Short communication

The toughness of adipose tissue: measurements and physical basis

Kerstyn Comley, Norman A. Fleck*
Department of Engineering, Cambridge University, Cambridge CB1 2PZ, UK

1. Introduction

Subcutaneous adipose tissue is a soft connective tissue that resides under the dermal layer of skin (Goldberg and Rabinovitch 1983). In this study, the toughness of adipose tissue is measured using a trouser tear test (Rivlin and Thomas 1953), as recommended by Purslow (1983). Additionally, the crack tip zone of adipose tissue is examined in a scanning electron microscope (SEM). A limited set of toughness measurements are also reported for porcine dermal tissue, for comparison purposes.

Adipose tissue is comprised of lipid-filled cells called adipocytes, of diameter approximately 80 pm (Sheldon 1965; Bjornstorff and Martinson 1966). Adipocytes are enclosed within an extra cellular matrix constructed from two distinct collagen-based structures: reinforced basement membrane and interlobular septa, see Fig. 1. The reinforced basement membrane, of thickness 2 mm, is comprised of various types of fibrous collagen and resembles the walls of a 3D closed-cell foam (Abrahamson 1986; Nakajima et al., 1998), with each adipocyte occupying a pore cavity of the foam. The interlobular septa form a type I collagen 3D network, resembling a 3D open-cell foam (Urmacher 1997). The two collagen structures are inter-penetrating: it is argued that the toughness of adipose tissue is determined by the collagen network that surrounds the adipocytes. The volume fraction of the interlobular septa is sufficiently low for it to make a negligible contribution to the macroscopic toughness.

2. Materials and method

Samples of fresh porcine adipose tissue from the foreleg were obtained and stored for less than four hours in phosphate buffered saline (PBS) prior to testing. Trouser tear specimens (Purslow, 1983; Chin-Purcell and Lewis, 1996) of length L=30 mm and width W=20 mm, and a ligament length of approximately D=L/3 were prepared (thickness B=5 mm for adipose and B=3 mm for dermis). The legs of each specimen were pulled apart by a screw-driven tensile test machine at a constant displacement rate u in the range 0.01–10 mm s⁻¹, and the force F versus displacement u was recorded.

3. Results

The F_u curves from the trouser tear tests are shown in Fig. 2 for selected values of u. In each case F increased with u and then oscillated about a mean value F (F is calculated as the average force measured following onset of cracking until the end of the test). Video monitoring revealed that crack growth initiated when the load achieved the plateau value, and thereafter, the crack growth rate a was constant. Thus, it was adequate to deduce a from the total crack extension. The toughness Jc is given by (Rivlin and Thomas 1953; Purslow 1989; Chin-Purcell and Lewis 1996)

\[
J_c = \frac{2F}{\alpha}
\]

and is plotted as a function of crack velocity \(\alpha\) in Fig. 3 for both tissues. The average toughness is \(J_c=4.1 \text{ kJ m}^{-2} \pm 1.2 \text{ kJ m}^{-2}\) (1 s.d.) for porcine adipose tissue and \(J_c=17 \text{ kJ m}^{-2} \pm 4 \text{ kJ m}^{-2}\) (1 s.d.) for porcine dermis, independent of crack velocity \(\alpha\) suggesting that viscoelastic effects are minor at these low crack velocities. The toughness value measured here for the dermis is of a similar magnitude to the values reported by Purslow (1983).

* Corresponding author.
E-mail address: naf1@cam.ac.uk (N.A. Fleck).

0021-9290/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.

© 2010 Elsevier Ltd. All rights reserved.
although he observed a slight increase in value (by a factor of 2) when \(a \) is increased from 0.08 to 8 mm s\(^{-1}\).

In order to determine the micromechanism of crack advance a test at \(\dot{u} = 0.1 \text{ mm s}^{-1} \) was interrupted after a crack extension of 3.8 mm and the crack tip was examined in an SEM, as follows. To maintain the deformed configuration the specimen was clamped by cotton thread to a glass slide, and then chemically fixed, see Fig. 4a. The glass slide was then removed and the crack tip zone was examined in a SEM.

