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Abstract

A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick
superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asper-
ities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in
interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering
and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the
kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three
independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is
assessed by comparing the rate of constrained sintering with that for free sintering.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Air-plasma-sprayed (APS) thermal barrier coatings
(TBCs) are increasingly used to give thermal and environ-
mental protection of non-rotating components in gas tur-
bines. The APS coating is deposited as liquid droplets and
upon striking the substrate these droplets are rapidly solidi-
fied to pancake-shaped polycrystals, termed “splats”. The
gaps between splats resemble penny-shaped cracks, and
under high temperature service conditions these cracks
sinter together at discrete contact points, giving rise to a
deleterious increase in both Young’s modulus and thermal
conductivity [1–4]. Sintering is driven both by in-plane stress
within the coating and by the surface energy cTBC � 1 J m�2

of the zirconia.
Recently, Fleck and Cocks [5] have developed a sintering

model for APS material. They assumed a random, 3D distri-
bution of penny-shaped cracks and they accounted for
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sintering at the discrete asperity contacts across the faces
of each crack, accommodated by bulk creep. This constitu-
tive description is used in the current study to explore the
role of substrate constraint upon the sintering response.
The Fleck and Cocks [5] model includes the feature that
the TBC increases in modulus as sintering progresses, due
to the increase in size and contact stiffness of the asperities.
This increase in modulus is of practical relevance, as a high
modulus promotes high in-plane stresses within the coating
during thermal cycling and this can promote delamination.
Experimental data confirm that asperity sintering leads to
an increase in modulus for both freely supported and con-
strained films. Some examples are given as follows.

The Young’s modulus of the as-deposited coating is in
the range 10–50 GPa [2,4,6,7], with the exact value depend-
ing upon the details of the processing condition and micro-
structure created. When the free-standing coating is held at
an elevated temperature to represent in-service conditions,
the modulus first increases rapidly with time. The rate then
slows, and for temperatures less than about 1320 �C, a pla-
teau is generally observed over the timescale of the experi-
ment [2,4]. For example, Choi et al. [2] observed an
rights reserved.
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Nomenclature

Symbols

b asperity top diameter
D diffusion constant
f dimensionless damage parameter
E Young’s modulus
G Gibbs’ free energy
j volumetric flux
k asperity contact stiffness
K bulk modulus
‘ side length of asperity
N number of cracks per unit volume
s asperity spacing or deviatoric stress
R crack radius
�R representative crack radius
t time
T traction
u displacement due to asperity deformation
U strain energy density
v crack opening displacement
w asperity height

Greek symbols

a linear coefficient of thermal expansion
b inclination angle of asperity
D change
v damage parameter
e strain

c interfacial energy
g viscosity
k asperity bottom diameter
l shear modulus
m Poisson’s ratio
H temperature
r stress
s time constant
X overall rate functional
W rate potential

Superscript

1 remote

Subscripts

0 initial value or reference value
C creep
D deposition
E elastic
eff effective
G grain boundary
h hydrostatic
S substrate or surface
T thermal
TBC thermal barrier coating
Y flow strength
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increase from 25 GPa to a plateau of 75 GPa after 100 h at
1316 �C, while Lampenscherf [7] reports an increase from
40 GPa to 80 GPa over the same timescale at 1270 �C. Both
these plateau values are much less than the modulus
(219 GPa) of the fully dense material. Thompson and
Clyne [4] observed that, during the initial rapid stage of
modulus increase, asperities come into contact and junc-
tions develop across the faces of the intersplat cracks. At
high temperatures (on the order of 1400 �C) this initial
stage of sintering is followed by healing of the interspat
cracks and thereby to a progressive increase in modulus.
Similar microstructural changes have been observed in
creep and sintering experiments by Soltani et al. [8].

Thompson and Clyne [4] also examined the sintering
response of a coating constrained by a substrate. The con-
straint led to a slower rate of increase of modulus com-
pared with the free sintering case. Subsequently, Cipitria
et al. [9,10] made a theoretical assessment of the signifi-
cance of substrate constraint upon the sintering response.
Similar experimental and theoretical studies on the role
of substrate constraint have been conducted by Bordia
and Jagota [11] and Guillon et al. [12] for particulate sys-
tems and by Hutchinson et al. [13] for ePVD thermal bar-
rier coatings. In each case, the constraint imposed by the
substrate slows the rate of sintering compared with that
experienced during free sintering. In the present study,
the role of substrate constraint is explored theoretically
by extending the Fleck and Cocks model [5] to the case
of constrained sintering.

The Fleck and Cocks [5] model is based upon the notion
that a change in free energy drives dissipative processes
such as Coble creep and diffusion on the asperity scale.
By writing the free energy (and a dissipation potential) in
terms of a small number of degrees of freedom, such as
asperity size and shape, the evolution of microstructure
can be predicted over multiple length-scales. Thermody-
namic restrictions (e.g. positive plastic work) are automat-
ically satisfied upon introduction of the variational
framework of Cocks et al. [14] and Suo [15]. A similar
approach has been adopted for the sintering of APS TBC

by Cipitria et al. [9,10]. Their idealization is essentially that
of a 3D unit cell, with a single “bridge contact” bonding
together adjacent splats. The diffusion distances are on
the order of the splat size. Also, the macroscopic modulus
is held fixed as sintering of the bridge contacts progresses.
In contrast, Fleck and Cocks [5] allow diffusion to take
place on both the asperity scale and the scale of the colum-
nar grains within each splat; also, they explicitly account
for the evolution of macroscopic modulus with increasing
asperity size, as remarked above. We emphasize that the



s1 

s2 

sγ

gγ

Ds 

Dg 

js 
jg 

O A 

B 
DiffusivitiesFluxes 

Interface 
energies

2b 

w 

λ

) β 

(b)

s 

x2 

0λ

) 
βο 

splat 1 

splat 2 

x1 

wo 

(a) 

s 

(c) 

A.C.F. Cocks, N.A. Fleck / Acta Materialia 58 (2010) 4233–4244 4235
change in modulus leads to a change in the driving force
for sintering associated with the elastic free energy of the
solid.

