ay)/b (5.10)

where a, is the initial microcrack length far from the main crack tip, and a; is the
microcrack length at coalescence. Henceforth, we shall assume a, < a; and may be
neglected. Under remote tension the microcracks are collinear with the main crack,
giving a;=b and %, = %,,. For more general remote loading, we may still use
equation (5.10) to estimate the remote energy release rate ¢, for coplanar growth of
a macroscopic crack through a microcrack array. For example, under pure shear we
find 4,/%,, = a;/b=2.7.

An alternative crack advance mechanism is by kinking from the tip of the main
crack. For pure shear, the remote energy release rate for kinking ¥4, is 9,,./%;. =
0.69 (Bilby et al. 1977), and is energetically favourable. In practice, collinear mode
II crack growth is observed (Fleck et al. 1990), Johnson & Mangalgiri (1987), and
Evans & Hutchinson (1989)). The may be due to trapping of the main crack by
neighbouring microcracks.

Further aspects of the propagation of a macrocrack through a microcrack array
may be investigated using a cohesive zone model. In this approach, the remote
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traction versus extra displacement response of an evolving array of microcracks
provides the elastic spring constant in a crack bridging cohesive zone model. Ortiz
(1988) has calculated the spring constant for mode I loading. Here, we consider
arbitrary remote loading. Assuming the microcracks grow under the condition K; =
K, and K;; = 0, the remote traction 7" against extra displacement Au,, response may
be calculated from (3.11) and (5.4). Here, 7' = ((r;";-}-(r;“)% is the magnitude of the
remote traction on an infinite solid containing an array of microcracks and Au,, is the
extra displacement resolved in the direction of the remote traction. Results are given
in figure 9 for several loading cases. In each case we assume that microcracks of zero
initial length @, nucleate normal to the direction of remote principal tensile stress,
and we take o2 = 0. As discussed by Rice (1968), the J integral may be used to show
that the area under the 7' against Au, curve equals the remote energy release rate

% .., and a direct evaluation gives (5.10) as before.

6. Evolution of a crack array under a range of stress states

The growth of an array of microcracks in an infinite solid was calculated for a wide
range of remote loading specified by o5’ /o5, and oy /oy, In each case, cracks were
nucleated at a small initial length /b = 0.1, normal to the direction of maximum
principal tensile stress. Typical cracking patterns are presented in figure 10. Note
that the cracking pattern depends only on the stress state.

Three types of response were observed:

(@) no cracks nucleate when the maximum principal tensile stress is negative; the
conditions for this are,

opoy/(og,o5)>1, withe? <0 and oy <0; (6.1)

(b) cracks nucleate and coalesce; as the crack tip approaches the neighbouring
crack K; increases dramatically ; and

(¢) cracks nucleate and grow to a steady state angle and constant K, value; no
coalescence occurs.

Calculation of the crack opening profile and the K history shows that cracks which
nucleate remain open along their length and K; remains positive. Thus, issues of
crack face interference or crack arrest do not arise.

Consider first the case of o5 /oy, fixed with oy = 0 (figure 10a). Cracks nucleate
and coalesce for oy /0oy, >—0.4. As o /0f, decreases from infinity to —0.4 the
curvature of the cracks increases. This is reflected in a plot of crack length at
coalescence a,/b against o5’ /o, in figure 11a. As discussed in the previous section,
the quantity a,/b may be reinterpreted as the remote energy release rate for
propagation of a macrocrack with an array of microcracks in the process zone at its
tip. When oy’ /0%, is less than —0.4 the array of cracks nucleate and grow to a steady
state angle orientation f,. Calculations show that this angle f; is equal to that of the

remote traction B, = arctan (030 /0,). (6.2)

For other loadings with finite o2, it is observed that (6.2) remains valid.

In steady state, the ligaments between the microcracks behave as slender beams
under axial loadings and bending. A simple energy argument shows that K, is finite
and constant at each crack tip. Typical values for K; from the full numerical solution
are presented in figure 12; these values are for cracks which are essentially in steady
state at a/b ~ 5. It was not possible to calculate the value of K| in steady state using
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Figure 10. Evolution of an array of microcracks under a range of stress states. (a) 0® = 0, (b) o
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Figure 11. Apparent toughness of an array of microcracks which have evolved under remote
proportional loading. The ratio of apparent toughness to mode I toughness %,,/%,. is equal to the
final crack length at coalescence divided by the crack spacing, a,/b. (a) General case o> # 0,
(b) oy = 0. :

energy arguments as the bending moment in the ligament between cracks depends
upon the details of the crack shape in the early stages of crack growth.