Scanning electron micrographs of the crack front are shown in Fig. 4. Three distinct features of the collagen network are observed: (i) the reinforced basement membrane surrounding the adipocytes has ruptured, allowing the lipid to leak out, (ii) the crack path follows the boundaries of the reinforced basement membrane, reminiscent of inter-granular fracture of a polycrystalline solid (see Fig. 4d) and (iii) fractured septa fibres are loose and wavy whereas the intact fibres span the crack wake, obscuring the view of the crack tip.

4. Discussion

The individual contributions to toughness from the septa fibres, acting as an open-cell foam and the reinforced basement membrane, acting as a closed-cell foam is now assessed. While it is recognised that there is a degree of interaction between these
two collagen structures, the dominant contribution to toughness is assessed by considering the two limiting cases in turn.

It is recognised that the response of collagen fibres is non-linear viscoelastic (Geerligs et al., 2008b). However, Gutierrez-Lemini (2002) shows that the methods developed for calculating J-integral for an elastic body can be applied to viscoelastic solids since J_C is not dependent upon the heredity of the solid. Therefore, a first order estimate of the relative significance of these foams to the macroscopic toughness can be obtained from elastic fracture models. It will be shown that the main contribution to toughness is from the reinforced basement membrane, with a negligible contribution from the septa fibres.

First assume that the septa fibres resemble an open-cell foam of volume fraction ρ_s made from walls of cell length l and fracture strength σ_f. The fracture toughness K_{IC} of a foam subjected to mode I loading is given by (Gibson and Ashby, 1997)

$$K_{IC} = 0.65\rho_s^{3/2} \sigma_f \sqrt{\pi l}$$ \hspace{1cm} (2)

Application of Eq. (2) to the mixed mode I & III trouser tear test would require a small adjustment to the pre-multiplier, which we have ignored herein. The toughness of the septa follows immediately as

$$J_C = \left(\frac{K_{IC}^2}{E_s}\right)$$ \hspace{1cm} (3)

Data for the tensile strength σ_f of individual septa fibres are not available. However, the tensile strength of the dermis provides a suitable estimate for the tensile strength of the septa fibres, $\sigma_f \approx 10$ MPa (Ankersen et al., 1999). Upon taking $\rho_s = 3 \times 10^{-4}$ and $l = 1$ mm the fracture toughness of the septa network is estimated to be $K_{IC} = 1.89$ N m$^{-3/2}$ via Eq. (2). The Young’s modulus of a septa fibre is taken to equal that of a collagen fibre bundle in a tendon, $E_s = 1$ GPa (Haut, 1983). This leads to an estimate of $E_s = \rho_s^{1/2} E_s = 90$ Pa (Gibson and Ashby, 1997) for the Young’s modulus of the septa open-cell foam. The toughness of the septa is then estimated to be $J_C = 40$ mJ m$^{-2}$, via Eq. (3). This is substantially lower than the measured toughness of adipose tissue, $J_C = 4.1$ kJ m$^{-2}$.

Second, we estimate the toughness contribution from the reinforced basement membrane, acting as a closed-cell foam. The toughness of a closed-cell foam J_C scales with the toughness
of the wall material J_{Cm}, according to the rule-of-mixtures formula $J_C = \tau_m J_{Cm}$, where τ_m is the volume fraction of reinforced basement membrane. No independent measurements exist for J_{Cm} and so the value $J_{Cm} = 17 \text{ kJ m}^{-2}$ as recorded in Fig. 3 for the dermal tissue is adopted; the dermis is a dense mesh of type I collagen. An estimate for $\tau_m = 0.1$ is taken from Fig. 1a and similar unpublished images giving $J_C = 1.8 \text{ kJ m}^{-2}$. This is of similar magnitude to the measurement of toughness for adipose tissue, $J_C = 4.1 \text{ kJ m}^{-2}$.

5. Conclusions

The toughness of porcine adipose tissue and dermal tissue has been successfully measured using the trouser tear test. It is argued that the toughness of adipose tissue derives from that of the reinforced basement membrane, with a minor contribution from the interlobular septa fibres.

Conflict of interest statement

All authors deny having any financial and personal relationships with other people or organizations that could appropriately influence our work.

Acknowledgements

The authors are grateful for financial support from the EPSRC, from Novo Nordisk A/S, Denmark and Cambridge University Multi-imaging centre for their support and assistance.

References