2. Scope of study

An assessment is made of the relative roles of the driving
forces for constrained sintering of a coating arising from
both the thermal mismatch strain and surface energy.
The sensitivity of sintering rate to microstructural geome-
try and kinetic parameters is explored. And the evolution
in microstructure and of Young’s modulus is determined.
Finally, the significance of substrate constraint is assessed
by comparing the rate of constrained sintering with that
for free sintering. A nomenclature of symbols used in the
present study is presented in Nomenclature.

3. Microstructural features of the APS TBC system

The APS coating comprises an assembly of zirconia
splats, with intervening cracks and porosity, see Fig. 1 of
2R

∞
ijσ

T

T

T

Elastic 
displacement 
of asperity 

Plating 
displacement 
of asperity 

uS

uP

asperity

A typical 
bridged 
crack 

Bridging 
law 

∞
ijσ

∞
ijσ

∞
ijσ

Fig. 1. The micro-cracked geometry under study. The matrix surrounding
the penny-shaped cracks is elastic, linear viscous. A tensile traction T pulls
the faces of each crack together, under the assumed sign convention. This
tensile traction stretches the bridging asperities across the crack faces, as
illustrated in the intermediate figure. The lower figure details the
partitioning of crack bridging displacements into elastic and plating
(sintering) components.

Fig. 2. The local contact geometry at asperities on the surfaces of a penny-
shaped crack: (a) reference configuration; (b) typical state; (c) definition of
fluxes, surface energies and diffusivities at the contacts.
Fleck and Cocks [5], or Figs. 2 and 3 of Cipitria et al.
[9]. Typically, the TBC layer is of thickness 300–500 lm,
and sits on an aluminium-rich bond coat (BC) of thickness
150–300 lm. Each splat is about 1 lm thick, and has a
diameter of 20–100 lm. The splats have a characteristic
internal microstructure: they comprise columnar grains of
diameter 0.1–0.2 lm. The intersplat cracks are approxi-
mately penny-shaped and of diameter 20–500 lm, with a
maximum opening of 1 lm. Porosity also exists, of volume
fraction about 15% and diameter 1–20 lm. The effect of
voids upon the modulus and thermal conductivity is negli-
gible, as discussed by Sevostianov et al. [16]. Therefore, in
this study we focus on constrained sintering of the inter-
splat, penny-shaped cracks.

4. The thermal strain within the TBC layer

The in-plane thermal expansion coefficient of the coating,
aTBC = 10 � 10�6 K�1, is independent of the degree of sin-
tering, and is significantly less than that of the underlying
nickel-based superalloy, aS = 15 � 10�6 K�1. Assume that
the TBC layer is in a stress-free state at the deposition tem-
perature of HD = 500 �C. During operation, active cooling
of the substrate limits its temperature to the order of
900 �C, and induces a temperature gradient through the
TBC coating, such that its temperature H is in the range
900–1300 �C. Consequently, the thermal expansion mis-
match strain eT varies throughout the coating and is of
magnitude
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eT � aTBCðH�HDÞ � aSðHS �HDÞ ð1Þ
For example, at the bottom of the coating eT is on the order
of�0.2%, whereas at its top surface we have eT � 0.2%. This
mismatch is accommodated initially by tensile elastic strains
(and stresses) within the TBC layer. The initial in-plane mod-
ulus of the TBC layer is on the order of ETBC = 40 GPa, and
so the initial thermal stress is 80 MPa at the bottom of the
coating and �80 MPa at the top of the coating. Coble creep
partially relaxes this in-plane stress over a timescale s1, as de-
tailed below.

5. The sintering model

We begin by summarizing the pertinent features and
constitutive relations of the sintering model by Fleck and
Cocks [5]. In this model, the intersplat gaps of the APS
coating are treated as a random distribution of penny-
shaped cracks, as sketched in Fig. 1. The crack faces are
in contact at asperities, and these contacts endow the faces
of the cracks with a finite contact stiffness. If the contact
stress on an individual asperity exceeds the indentation
hardness at the operating temperature, then rate-indepen-
dent plastic flow occurs and the contact area increases in
order to carry the contact load. Diffusional flow also occurs
at the asperity level and leads to an increase (or decrease) in
the size of the contacts and thereby to changes in the con-
tact stiffness. Simultaneously, bulk diffusional flow within
the splats causes them to undergo linear viscous (Coble)
creep. Thus, the constitutive description entails interfacial
diffusion at the asperity level, along with bulk Coble creep,
and elastic straining of the solid. The full development of
the model has already been detailed by Fleck and Cocks
[5]. Here, we outline the essential features of the model
and specialize it to the constrained sintering case.

5.1. The physical problem

Assume that the solid contains N penny-shaped cracks
per unit volume, of random orientation and random radius
R. We introduce a representative radius of the penny-
shaped cracks �R � hR3i1=3

, where the angle brackets denote
an average. Then, the macroscopic bulk modulus K and
shear modulus l depend upon the dimensionless “damage
parameter” f � NhR3i ¼ N �R3. This quantity has been mea-
sured in Ref. [16] and is of magnitude 0.4 and above. The
surfaces of the cracks are rough and are in contact at the
asperity level. Consequently, a traction can be transmitted
across the crack faces; write the net tensile bridging trac-
tion as T (negative in value when the cracks are internally
pressurized by overlapping asperities).

