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Penetration of a Rigid Cone

The essential features of the active plastic zone at the tip of a penetrating rigid cone

are investigated for a rigid/perfectly plastic solid. An exact solution is suggested for
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the plastic zone. A rigid zone exists ahead of the cone and is separated from the
Dplastic zone by a conical surface of discontinuity. It is assumed that the material
yields instantaneously by going through a ‘‘shear shock’’ across the rigid/plastic
interface. The orientation of the interface is determined by an ad hoc requirement
for minimum shear strain jump at the shear shock. Results are presented for different

cone angles and friction factors. The stresses within the plastic zone admit a log-
arithmic singularity whose level increases with cone angle and wall friction.

Introduction

Local singular fields at the tip of a rigid conical indentor,
penetrating an incompressible power-law viscous solid have
been studied recently by Fleck and Durban (1990). The limiting
case of that analysis for vanishing strain-rate exponent de-
scribes possible singular fields of rigid/perfectly plastic mate-
rials with logarithmic singularity of the stresses and a power-type
strain rate singularity. The plastic zone of this solution extends
continuously over the entire near-tip volume of the penetrated
solid.

In the present paper we address the problem of rigid/per-
fectly plastic singular fields, near a tip of a penetrating cone,
employing an alternative model. It is thought that the new
solution is relevant to surface indentation and to deep pene-
tration by a rigid cone. Following existing studies on discon-
tinuous rigid/plastic conical fields (Lockett, 1963; Shield, 1955;
Spencer, 1984) we assume that the material ahead of the cone
remains rigid up to a rigid/plastic interface (Fig. 1). At that
conically shaped interface, the solid yields instantaneously by
passing through a “‘shear shock.”” The mathematical model is
constructed in the spirit of earlier studies of orthogonal ma-
chining, where rigid/perfectly plastic theory gives useful phys-
ical insight to the problem. In particular, machining theory
suggests a shear shock at an angle which bisects the machining
direction and the angle of the tool face. This prediction is
borne out by experimental observation (Johnson and Mellor,
1973). The rigid/plastic interface simulates a more diffuse tran-
sition zone where the streamlines possess high local curvature.

An exact, almost closed-form solution is suggested for the
active plastic zone which extends from the interface to the
cone. Surface roughness is accounted for by imposing a friction
factor along the wall. The shear stress g,y on the wall is given
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by layl = mk where k is the shear yield stress and the friction
factor m ranges from zero to unity. The stresses have a log-
arithmic singularity while the strain rates singularity is r~".
The latter is stronger than the strain rate singularities reported
earlier by Fleck and Durban (1990). A similar conclusion holds
for the level (amplitude) of the logarithmic stress singularity.
More refined boundary value calculations are required in order
to assess which of the two solutions is the more frequently
encountered in penetration and indentation problems.

At the rigid/plastic interface we impose a pragmatic ad hoc
requirement that the finite jump in the shear strain attains its
smallest possible value. This condition determines uniquely the
shear shock orientation, approximately in a direction bisecting
the angle between the cone’s wall and the penetrating axis.

Detailed results are presented for the influence of cone angle
and wall friction on the interface orientation, the shear strain
jump at the interface, level of stress singularity, and shape of
streamlines. The paper concludes with a brief discussion of
Spencer’s (1984) model, which is here recovered as a special
case for one particular cone angle and friction condition.

We assume a von Mises yield law and an associated flow
rule, while previous studies (Lockett, 1963; Shield, 1955; Spen-
cer, 1984) employ a Tresca yield law. The present analysis

Plastic

Rigid

Fig. 1 Convention for steady penetration of a rigid cone. A “shear
shock” discontinuity at ¢ = A marks the rigid/plastic interface.
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provides, apparently for the first time, an analytical solution
for the velocities and stresses within the singular plastic zone.
This enables us to examine the details of the coupling between
wall friction and cone angle.

Field Equations and Solution

We consider a rigid cone that penetrates a rigid/perfectly
plastic solid (Fig. 1). Assume low velocity steady-state conditions
and concentrate on the near-tip singular field. An Eulerian
frame of reference is attached to the apex with spherical co-
ordinates (r, 6, ¢). Material behavior is modeled as rigid ahead
of the cone, up to an instantaneous shear surface at § = A,
and as perfectly plastic within the region bounded by the rigid/
plastic interface and the cone’s wall at § = B.