Now consider the loading oy = o, with finite o;,. Typical cracking patterns and
as/b are given in figures 10b and 11a respectively. The remote stress state consists
of hydrostatic loading with superimposed shear. For o /o7, < —1, no tensile stresses
exist and no cracks nucleate. At larger o /0, cracks always nucleate at g, = —45°
(figure 10b). For —1 < oy/0f, < —0.4 cracks nucleate but do not coalesce; they
evolve to a steady-state angle given by (6.2). The array of microcracks coalesce for
oy /o, > —0.4; with increasing o’ /07, above this limit the curvature of the cracks
increases and a;/b decreases (see figures 106 and 115). As o5’ /o5, is increased to very
large values o /og, > 1, the cracks remain at an initial orientation of g, = —45°.
This feature causes a;/b to be greater than unity as o’ /o, tends to infinity, as shown
in figure 11a.

The loading oy = — o7, with finite o, has the property that the hydrostatic stress
is zero. Typical cracking patterns are given in figure 10c. They are similar in
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Figure 12. Stress intensity factor at tip of each microcrack, after the array of microcracks has
evolved to a steady state orientation. The stress component o is negative. ¢ = 0.

qualitative terms to that due to the loading oy = 0. For /0%, <—0.8 cracks
nucleate but do not coalesce. At larger o’ /0%, cracks nucleate and coalesce. In the
limit of o7/, tending to infinity, the cracks become collinear and a,;/b tends to
unity (figure 115).

For completeness, the effect of varying oy /oy, with o = 0 upon the cracking
pattern is given in figure 10d and in figure 11b. For all finite 0 /0%, cracks nucleate
and coalesce. As 0°/0g, is increased from negative infinity to positive infinity, f,
decreases from 0 to —90° and a,/b increases from unity to infinity (figure 1156). In the
limit of a finite o3, o5, = oy = 0, the cracking pattern consist of a line of vertical
cracks which do not coalesce. The stress intensity factor K; for this limiting case has
been calculated by Fichter (1967), and by Benthem & Koiter (1973), amongst others.
A summary of the solution is given by Tada et al. (1985). In the limit a/b—> o0, K is
given by .

K, =020 (6.3)

7. Fracture map and case studies

A fracture map is constructed, showing how the cracking pattern of a crack array
depends upon remote stress state. We take an axes arctan (o7 /c®,) and arctan
(o3 /05,) (see figure 13). Then, all possible stress states are contained within a square
of extent +90° in both directions. The origin corresponds to a stress state of pure
shear, while the axes and diagonals of the map constitute the four types of stress
state summarized in figures 10 and 11.

The map summarizes the three types of cracking response:

(A) no nucleation (the criterion for no nucleation (equation (6.1)) prescribes a
region in the map with straight boundaries, as shown in figure 13);

(B) nucleation and coalescence; and

(C) nucleation but no coalescence.

The boundary between regions (B) and (C) is found by iteration. Data points are
included in figure 13 to show the precision by which the boundary has been
determined ; typically, the error in location is less than 5% in either coordinate.

Region B, consisting of nucleation and coalescence, dominates the map. It appears
that for o3 /o7, 2 —0.6 cracks nucleate and coalesce, with /o5, exerting only a
secondary influence. Contours of constant a;/b have been added to region (B). These
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Figure 13. Development of fracture map for an array of microcracks. Three regimes exist: no
nucleation, no coalescence and coalescence. Individual data points marked e are used to construct
contours of constant a,/b in the coalescence régime, + in the no coalescence régime. (a) oy =

—oy, (b) a,/b =1, (c) contours of a,/b, (d) o7 = o).

arctan (o°/ 0};0)

—1.5 ==
~

_—(b)

arctan (o,/ a,,®)

nucleation

®

Figure 14. Fracture map showing initial orientation of microcracks f,. Contours of a,/b are given
in the coalescence regime, and contours of final crack orientation f, in the regime of no coalescence.
Point P refers to the stress state which is predicted to exist during the formation of the echelon
cracks in carboniferous graywacke in figure 156. ——, a,/b; ——, fo; ==, (a) B, =0°; (b)
Bo =—90°; (c) coalescence; (d) no coalescence.

contours have been constructed from the values of a,/b given in figure 11 and from
a number of additional loading cases. Individual data points used in the construction
of the contours are included in figure 13.

Proc. R. Soc. Lond. A (1991)



Brittle fracture due to an array of microcracks 73

(@) — ) g-y

prediction ODSQNQd Ux
lOOJ.lm

Figure 15. (@) Comparison of predicted and observed crack path in PMMA under simple shear.
vy=103s"1 T =20 °C. (b) Comparison of predicted and observed crack shape in carboniferous
graywacke. The inferred stress state is given by point P in figure 14. The rock sample exists near
Bude, Devon, England, and the photograph is reproduced with permission from Ramsay (1967).

When o7 /0y, is sufficiently large and negative, cracks nucleate but do not
coalesce, region (C) of figure 13. It is observed that the cracks evolve to an orientation
B; given by equation (6.2).