The roughness is on the length scale of the TBC columns
within each splat, with a wavelength s, and is modelled by a
random distribution of asperities, as follows. Each asperity
that bridges the penny-shaped cracks is treated as a circular
conical frustum, with top diameter 2b, bottom diameter k,
height w, and centre–centre spacing s (as sketched in Fig. 2
of Fleck and Cocks [5]). As interfacial diffusional flow pro-
ceeds, w decreases, the contact diameter 2b and base diam-
eter k both increase and the wavelength s remains fixed.

A reference configuration for each asperity is introduced
for algebraic convenience, see Fig. 2a. This configuration
defines the pre-sintered state in terms of the diameter k0

and height w0. However, asperity sintering occurs during
both deposition and service, and so the reference state is
not physically realized: the TBC has already partially sin-
tered after deposition. Assume an initial state after deposi-
tion such that ðw1; k0Þ are the initial values of ðw; kÞ.
Straightforward geometrical arguments can be used to
relate the contact diameter 2b and inclination b to the pri-
mary unknowns ðw; kÞ; see the current configuration as
sketched in Fig. 2b. Incompressibility dictates

2b ¼ � k
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0

w0

w
� 3

4
k2

r
ð2Þ

with

tan b ¼ 2w
k� 2b

ð3Þ
5.2. Elastic response

Consider a micro-cracked solid as sketched in Fig. 1.
The solid is loaded by the macroscopic stress r1ij , and the
crack faces are subjected to a tensile normal traction T

which tends to close the cracks. The Young’s modulus of
the cracked solid E (with no asperity bridging, T = 0) is
related to the Young’s modulus of the uncracked parent
solid E0 via a knock-down factor v, such that

E ¼ vE0 where v ¼ 1� 16

9
f ð4Þ

Similarly, the Poisson’s ratio m of the cracked solid is re-
lated to the value m0 of the uncracked solid according to

m ¼ vm0 ð5Þ
The bulk modulus K reads

K ¼ E
3ð1� 2mÞ ¼

vE0

3ð1� 2vm0Þ
ð6Þ

while the shear modulus l is

l ¼ E
2ð1þ mÞ ¼

vE0

2ð1þ vm0Þ
ð7Þ

Asperity contact gives rise to a finite traction T on the
crack faces, see Fig. 1. The macroscopic elastic strain eEij

of the cracked solid is given by

eEij ¼
1þ m

E

� �
r1ij �

3m
E

r1h dij �
1� v

v

� �
T
E0

dij ð8Þ

where dij is the Kronecker delta and repeated suffices de-
note summation from 1 to 3 in the usual manner.

The average crack opening displacement v of the
bridged penny-shaped cracks comprises an elastic opening
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vE and a creep opening vC. Use of the reciprocal theorem
and Eq. (8) gives

vE

�R
¼ 3

pf
1� v

v
ðr1h � T Þ

E0

ð9Þ

Compatibility dictates that the total displacement v = vE +
vC equals the sum of the extra displacement due to the
spring-like extension of asperities uS, the plating of matter
by sintering at the contacting asperities w � w1 and an ini-
tial asperity height u1 due to wedging of one asperity
against its neighbour on the opposing face, such that

v ¼ vE þ vC ¼ uS þ w� w1 þ u1 ð10Þ
The contact stiffness k of the asperities is defined by

T ¼ kuS ð11Þ
and has an explicit nonlinear dependence upon b/s, see
Fleck and Cocks [5].

The bridging traction T depends upon the imposed hydro-
static stress r1h and upon the asperity geometry according to

T
E1

¼
�Rk

�Rk þ E1

� �
r1h
E1

þ vC þ w1 � u1 � w
�R

� �
ð12Þ

where

E1 �
p
3

vf
1� v

E0 ð13Þ

The elastic strain energy density of the cracked solid,
including the contribution from elastic indentation of each
asperity, is

U ¼ 1

2
r1ij eEij þ

p
2

fT
ðuS � vEÞ

�R
ð14Þ
5.3. Creep response

We assume that the splats undergo Coble creep, such that
the macroscopic creep rate is linear in remote stress. Consider
the creep response of the micro-cracked solid shown in Fig. 1:
the matrix creeps in an incompressible manner with a shear
viscosityg0, in addition to its linear elastic response. The creep
rate _eCij is related to the macroscopic mean stress r1h and devi-
atoric stress s1ij � r1ij � r1h dij via the isotropic relation,

_eCij ¼
ð2þ vÞ

6vg0

s1ij þ
1

3

1� v
v

� �
r1h � T
� �

g0

dij ð15Þ

Further, the rate of crack opening _vC due to creep can be
related directly to the volumetric creep rate _eCh, giving

_vC ¼
�R_eCh

pf
¼ 1� v

v

� �
�R
pf

r1h � T
g0

� �
ð16Þ
5.4. The dissipation potential due to local sintering and Coble

creep

It is assumed that matter diffuses along the interface
from the contacts in Fig. 2c, and deposits along the free
surfaces of length ‘. Matter diffuses from the sides of asper-
ities, of local surface energy cS to contacts with interfacial
energy cG .

Introduce the rate potential WS for a representative single
asperity. The potential WS is expressed in terms of the volu-
metric interfacial flux j; this flux is labelled j1 and is a function
of the arc length s1 along the contact OA of Fig. 2c. Likewise,
it is labelled j2 and is a function of the arc length s2 along the
contact AB, as shown in Fig. 2c. Define

WS ¼
1

DG

Z b

0

ps1j2
1ds1 þ

cos b
DS

Z ‘þðb= cos bÞ

b= cos b
ps2j2

2ds2 ð17Þ

where ðDG;DSÞ are the diffusion constants for interfacial
diffusion along OA and surface diffusion along the free sur-
face AB, respectively. The flux j1(s1) along OA is related di-
rectly to the rate of separation _w of two contacting columns
according to

j1 ¼ �
1

2
_ws1 ð18Þ

on OA. Similarly, the flux j2ðs2Þ along AB is given by

j2 ¼
A1

s2

þ B1s2 þ C1s2
2

� �
_wþ A2

s2

þ B2s2 þ C2s2
2

� �
_k ð19Þ

with explicit expressions for ðAi;Bi;CiÞ listed in Appendix
A of Fleck and Cocks [5].