The constitutive relation in the plastic sector is given by

2 D

where S is the stress deviator tensor, D is the Eulerian strain
rate tensor, and g, is the yield stress in simple tension. As-
suming that the velocity field depends only on 8, we find that
material incompressibility of (1) is maintained if the velocities
are expressed as (Fleck and Durban, 1990)

v,=9¢" + ¢coth )

vg= —2¢ 3

where (v,, vg) denote the (r, 6) velocity components, ¢ is a

velocity potential that depends only on 6, and ()" = d( )/
do

The strain rate components follow from (2)-(3) in the form

€r=0 : )
1,
€=~ €ss=— (9" —¢cotf) &)
l ’ ’
=5 [(¢" +¢cotf)” +2¢]. )

Inserting relations (4)-(6) in (1) we obtain the deviatoric
components

0= 03=0 ™
o= 0p= — (ags =09 = —k E=25 ®
a,9=k%/ ©)
where o, is the hydrostatic stress,
=2 (6" +dcotd) +24] 10
I=Y?+(¢’ —¢coth)?, (11)

and k = oo/\/§ is the shear yield stress. Notice that I'(d) gives
the angular dependence of the effective strain rate e = (2/
3D «s D)2 = 2I/A/3r.
Since the state of stress is axially symmetric, there are just
two equations of equilibrium, namely _
Y0y, +20,,— 0gg— Op + G, + 0rgcOtd =0 12)
rom,,+ 30,9+ Ogp,6 + (099 — OM)COT,G =0. 13)

On substituting the stresses from (7)-(9) into the radial Eq.
(12), we find that the hydrostatic stress must be of the form

o,=k[H(6) + DInr] 14

where D is a constant and H(f) is an unknown function of 4.
It follows that radial equilibrium is maintained if

Y - YF—-I- Yeot§+DI'=0

T 1s)
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or, after one integration,

Y=F(6)T (16)
with
Dcosf+ F
" sinf an.

where E is an integration constant. Combining (16) with (11),
and observing that both I" and ¢, are positive, gives

F (¢ — ¢coth).
\1-F

Now eliminate Y between (18) and (10). We arrive at the
linear differential equation

¢”+<cot0— 2£ )¢'
Vi1-F
1 2F
+<2_m+\/—ﬁcot0>¢—0. (19)

This equation admits the solution

Y= (18)

¢ = C;sinf + C,f(0)sind (20)
where
)
_("g9)

f9)= Sx % de V3

]

2F
g(0)=exp | ————=db 22)
S)\ , 1- F2 :

and C,, C, are integration constants.

It still remains to solve the second equation of equilibrium
(13); substituting the stresses (7)~(9) and (14) into (13) results
in

H' = (\/1=-F?)" +2/1-F%otf-3F. (23)
The integral of (23), obtained with the aid of (17), completes
the solution of the equilibrium equations. It is worth noting
that the deviatoric components (7)-(9) may be rewritten, by
(16) and (18), as

Or=0p=0 4)
00— 0n=—(0gp— or) =k\/ 1 - F* 25
0,=kF. (26)

Function F determines the relative contribution of the shear
stress to the overall yield stress k.

Boundary Conditions

Turning to the boundary conditions and assuming a maxi-
mum shear rigid/plastic interface, we have that 6,9 = k at ¢
= M\ or, from (26),

., F(\) =1. 27
Wall friction on the penetrating cone is represénted by a shear

factor m which controls the level of resisting shear stress at ¢
= ( according to the relation g,y = —mk. Thus, from (26),

F(B)=—m. (28)
The value of m ranges from m = 0 at a smooth wall to m =

1 at a perfectly rough wall. Combining conditions (27)-(28)
with (17) gives

sin\ + msinf
"~ cosh—cosB 29
_ sinAcosf + mcoshsing
E= cosA\ —cosB (0)
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The “‘shear-shock’’ at the rigid/plastic interface is supposed
to simulate the narrow elastic-plastic transition zone which is
expected to develop near § = X. This model is constructed in
the spirit of early studies on plane-strain machining (Johnson
and Mellor, 1973) based on the maximum shear plane hy-
pothesis. In reality, one may expect a relatively large curvature
of the streamlines in the vicinity of the idealized shear shock.

