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Abstract 

The load versus displacement response of a double-cantilever beam (DCB) adhesive joint is 

measured for two interface geometries: a planar interface and a non-planar “square-wave” 

interface. Joints with a square-wave interface are stronger and tougher than planar joints of 

equal adhesive layer thickness provided the square-wave amplitude is sufficiently large. 

Computed tomography (CT) imaging is used to examine the failure morphology of DCB 

specimens with planar interfaces, and optical fractography is used to observe the failure 

mechanisms for DCB specimens with square-wave joints of fixed wavelength and selected 

amplitude; in all cases, the failure mode is similar to those of tensile, square-wave, butt joints.  

The finite element method is used to predict the cracking response of the DCB adhesive joint. 

To do so, the adhesive layer is idealised as a plane of cohesive elements with a normal 

traction versus separation response, as measured independently from square-wave butt joint 

specimens. Satisfactory agreement exists between the predicted and observed DCB response 

for all interface geometries, provided the reduction in DCB bending stiffness, arising as a 

consequence of the square-wave interface geometry, is taken into account. 
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1.  Introduction 

Commonly, adhesive joints are stronger and tougher under shear loading (such as a lap joint) 

configuration, than under tensile loading (such as a butt joint).  This suggests that a strategy 
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for increasing the peel strength and peel toughness of a joint is to inter-digitate the two 

substrates, and thereby exploit the high strength and toughness associated with a lap-joint 

configuration, see for example Maloney and Fleck (2017).   

The present study builds on the promising studies on micro-patterned adhesive joints by 

Matsuzaki and co-workers (Matsukaki and Suzuki, 2010; Suzuki et al., 2013; Hikosaka et al., 

2013; Yukimoto et al., 2014; Suzuki et al., 2015) and on the work of Kim et al. (2010).  

These studies make use of an in-mold surface modification method whereby a corrugated 

molding tool is pressed against a low-viscosity matrix during curing of a composite, and the 

patterns are transferred by demolding at low temperature.  The wavelength and amplitude of 

the pattern is typically on the order of 10 m, and an elevation in the butt joint strength, 

macroscopic mode I toughness of a double cantilever beam (DCB) specimen, and 

macroscopic mode II toughness of an end-notch flexure (ENF) specimen increase with the 

amplitude of the pattern (typically by a factor of 50% in strength and 100% in toughness).  

More recently, Cordisco et al (2016) investigated sinusoidal DCBs of amplitude A and 

wavelength λ with A/λ in the range 1/4 to 1/2;  they found that the peak load increased with 

A/λ and concluded that patterned adhesive joints can be substantially tougher than joints with 

no pattern.  Maloney and Fleck (2017) conducted tensile tests on butt joints of square-wave 

configuration, and observed that the measured tensile strength and energy absorption increase 

with amplitude A. 

Suzuki et al. (2013, 2015) have modelled the mode I response of a DCB specimen with a 

micro-patterned joint by placing cohesive zones along the profiled interface of the joint and 

also within the adhesive.  An elastic-brittle analysis sufficed, with no dissipation in the 

adhesive layer, as the epoxy adhesive was of low toughness.  The present study explores a 

different class of adhesive (elastomeric rather than untoughened epoxy), and on a different 

length scale of patterning (millimetre scale rather than micron scale). 

Crack advance within a joint is commonly modelled by a cohesive zone approach, with the 

traction versus displacement response of the cohesive zone sensitive to the thickness of the 

adhesive layer (Yang et al. 1999; Gustafson and Waas, 2009; Stigh et al., 2010).  Cohesive 

zone modelling (CZM) has become a popular tool for predicting the fracture response of 

adhesive joints (Li et al., 2005; Tvergaard and Hutchinson, 1996, 1994, 1992). The CZM 

approach can capture the linear-elastic fracture mechanics (LEFM) limit whereby the zone of 

inelasticity is much less than that of leading structural dimensions such as crack length or 

ligament size.  It can also capture large-scale bridging where LEFM fails, see for example 

Elices et al. (2002), Yang and Cox (2005) and Alfano et al. (2009). 
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Commonly, the traction versus separation (T-δ) response of the “cohesive zone” is defined by 

two parameters such as the cohesive strength and work of separation, or cohesive strength 

and critical separation (Blackman et al., 2003; Alfano, 2006; Campilho et al., 2013).  

Cohesive zones have been used to model crack initiation (Mohammed and Liechti, 2000), but 

they are more commonly used to model the growth of a crack (Elices et al., 2002).  We note 

that the CZM represents both the process zone ahead of the crack and the bridging zone in the 

wake of the crack, and the CZM length can vary from nanometres to millimetres (Shet and 

Chandra, 2002; Stigh et al., 2010; Zhu et al., 2009). 

There is scope for choosing the appropriate level of sophistication in a cohesive zone model, 

depending upon the research question to be addressed.  For example, the role of mode mix on 

the fracture strength and toughness can be analysed by suitable modification to the traction 

versus separation law across the cohesive zone, see for example Yang and Thouless (2001).  