WS is a quadratic function of ð _w; _kÞ and is obtained by
integration of Eq. (17); it also depends upon the current
state ðw; kÞ. The total dissipation per unit volume W within
the solid from sintering and bulk creep follows as

W ¼ 4f
�Rs2

WS þ
1

2
r1ij _eCij �

p
2

fT
_vC

�R
ð20Þ
5.5. The free energy and the variational statement

The free surface energy per asperity reads

GS ¼ pb2ðcG � cSÞ þ
p
4

1

cos b
ðk2 � 4b2ÞcS �

p
4

k2cS ð21Þ

and the total Gibbs free energy per unit volume G is

G ¼ U þ 4f
�Rs2

GS � r1ij eij ð22Þ

where the internal strain energy U has already been stated
by Eq. (14). We emphasize that G depends upon the pri-
mary variables ðw; k; r1ij ; T Þ.

The rate quantities ð _w; _kÞ are determined by minimizing
the functional Xð _w; _kÞ � _GþW, where _G is obtained by
differentiating Eq. (22) with respect to time, and is linear
in ð _w; _kÞ. The minimization process gives

@2W
@ _w2

@2W
@ _w@ _k

@2W
@ _w@ _k

@2W
@ _k2

 !
_w
_k

� �
¼ �

@ _G
@ _w

@ _G
@ _k

 !
ð23Þ

This can be inverted algebraically to obtain ð _w; _kÞ as a
function of the current state ðw; k; vCÞ. The time evolution
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of ðw; kÞ follows by integration using any convenient
scheme.

The set of constitutive relations are now complete. At
any given state, the macroscopic elastic strain is specified
by Eq. (8), in terms of the bridging traction T as given
by Eq. (12). The macroscopic creep strain rate and the rate
of crack opening due to creep deformation are obtained
from Eqs. (15) and (16), respectively, while the contact
geometry evolves according to Eq. (23).

The constrained sintering response is explored in the fol-
lowing section. In many cases, the asperities quickly evolve
to the shape of a circular cylinder, with b ! p=2. After this
shape has been attained, w and k are no longer independent
state variables but are directly related by conservation of vol-
ume of an asperity. _k follows directly from _w and the system
of two equations (23) reduces to a single rate equation for _w:

d2W
d _w2

_w ¼ � d _G
d _w

ð24Þ

The details are given in Appendix A.

6. The constrained sintering problem

We consider the practical problem of an APS layer, of
thermal expansion coefficient aTBC upon a thick substrate
of nickel-rich superalloy, of thermal expansion coefficient
aS. The substrate is taken to be stress-free and at a uniform
temperature HS. The coating is thin in the through-thick-
ness, x3 direction, compared with the in-plane (x1, x2)
directions.

The coating is deposited at a temperature HD, and dur-
ing operation the temperature within the coating H can
vary with depth. Then, the thermal strain eT at any depth
within the coating is given by Eq. (1). Now use Greek sub-
scripts to denote the in-plane ðx1; x2Þ directions. Then, the
thermal strain eT is accommodated by elastic strain
eEab ¼ eEdab and creep strain eCab ¼ eCdab within the coat-
ing, such that

eT þ eE þ eC ¼ 0 ð25Þ
The coating acquires an equi-biaxial state of stress
r11 ¼ r22 ¼ r, r33 ¼ 0. The elastic constitutive law (8) for
the TBC reduces to:

eE ¼
1� m

E

� �
r� 1� v

v

� �
T
E0

¼ � eT þ eCð Þ ð26Þ

where

T
E1

¼
�Rk

�Rk þ E1

� �
2

3

r
E1

þ vC � wþ w1 � u1

�R

� �
ð27Þ

via Eq. (11). The salient creep rates are

pf
�R

_vC ¼
1� v

v

� �
2r� 3T

3g0

� �
ð28Þ

and

_eC ¼
2þ v
18vg0

rþ pf
3�R

_vC ð29Þ
via Eqs. (15) and (16). In the current state, ðeT ; vC; eCÞ are
known and so ðr; T Þ are obtained by solving the two simul-
taneous Eqs. (26) and (27). The rates ð _vC; _eCÞ are specified
by Eqs. (28) and (29). Additionally, Eq. (23) gives ð _w; _kÞ.
A fourth-order Runge–Kutta procedure is used to integrate
ð _w; _k; _vC; _eCÞ forward in time, with ðw; k; vC; eCÞ known in
the current state.

6.1. Constrained sintering response

Consider the problem of heating the APS ceramic
layer and substrate to a sufficiently high temperature (say
1000 �C) that the ceramic undergoes bulk creep and sinter-
ing of the penny-shaped cracks. In general, the coating has
a temperature gradient across it, and the mismatch in ther-
mal expansion properties between coating and substrate
gives rise to a thermal mismatch strain eT ðx3Þ where x3 is
the through-thickness direction.

Consider first the general problem of a TBC layer with a
prescribed temperature jump between the top and bottom
of the coating. As the coating sinters, its thermal conduc-
tivity and Young’s modulus increase with time, and conse-
quently the temperature profile H(x3) changes. The kinetic
constants for diffusion and bulk creep vary exponentially
with temperature in an Arrhenius manner, and so the sub-
sequent sintering rate will vary nonlinearly with position
x3, and in turn this leads to a non-uniform temperature
profile. Whilst calculations of this type can be performed
without difficulty, adequate physical insight into con-
strained sintering is obtained by assuming that the temper-
ature H at any given location x3 is held constant. In the
ensuing analysis, eT is held fixed and the transient sintering
response is determined along with the change in macro-
scopic modulus of the coating.