The velocity potential (20) contains two constants (C;, C)
that can be determined from kinematical conditions. Denoting
by V the uniform velocity of the rigid zone, relative to the
cone, we have the condition of continuity of velocity normal
to the interface (Fig. 1)

vs(N\) = VsinA. 31)
Along the wall, at 6 = (3, vy has to vanish
| vs(B) =0. ‘ (32)

Both conditions (31)-(32) involve only the tangential velocity
(3) which can be written, by (20), as

vg= — 2C;sinf — 2C,f(6)siné. (33)
Inserting (33) in (31)-(32) we find
4 |4
Ci=—-— GC= . 34
1 2 =7 E (34)

The interface angle A is still undetermined. To this end we
introduce the ad hoc requirement that the instantaneous shear
strain at the interface will be as small as possible. The radial
velocity jump at the interface is given by (Fig. 1).

Av,=v,(N\) — (— VcosA). (35)
From (2) and (20) we get the radial velocity component
v,=2C;cos + 2C,f(0)cosd + C, ‘sg—lg-% (36)

On substituting (36) in (35), observing that f(\) = 0 and g(M\)
= 1, and using (34), the velocity jump is

vV
v 37
A= By @7
A measure of shear strain tany at the interface is therefore
Av, 1
tany = = - 38
Y= Vsinn - 2/(B)sih (38)

where v is the shear angle. We minimize (38) with respect to
A, for given values of 8 and m, in order to determine the
orientation of the interface.

The strain rate components (4)-(6) may be put in the form

=L (V) 2O
*= 7 r \2/(B)) sin%

g6)

= ()
T | — 2 \¥(B)) sin’’

€= 01 €g9 =

At the rigid/plastic interface the normal components are
simplified further, by (37), to
€gp = €pt = —é&
86= ~€0= "7
Clearly, the shear strain rate component becomes un-
bounded at the interface where F = 1, and also at the wall
when the friction factor m attains its higkest value. The be-
havior of ¢,y near § = \ is governed by

. 240, 1
P oD +coth rI—N

A similar expansion holds near the wall (¢ = 8) when m =
1.
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Fig. 2 Variation of shear strain with interface angle for different fric-
tion factors m. 8 = 165 deg.

Numerical Results and Discussion

The variation of the shear strain tany with interface angle
\, as evaluated from (38), is illustrated in Fig. 2 for a cone
angle of 30 deg and with different values of m. As expected,
there exists a clear minimum for the shear strain at a certain
value of A. That value of \ is taken here as the optimal ori-
entation of the rigid/plastic interface within the framework of
our model.

The numerical calculation of (38) involves the integrals (21)-
(22); at the interface F = 1, by (27), and the integrand of (22)
becomes unbounded. However, a straightforward expansion
shows, with the aid of (17) and (29)-(30), that near § = \

A+ A0
242
S 2 d6~j— Vb Af<<1 (39)
A 1-p VA
where
1+ msinAsinB — cosAcos3 40)

(cosh — cosB)sin\

Similarly, when the wall is perfectly rough (m = 1) we have,
near § = S, the expansion

6 2F 22
————df~ ——= VAl A1 41
SB_M — = @1)
with
_cos(B—N)—cos28 “2)

" (cosh—cosB)sin8

Expansions (39) and (41) have been used to overcome the
numerical difficulties near § = A\, and near § = 8 when m =
1.

The optimal location of the interface varies almost linearly
with the angle 8 but shows little sensitivity to wall friction
(Fig. 3). A rough approximation for the interface angle would
be A = /2 provided that the cone is not very sharp. It can
be seen from Fig. 3 that \ is smaller for smoother walls. The
dependence of the optimal interface angle on § as predicted
by the present model resembles the known results for plane-
strain orthogonal machining (Johnson and Mellor, 1973). Also,
for a smooth flat indentor, with 8 = w/2 and m = 0, we get
a shear shock at A = 46.5 deg which is slightly above the value
of A = /4 obtained by Shield (1955) with a slip-line analysis
for the flat circular smooth punch.