Finally, we add contours of constant crack nucleation angle #, to the map. A
Mohr’s circle construction gives S, as

1{c® o%®
t20, = —=| L ——E%|. .
cot 20, Z(ny O'fy) (7.1)

The resulting map, with individual data point removed, is given in figure 14. It is
useful in fractographic analysis for calculating the remote stress state corresponding
to an observed cracking pattern. Two such case studies are given, one for the failure
of polymethyl methacrylate under simple shear and the other for shear banding in
a carboniferous rock.

7.1. Shear failure of polymethyl methacrylate

Brittle failure in shear due to an array of tensile microcracks has been observed in
polycarbonate and in polymethyl methacrylate (Fleck & Wright 1989; Fleck et al.
1990). Tests were performed on tubes in torsion. The stress state for shear loading lies
at the origin of figure 14. A typical fracture surface profile for polymethyl
methacrylate is compared with the predicted crack profile due to remote shear in
figure 15a. Agreement between the predicted profile and observed profile is good.

7.2. Shear localization in carboniferous graywacke

Figure 15b shows a zone of quartz-filled tensile microcracks in carboniferous
graywacke, reported by Ramsay (1967). The measured values of initial crack angle
and final crack angle are §, = —45° and f; = —39° respectively. This corresponds to
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a remote stress state of o’ /oy, = —0.81, o7 /oy, = —0.81 and is marked by a point

P in figure 14. The predicted crack shape for oy /oy, = —0.80, o7 /0y, = —0.80 is
included in figure 3.2b6 for comparison ; the agreement in shape is excellent.

8. Concluding discussion

In this paper, we have examined the conditions required for brittle fracture in a
localized shear band. In order for complete separation of material on either side of
a shear band containing microcracks, the stress ratio oy’ /og, must exceed
approximately —0.6 as shown in figure 14.

The main underlying assumptions of the analysis are the following.

1. Microcracks nucleate under tensile stress in a direction normal to the remote
principal tensile stress. This appears to be a reasonable assumption for brittle solids
such as ceramics and polymers, and for metallic solids under fatigue loading. Crazes
in polymers also obey this criterion, as discussed by Ward (1983).

2. Under remote shear loading microcracks nucleate at constant spacing, in a row
aligned with the direction of remote shear. This has experimental support but
requires a theoretical justification; the mechanism by which a few existing
microcracks trigger the formation of other microcracks in a collinear array is not
understood.

3. The microcracks grow such that K;; vanishes at the crack tip. This growth
criterion is reasonable for a perfectly brittle isotropic solid. It may require
modification for anisotropic solids where internal structure dictates crack path.

4. Each microcrack grows at the same rate. This is not expected for a perfectly
brittle solid, where a microcrack slightly longer than the others would grow fastest.
Similar growth by all microcracks is expected when the matrix material displays an
R-curve, such that crack growth resistance increases with crack advance.

The phenomenon of tensile microcracking in a shear band may be thought of as a
nucleation induced localization. Once microcracks have nucleated, deformation is
localized in the cracked band and the remote material unloads. In this sense, the
phenomenon is similar to nucleation induced localization in high strength steels,
which has been analysed by Hutchinson and Tvergaard (1987), and by Fleck et al.
(1989).

The author thanks Professor J. W. Hutchinson for many helpful discussions, and
Professor S. Maalge for providing the reference on shear fracture of rocks. The author
is grateful for part funding by a NATO Collaborative Research Grant fellowship
during his visits to the Division of Applied Sciences, Harvard University, and for
part support by the National Science Foundation under Grant MSM-88-12779.

Appendix. Calculation of the extra compliance

Introduction of a crack array into an infinite elastic solid under remote loading o}
leads to an additional displacement at infinity. We define the extra displacement Aw;
as the relative displacement between remote material above and below the crack
array, due to the presence of the cracks. The extra compliance C;; relates u; and o,
see equation (3.12). We may calculate u; and C;; by the reciprocal theorem, as
follows.

Consider two different loadings on the cracked body, as shown in figure 16. Loading
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Figure 16. Use of reciprocity to determine the extra displacement A, and the extra compliance
O, due to an array of microcracks. (a) Loading A, (b) loading B.

A is the remote homogeneous loading o7, with zero traction on the cracks. Loading
B consists of a traction 7} = n; o on the cracks (with the unit normal n pointing into
the solid), and zero loading at infinity. This loading produces Au; at infinity. Loading
B is the same as for the dislocation problem described in the body of the paper.

Define the crack opening displacement in problem A by ;. Then the reciprocal
theorem gives

2b(oy Ay, + oy, Au,) = J. T,4,+T,4,d§

—a

= j Ny oy Uy + (M, 055y + 1y ) i, AE. (A1)

—a
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