6.1.1. The initial state

The initial value of radius b of the asperities is deter-
mined by the initial value of compressive traction |T| bridg-
ing the cracks. Assume that the indentation pressure at
each asperity is 3rY. Then, equilibrium dictates that the ini-
tial radius is

b ¼ b1 ¼
s
2

jT j
3rY

� �1=2

ð30Þ

The initial height of asperity wðt ¼ 0Þ � w1 follows imme-
diately from Eq. (2) as

w1 ¼ w0k
2
0

3

4
k2

0 þ 2b1 þ
k0

2

� �2
" #�1

ð31Þ

It remains to obtain the initial asperity height u1 associated
with asperity wedging. Substitution of Eqs. (9) and (11)
into the compatibility statement (Eq. (10)) gives

u1 ¼ vE � uS ¼
�R
pf

1� v
v

� �
2r� 3T

E0

� �
� T

k
ð32Þ

where r is given by Eq. (26), with eC ¼ 0.
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6.1.2. Evolution of bulk modulus during sintering

It is assumed that the contacting asperities have a normal
contact stiffness but a vanishing shear stiffness; this is consis-
tent with the notion that free sliding can occur at interfaces
such as grain boundaries at elevated temperature. Conse-
quently, sintering leads to an increase in the contact stiffness
k and thereby to a progressive increase in macroscopic bulk
modulus, but not shear modulus at elevated temperature.
The effective bulk modulus Keff is given by

1

Keff
� deEh

dr1h
¼ 1

K
� 3ð1� vÞ

vE0

�Rk
E1 þ �Rk

ð33Þ

as discussed by Fleck and Cocks (2009). Here, K is the bulk
modulus for the micro-cracked solid containing traction-
free penny-shaped cracks as specified by Eq. (6); E1 has al-
ready been defined in Eq. (13).

6.1.3. Characteristic timescales
It proves convenient to evaluate the computational

results in terms of three characteristic timescales. Fleck
and Cocks [5] identified the dominant timescales for the
HIP problem, based on the application of a constant pres-
sure which is much greater than the sintering stress. Under
constrained sintering, the stresses generated in the coating
scale with the sintering stress, and the sintering stress
evolves with the geometry of the asperities. Suitable char-
acteristic timescales are determined below.

(i) In the current problem, the equi-biaxial stress within
the coating evolves from its initial value, as set by
ðT ; eT Þ, to a level on the order of the sintering stress
(as given by Eq. (35) below) over a timescale of
s1 � g0=E0. This time constant gives the period for
creep relaxation of the uncracked solid in the absence
of diffusion at the asperities. Typically, s1 is much less
than the time constant for creep relaxation by local
diffusion at the asperity level. Elasticity plays a minor
role over timescales exceeding s1.

Two additional timescales s2 and s3 emerge, by the fol-
lowing arguments. It is shown below in the results section
that the timescale for constrained sintering is comparable
to that for free sintering. Accordingly, we can estimate
the timescale for constrained sintering by considering the
simpler problem of free sintering, with r � 0. Also, the sin-
tering rate for circular cylindrical asperities is comparable
to that for a conical frustum. Consequently, a simple ana-
lytical model is developed in Appendix B, based upon the
notion that sintering of cylindrical asperities is driven by
the sintering stress rS , which arises from the reduction of
interfacial energy of the contacting asperities with respect
to asperity height w. As the asperities grow k becomes
much larger than w, and Eq. (A2) simplifies to

GS ¼
p
4

k2ðcG � 2cSÞ ð34Þ

The sintering stress at the scale of the cracks follows imme-
diately as
rS �
4

ps2

@ _GS

@ _w
¼ ð2cS � cGÞ

w
k
s

� �2

ð35Þ

upon making use of the volumetric constraint (A1) between
k and w.

Asperity sintering necessarily involves accommodation
by creep deformation as stipulated by Eq. (10). Two time-
scales emerge, depending upon whether local diffusion or
bulk creep is the dominant dissipative process. Both pro-
cesses are driven by the sintering stress, with the details
given in Appendix B. Here, we state only the results.

(ii) When the creep viscosity is high, sintering is con-
strained and the magnitude of the traction T

approaches the sintering stress rS. The characteristic
time for closure of the penny-shaped cracks by Coble
creep is obtained by equating T in Eq. (16) to rS and
setting r1h ¼ 0. Integration of the resulting expression
from an initial asperity height w1 as defined by Eq.
(31) gives the time to close the cracks by creep:
s2 ¼
pf v
ð1� vÞ

g0

ð2cS � cGÞ
s2w3

1

�Rk2
0w0

ð36Þ
(iii) When the creep viscosity is small, sintering of the
asperities is readily accommodated and the traction
T across the faces of the crack is zero. Sintering of
the asperities is again driven by the sintering stress,
which arises from the reduction of total interfacial
energy of the contacting asperities. The analysis in
Appendix B provides a characteristic timescale of
s3 ¼
k2

0w0w1

96DGð2cS � cGÞ
ð37Þ
6.1.4. Typical response

In order to allow for immediate comparison between the
free sintering response and the HIP response, we assume the
same geometry as that considered by Fleck and Cocks [5]:
�R = 100 lm, s = 5 lm, k0 = 1 lm, w0 = 0.5 lm and
f = 0.43. Likewise, the pertinent material properties at
1300 �C are given by E0 = 170 GPa, rY = 400 MPa, g0 =
800 GPa s, DS = DG = 6.3 � 10�31 m6 J�1 s�1, cS = 1 J m�2

and cG = 0.64 J m�2. The value of f = 0.43 has been chosen
in order to give an initial value for the Young’s modulus of
the APS material of 40 GPa, as typically observed. The ini-
tial compressive traction across the cracks is taken to be
T = �5 MPa, and the thermal expansion mismatch is taken
to be eT ¼ 0. The resulting values of the time constants are
s1 = 4.71 s, s2 = 5.27 � 103 s and s3 = 2.13 � 103 s.