The criterion tan ¥ — min is required to compensate for
lack of uniqueness in the mathematical model. The fact that
the present solution predicts stronger singularities than those
obtained by Fleck and Durban (1990) could reflect a better
simulation of the actual elastoplastic field. A full elastic, per-
fectly plastic study may be needed to resolve the issue of com-
peting near-tip singular fields in cone penetration.

The jump in shear strain at the shear shock interface is
displayed in Fig. 4. The jump in tany across the shear shock

Transactions of the ASME



90

80—
70
A
(deg)
60
SO
L0, / : | T 1 | L | )
80 100 120 140 160 180

B (deg.)

Fig. 3 Variation of optimal interface location A with wall angle 8 and
friction factor m
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Fig. 4 Variation of shear strain tany at the interface with wall angle 8
and friction factor m

increases with wall friction and included cone angle. The in-
fluence of m appears to decrease as ( increases, though the
validity of the model becomes questionable for sharp cones
where the elastoplastic transition zone is likely to cover a con-
siderable region of the flow field. This is reflected by vanish-
ingly small values of tany as 8 — w, which are not compatible
with the notion of rigid/plastic discontinuity.

The stress components (24)-(26) are dominated by the log-
arithmic singularity of the hydrostatic stress (14). The level of
that singularity is determined by constant D which is given by
(29). The value of D increases with increasing m (Fig. 5) and
decreases with increasing 3 (except for the weak minimum when
m = 0). This behavior is physically justified since the local
drag during penetration is expected to decrease for sharper
and smoother cones. The values of D given in Fleck and Durban
(1990) are considerably below those obtained here.

Sample calculations were performed for the shape of the
streamlines in the plastic zone (Fig. 6). This is done quite easily

since along a streamline dr/r = (v,/vy)d8 or, from (2)-(3),
r*¢sind = constant, 43)

with ¢ expressed by (20).

A Particular Solution
Spencer (1984) has suggested a cone penetration model, based
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Fig. 5 Levels of stress singularity D for different wall angles g and
friction factors m
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Fig. 6 Streamlines within the plastic zone. 8 = 135 deg.

on the rigid/perfectly-plastic Tresca solid, with A = 7/2 and
o9 = 0 everywhere within the plastic field. Thus, there are no
radial shear stresses in the plastic zone, and the rigid part
occupies a half space. This particular case is easily recovered
from our analysis except for the difference in the value of the
(Mises) yield stress k. Indeed, with F = 0 we have from (22)
that g(f) = 1 and (21) admits the exact integral

‘]
dd 1 6 1 cosf
S0 = S,,z s’ 2 P80 375 G

Equation (23) has now the simple solution H = 2lnsiné +
H,, where H, is an integration constant, resulting in explicit
r-independent expressions for the stress components (24)-(25).
Likewise, the velocity components of (33) and (36) are given
in terms of simple functions.

The interface shear strain (38) follows as

“44)

(45)

predicting relatively high values of shear strain. Just to give
an example, with 8 = 135 deg, Eq. (45) gives tany = 0.436.
By comparison, our model predicts for the same cone angle,
with m = 0, an interface shear strain of tany = 0.096 and an
interface location of A = 66.5 deg.

The solution (44)-(45) is valid only for a smooth cone. The
stresses are nonsingular (since D = 0) and it is unclear whether
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the jump in the shear strain (45) can exist along the interface
in the absence of an active shear stress component.

Case Study: Steady Penetration by a Rod

As an application of the asymptotic analysis we shall estimate
the axial force F for deep penetration of an elastic-perfectly
plastic solid by a conically tipped circular rod of semi-infinite
length. We assume that the rod is reduced slightly in diameter
behind its conical head, so that we can neglect the effect on
F of friction between the wall of the rod and of the infinite
solid. However, we include the effects of friction between the
head of the penetrator and the solid.