We note in passing that s1/s2 = 8.94 � 10�4, with the
interpretation that rapid creep relaxation of stress occurs
early in the life of the coating. As already discussed by
Fleck and Cocks [5], s1/s2 gives a measure of the ratio of
elastic opening of the penny-shaped cracks to the asperity
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height. Thus, asperity sintering cannot be accommodated
by elastic closure of the cracks alone, but requires Coble
creep.

The geometric constraint (Eq. (10)) implies that the
diffusional flattening of asperities w is accommodated by
creep closure of the penny-shaped cracks vC. Consequently,
the sintering time is governed by the longer of the times s2

and s3. Upon adopting the above numerical values for geo-
metric and material properties we obtain s3/s2 = 0.404 and
conclude that, for this choice, the overall sintering time is
dictated by both Coble creep and diffusional flattening of
the matrix. We explore the role of s3/s2 further below.
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Fig. 4. Evolution of contact radius of asperity top b and the diameter of
the asperity base k with time, for selected values of s2 with s3 held fixed. s2
7. Results

We begin by showing the evolution of stress state and
contact size within the coating, for values of eT in the prac-
tical range of �0.2% to 0.2%, see Fig. 3. Time t is normal-
ized by s1 in order to emphasize that ðT ; rÞ decay by Coble
creep over a period on the order of s1 from their initial val-
ues to a level on the order of the sintering stress, which
scales with ð2cS � cGÞ=k0. During this initial transient, the
contact size b is almost constant. Significant sintering
occurs after a much longer time period, on the order of
s2 or s3, as described in Section 7.1 below. It is clear from
Fig. 3 that the value of eT dictates the initial value of in-
plane stress r but has almost no effect upon the evolution
of crack traction T and upon contact size b. The rapid
relaxation of in-plane stress by Coble creep has already
been demonstrated in Fig. 5 of Ref. [10]: the stress drops
to almost zero over 10 h at 1400 �C.
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Fig. 3. Evolution with time of the in-plane stress r in the coating, contact
radius of asperity b and the traction T across the faces of each penny-
shaped crack due to asperity bridging. Predictions are given for selected
values of the linear thermal expansion mismatch strain eT , for the choice of
geometric and material parameters as listed in Section 6.1. The time
constants ðs1; s2; s3Þ are held fixed.
7.1. The role of relative timescales

The effect of timescales (s2, s3) upon the sintering
response is explored in Fig. 4 for eT = 0. Specifically, with
s3 = 2.13 � 103 s, s2; has the selected values of 5.27 �
101 s, 5.27 � 103 s and 5.27 � 105 s by suitable selection
of values for g0. When s3/s2 is less than about unity, the
sintering rate is dictated by the characteristic time s2 for
crack closure by Coble creep. In contrast, when s3/s2 is
greater than about unity, the sintering rate is controlled
by the characteristic time s3 for diffusional flow at asperi-
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Fig. 5. Evolution of contact radius of asperity top b and the diameter of
the asperity base k with time, for selected values of initial traction T. The
time constants (s1, s2, s3) are held fixed. The thermal expansion mismatch
strain eT equals zero, and the values for the geometric and material
parameters are listed in Section 6.1.

(and s1) are varied by selecting values for the viscosity g0. The thermal
expansion mismatch strain eT equals zero, and the values for the geometric
and material parameters are listed in Section 6.1.
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ties. Accordingly, time has been normalized by s2 + s3 in
Fig. 4. The normalized sintering response lies in a narrow
band, with complete sintering of the asperities occurring
at t=ðs2 þ s3Þ � 1, despite the fact that g0 ranges by four or-
ders of magnitude.

7.2. The sensitivity of sintering time to initial contact size

The initial contact size b1 is dictated by the choice of initial
traction T. The constrained sintering response is shown in
Fig. 5 for selected values of compressive traction, with
eT = 0. The choice of normalization for time is able to cap-
ture the sensitivity of sintering response to initial contact
size, except for the case of small b1 (associated with
Tk0=ð2cS � cGÞ ¼ �1). In this case, b decreases with
increasing time and desintering occurs. An examination
of the response for Tk0=ð2cS � cGÞ ¼ �1 reveals that the
crack opening vc and asperity height w remain constant
with increasing time, and so additional insight into the
desintering phenomenon can be gleaned by plotting the
free energy per asperity GS as a function of b, for fixed val-
ues of w = w1, see Fig. 6. The initial geometry (b1, w1) is
dictated by the initial traction |T|: the circles marked on
each curve in Fig. 6 are the initial geometries for each of
the three values of |T| considered in Fig. 5. For the two lar-
ger initial values of |T| the free energy decreases with
increasing contact radius b of the asperity, and sintering
proceeds with increasing time. The decrease in free energy
drives material rearrangement by surface diffusion so that
the shape of the asperity evolves towards the minimum in
the free energy profile. In contrast, for Tk0=ð2cS � cGÞ ¼
�1, the free energy decreases with diminishing b and this
drives desintering. The desintering phenomenon is sensitive
to the initial geometry of the asperity: more detailed
descriptions of the shape of the asperities are required to
fully capture the behaviour when the contacts are small.
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Fig. 6. Sections through the energy landscape for a single asperity for
different values of asperity height w. The initial free energy and values of
asperity height w1 and contact radius b1 corresponding to three different
values of initial crack face traction T are indicated by circles.
If the constraint of the matrix is reduced by a large
degree, for example, by significantly reducing the creep vis-
cosity g0, the asperity can evolve towards a lower energy
configuration by reducing its height w in addition to chang-
ing its contact size b. For the choice T k0=ð2cS � cGÞ ¼ �1,
the asperities can now sinter and sintering is complete when
t � ðs2 þ s3Þ, as before. This alternative response is not
shown explicitly here, but was deduced by numerical
experimentation.

The desintering phenomenon described above is similar
to the morphological instabilities observed in constrained
polycrystalline fibres by Miller and Lange [17] and mod-
elled by Sun et al. [18]. Polycrystalline fibres, when con-
strained in a matrix which prevents shrinkage, can break
up into isolated spherical grains if the ratio of the grain size
to fibre diameter exceeds a critical value.

7.3. Effect of asperity spacing

We have demonstrated above that the overall timescale
for the sintering process is determined by the larger of s2

and s3. The detailed response, including the evolution of
elastic modulus, depends upon the choice of internal geo-
metric parameters. Fig. 7 shows the effect of varying the
asperity spacing s upon the evolution of the bulk modulus,
which is normalized by the modulus of the fully dense
material K0. In these simulations, we take �R ¼ 50 lm and
f = 0.5, and s is varied between 5 lm and 20 lm. The value
of initial crack face traction T is chosen to provide the same
initial geometry of asperities, i.e. b1 = 0.144 lm and
w1 = 0.364 lm, for each simulation. All other geometric
and kinetic parameters are the same as those for the
reference case of Fig. 3. The characteristic timescales
s1 = 4.7 s and s3 = 2.22 � 103 s are fixed for all simula-
tions, but s2, which is proportional to s2, varies from
5.59 � 103 s for s = 5 lm to 8.94 � 104 s for s = 20 lm,
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Fig. 7. The effect of asperity spacing s upon the evolution of bulk
modulus.
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recall Eq. (36). In all cases, sintering is complete when
t � ðs2 þ s3Þ, but the detailed response is sensitive to the
choice of s. The closer the spacing of the asperities, the
higher the initial modulus. For small values of s, there is
a gradual increase in modulus towards full density, while
for large asperity spacing the modulus increases rapidly ini-
tially and then remains almost constant until t � ðs2 þ s3Þ,
when it increases rapidly once more towards full density.
This latter response is consistent with the experimental
observations described in the introduction [2,4,7]. For
example, Choi et al. [2] observed an increase in modulus
by a factor of two, followed by a plateau in response. How-
ever, the experiments which have been reported in the liter-
ature to date are of short duration and do not detect the
final rise in stiffness due to full sintering.

7.4. Comparison of constrained and free sintering

The time evolution of contact geometry and of bulk mod-
ulus ðw=k0; b=k0; k=k0; vc=k0;K=K0Þ is plotted in Fig. 8 for
both free sintering and constrained sintering (with eT = 0)
using the reference set of parameters as given at the end
of Section 6. The two responses are qualitatively the same,
except for the feature that imposition of substrate con-
straint doubles the sintering time. This factor depends on
the detailed internal geometry and the relative rates of
asperity sintering and Coble creep; it typically ranges from
about 1.5 to 2.5. This suggests that free sintering experi-
ments can be used to mimic constrained sintering, with
suitable allowance for a shift in timescale, provided the
internal geometric parameters are the same in each case.

When eT > 0, such as near the free surface of a coating
in-service, an in-plane compressive stress is generated ini-
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The constrained and free sintering cases are both shown for comparison.
The thermal expansion mismatch strain eT equals zero, and the values for
the geometric and material parameters are listed in Section 6.1.
tially in the coating, and this compressive stress partially
closes the cracks. As a result, the magnitude of the traction
across the faces of the intersplat cracks increases. This will
result in a plastic flattening of the asperities and to an
increase in modulus. Conversely, when eT < 0, such as in
the constrained coating adjacent to the substrate in-service
or in isothermal experiments, such as those conducted by
Thompson and Clyne [4], the intersplat cracks will tend
to open as the temperature is increased, resulting in the
breaking apart of some asperity contacts and leading to
an increase in the mean asperity spacing, s, compared with
that for the virgin material. This will result in a decrease in
initial modulus and a slower rate of increase of modulus by
sintering, as discussed in Section 7.3. This behaviour is con-
sistent with the experimental observations of Thompson
and Clyne [4], who measured smaller values of initial mod-
ulus and a smaller increase in modulus before plateaus
were attained in the constrained coating compared with
the free sintering case. More detailed experimental studies
are required to provide information about asperity spacing
and how this is influenced by the transient temperature his-
tory to the hold condition, before a full quantitative assess-
ment can be made of the available experimental data.

Cipitria et al. [10] have measured and predicted the evo-
lution of TBC coating thickness for both constrained and
free sintering. The experimental data show that the strain
increases to a value of about 1% over a time of 20 h. This
is due to closure of the intersplat cracks and is sensitive to
the initial asperity size and splat thickness. Their calcula-
tions and experiments both indicate that the rate of thin-
ning in a constrained layer is about 30% faster than that
in an unconstrained, free-standing layer. It is instructive
to compare the predictions of the current model with their
results.