We take the conical head to be of semi-included angle « =
« — B and of base radius a. The axial force on the penetrator
Fis y

R
F=- S (0ge (B)sina + a9(B)cos)2nrsinadr (46)

where r is the radial coordinate from the apex of the cone,
and R = a/sina is the flank length of the cone. The average
penetration pressure on the conical head p = F/ xd is given
by evaluation of (46) via (25), (26), and (28),

p=—-k(\ 1-m*+H(B) + DInR) +k<§+mcota>. @7

Bishop, Hill, and Mott (1945) have suggested that the pen-
etration pressure may be estimated from the pressure required
to expand a circular cylindrical cavity. We follow their sug-
gestion and assume that the hydrostatic pressure (14) at (r =
R, 0 = B) equals the limit pressure required to expand a cy-
lindrical cavity in an elastic-perfectly plastic solid (Bishop et
al., 1945)

ox(R,8)=k (H(B) + DInR)

- ((2)

Substitution of (48) into (47) gives, using o, = k+/3,
p 1

a_‘,:ﬁ <l+ln<af/§> +mcota+§—'\/1—m2). 49)

The dependence of D upon m and o = 7 — f is given in
Fig. 5; thus, Eq. (49) gives in an approximate manner the effect
of tip singularity, wall friction, and remote elasticity upon the
penetration pressure. We note that p/g, increases with increas-
ing E/0,, increasing m and decreasing c:. At high values of m
=~ 1 and large o = w/4, we expect that a false cap of non-
deforming material sticks to the head of the penetrator; ap-
plication of Eq. (49) then becomes inappropriate.

48)
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Table 1 Comparison of predicted penetration pressure p/o, with meas-
ured value for work-hardened copper, from Bishop et al. (1945). ¢, = 270
MPA, E = 124 GPA.

a = 20° a = 30°
Measured Prediction Measured Prediction
S/oo from (49) ;/ao from (49)
Unlubricated 7.4 5.7 6.8 5.2
(m=1)
Lubricated 4.8 3.5 5.5 3.5
(m=0)

The last two terms of Eq. (49) are absent in the estimation
of penetration pressure by Bishop et al. (1945). For frictionless
penetration (m = 0), the sum of the last two terms almost
vanishes for 0 < a < w/2. For the case of sticking friction
(m = 1), the last two terms in (49) contribute to p/g, by an
amount 0.6 to 1.4, as « ranges from zero to «/2.

Bishop et al. (1945) measured the penetration pressure in
annealed and in work-hardened copper using a penetrator of
the type described above. A comparison of their measured
penetration pressure for work hardened copper and the pre-
dictions of (49) is given in Table 1.

Equation (49) predicts qualitatively the increase in p/o, with
increasing m and decreasing «, but consistently underestimates
the penetration pressure by approximately 1.7 g,. Bishop et
al. (1945) improved their estimate of p by including the effect
of strain hardening in their cavity expansion calculation. The
additional pressure due to strain hardening was found to equal
0.20,, which is negligible.

We conclude that a more complete analysis, including the
effects of nonproportional loading, is required in order to
obtain a more accurate solution to the penetration problem.

Acknowledgment

Part of this research was supported by Technion V.P.R.
Fund—Seniel Ostrow Research Fund.

References

Bishop, R. F., Hill, R., and Mott, N. F., 1945, *“The Theory of Indentation
and Hardness Tests,”” Proc. Physical Soc., Vol. 57, No. 3, pp. 147-159.

Fleck, N. A., and Durban, D., 1991, ‘‘Steady Penetration of a Rigid Cone
with a Rough Wall into a Power-Law Viscous Solid,”” ASME JOURNAL OF
APPLIED MECHANICS, Vol. 58, pp. 872-880.

Johnson, W., and Mellor, P. B., 1973, Engineering Plasticity, Van Nostrand
Reinhold Company, London.

Lockett, F. J., 1963, “Indentation of a Rigid/Plastic Material by a Conical
Indenter,”” J. Mech. Phys. Solids, Vol. 11, pp. 345-355.

Shield, R. T., 1955, “On the Plastic Flow of Metals under Conditions of
Axial Symmetry,”” Proc. Roy. Soc. London, Vol. A223, pp. 267-287.

Spencer, J. M., 1984, ‘‘Plastic Flow Past a Smooth Cone,’’ Acta Mech., Vol.
54, pp. 63-74.

Transactions of the ASME



	
	
	
	
	