The present analysis of constrained sintering assumes
that the change in coating thickness due to asperity sinter-
ing and Coble creep is directly related to the creep compo-
nent of crack opening vC. Write h as the initial coating
thickness and Dh as the decrease in coating thickness.
Then, Eq. (16) gives

Dh
h
¼ pf k0

�R

� �
vC

k0

ð38Þ

and it is clear that the change in coating thickness due to
creep is kinematically linked to the degree of asperity sin-
tering. The above relation is modified to

Dh
h
¼ 1

3

pf k0

�R

� �
vC

k0

ð39Þ

for an unconstrained layer. However, the rate of crack clo-
sure _vC for unconstrained sintering is between 1.5 and 2.5
times that for constrained sintering, as discussed above.
Consequently, the current model predicts that the rate of
thickness reduction for constrained sintering is between
20% and 100% faster than that for unconstrained sintering;
this ratio depends somewhat upon the concentration of
penny-shaped cracks, and upon the relative rate of asperity
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sintering to bulk creep. It is concluded that the present
model gives similar trends to the experiments and predic-
tions of Cipitria et al. [10]. In addition, the present treat-
ment gives insight into the cross-coupling between
sintering rate and the evolution of modulus of the coating,
as already noted above.
8. Concluding remarks

A multi-scale model has been developed for the con-
strained sintering of an APS thermal barrier coating. Three
characteristic timescales emerge: s1 for stress relaxation by
Coble creep, s2 for crack closure by Coble creep, and s3 for
asperity sintering by local diffusion. In practice s1 is the
smallest, and the sintering time is dictated by the larger
of s2 and s3. The model successfully predicts that the mod-
ulus of the coating can double or more during the early
stages of sintering and then remain almost constant for a
long period. Additional experiments are required before a
quantitative comparison can be made between the pre-
dicted evolution of microstructure (and modulus) and that
observed in practice.

The current model is based upon the Budiansky–O’Con-
nel treatment of an isotropic distribution of penny-shaped
cracks. It is appreciated that the out-of-plane modulus of
the as-deposited coating is 30–40% greater than the in-
plane modulus, see for example Refs. [16] and [19]. How-
ever, as sintering proceeds the difference diminishes. For
example, the ratio of moduli in the two directions dimin-
ishes from 30% to 5% over a sintering time of 200 h at
1150 �C, see Ref. [19]. Thus the assumption of isotropy
improves with the progression of sintering. When making
comparisons between the model and measurement, the
in-plane modulus is considered in the above treatment.
We emphasize that we assume isotropy for the sake of sim-
plicity and to highlight the main physics of sintering of
these materials.
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Appendix A: The circular cylindrical asperity

After the inclination b of each asperity has attained the
value of p/2, the contact evolves with 2b � k. Within this
regime of behaviour, the evolution of asperity size is gov-
erned by the single degree of freedom w instead of ðw; kÞ.
Consider a circular, cylindrical asperity of height w and
diameter k. Volume conservation dictates that
k ¼ k0

w0

3w

� �1=2

ðA1Þ

in terms of the reference configuration as defined in Fig. 3a.
The total Gibbs free energy per unit volume G is still given
by Eq. (22) but the expression for the free surface energy
per asperity (21) is modified to

GS ¼
p
4

k2ðcG � 2cSÞ þ pkwcS ðA2Þ

Likewise, the total dissipation per unit volume W remains
that stated in Eq. (20), whereas the potential WS for each
asperity simplifies to

WS ¼
p

256

k4

DG
þ p

96

wk3

DS

	 

_w2 ðA3Þ

The rate quantity _w is obtained by minimizing the func-
tional Xð _wÞ � _GþW, where _G is obtained by differentiat-
ing Eq. (22) with respect to time, and is linear in _w. The
minimization results in the single algebraic equation

_w ¼ � d2W
d _w2

� ��1
d _G
d _w

ðA4Þ

instead of Eq. (23).
Appendix B: Characteristic times for sintering

In this appendix we derive simple equations for sintering
of the asperities in the limits where either diffusion at the
scale of the asperities or Coble creep of the matrix controls
the sintering rate. We idealize the asperities as cylinders
and make use of the equations developed in Appendix A.
B.1. Characteristic time for accommodation by creep of the

surrounding matrix

Consider the limit where the creep viscosity g0 is large. A
traction T � rS is generated across the faces of the cracks,
with rS given by Eq. (35). The crack opening rate is given
by Eq. (28), and for zero applied stress this simplifies to

_vc ¼ _w ¼ �ð1� vÞ�R
pf vg0

T

¼ �ð1� vÞ�R
pf vg0

2cS � cGð Þ
w

k
s

� �2

ðB1Þ

The characteristic time for sintering by diffusion at the
asperity scale s2 is obtained by integrating Eq. (B1) be-
tween the limits w = w1 at t = 0 and w = wf � 0 at t = s2,
with due regard to the constraint (A1), giving

s2 ¼
pf v
ð1� vÞ

g0

ð2cS � cGÞ
s2w3

1

�Rk2
0w0

ðB2Þ

Recall that ðk0;w0Þ specifies the reference configuration,
with w1 given by Eq. (31).
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B.2. Sintering controlled by diffusion at the scale of the

asperities

Alternatively, consider the limit where the creep viscos-
ity g0 is small, so that diffusion at the scale of the asperities
is readily accommodated by creep of the surrounding
matrix. Then, the dissipation of energy by creep is much
less than that due to local diffusion. As the asperities grow
k becomes much larger than w. Also, in general DS P DG.
Making use of Eq. (A4) we can then write

W ¼ 4WS

ps2
� 1

64

k4

s2DG

	 

_w2 ðB3Þ

Eq. (A4) then gives, after noting Eq. (34),

_w ¼ 32ðcG � 2cSÞDG

k2w
¼ 96ðcG � 2cSÞDG

k2
0w0

ðB4Þ

The characteristic time for sintering by diffusion at the asper-
ity scale s3 is obtained by integrating Eq. (B4) between the
limits w = w1 at t = 0 and w = wf � 0 at t = s3, giving

s3 ¼
k2

0w0w1

96DGð2cS � cGÞ
ðB5Þ
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