The role of plastic yielding in the adherends has been addressed by Ferracin et al. (2003) for 

the wedge-peel test and by Georgiou et al. (2003) for the peel test, with the deformation and 

fracture response of the adhesive idealised by a cohesive zone.  This pragmatic approach 

requires a calibration of the bondline toughness as a function of the thickness of the adhesive 

layer.  In contrast, Pardoen et al. (2005) model explicitly plastic deformation within both the 

adherends and the adhesive, but idealise the fracture process zone by a cohesive zone law; in 

this manner, the role of constraint effects and thickness of adhesive layer can be modelled.  

However, the details of the crack tip failure mechanism are not interrogated explicitly by this 

approach;  to do so would require a detailed constitutive model for microvoid growth or 

crazing within the fracture process zone, along with a representative material length scale in 

order to predict the macroscopic toughness.  Nevertheless, the use of a cohesive zone 

embedded within an elasto-plastic adhesive layer and outer elasto-plastic adherends is a 

useful predictive tool, and has been validated for the peel test by Martiny et al. (2008), and 

for the tapered double cantilever beam by Cooper et al. (2012).  Recently, the importance of 

rate effects in the failure of rubber-toughened epoxies has been highlighted by Karac et al 

(2011) by making use of a crack velocity dependent cohesive zone law to predict the load 

versus displacement response of a tapered double cantilever beam. 

 

 Determination of the Cohesive Zone Law 

The central task of implementing a cohesive zone model is a determination of the traction 

versus separation (T-δ) law, or “cohesive law”, to define the response of cohesive elements 

(Park and Paulino, 2013; Stigh et al., 2010; Salomonsson and Andersson, 2008).  Most 
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methods assume a simple shape for the traction-separation law and attempt to match the 

results of a finite element simulation to experimental measurements by varying the 

parameters of the cohesive law such as the peak traction or energy dissipation.  When 

adequate agreement is achieved between simulation and experiment, it is assumed that the 

correct cohesive parameters have been deduced (Yang and Thouless, 2001).  

There exist two main methods for measuring a Mode I cohesive law directly from 

experimental results.  The first makes use of the measured J-integral for a crack in a double-

cantilever beam specimen, and a simultaneous measurement of the crack tip opening 

displacement (and crack tip opening angle).  The traction exerted by the cohesive layer is the 

derivative of the J-integral with respect to the crack tip opening displacement.  This method 

has been used by several researchers to derive empirically-based cohesive laws (Desai et al., 

2015; Sørensen, 2002; Stigh et al., 2010; Zhu et al., 2009) and generally provides accurate 

predictions of the response of a cracked specimen. 

The second method is more straightforward, but there are only limited studies to explore its 

validity.  The Mode I cohesive law is assumed to equal the T-δ response of a tensile specimen 

so-chosen to represent a thin ligament ahead of the crack.  Ivankovic et al. (2004) pursued 

this strategy to model the response of cracked three-point-bend polyethylene specimens with 

mixed success.  They extended their model by including rate-dependence in the cohesive law 

and thereby achieved satisfactory predictions.  They recognized the shortcomings of this 

approach and proposed the development of a physical material model which could describe 

the local fracture process by a T-δ response which depends on rate, constraint and 

temperature. 

 

 Scope of the Present Study 

In this study, the load versus displacement response of a double-cantilever beam (DCB) 

specimen with a square-wave interface geometry is explored as a function of square-wave 

amplitude.  The observed failure mechanisms of square-wave DCB specimens are compared 

to those observed for tensile butt joints with square-wave interfaces as presented in a previous 

study (Maloney and Fleck, 2017).  

A finite element model is used to predict the response of double-cantilever beams with either 

a planar interface or a square-wave interface.  The adhesive layer is represented by cohesive 

elements with a traction versus separation response as specified by the measured tensile 

response of a butt joint specimen with the same micro-architecture (planar or square-wave). 
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The accuracy of the finite element model is evaluated by comparing the predicted load versus 

displacement response to the measurements.  Additionally, the accuracy of a J-integral 

method for predicting the load versus displacement response of DCB joints with planar 

interfaces is confirmed in the appendix. 

 

2.  Materials and Methods 

 Experimental Methods 

The adhesive joints comprised a two-part, room-temperature and moisture-curing silyl-

modified polymer (SMP) adhesive1 sandwiched between aluminium alloy 6082-T651 

substrates.  The adhesive contains filler particles on a scale of 10 μm to control its viscosity 

in an un-cured state.  The double-cantilever beam (DCB) joint is characterised by arms of 

height H = 25.4 mm, beam lengths l and L of 25.4 mm and 228.6 mm, respectively, and a 

starter crack of length ao = 30 mm, see  

 

Figure 1(a).  The square-wave interface geometry was presented in a previous study 

(Maloney and Fleck, 2017).  It is characterised by five parameters as defined in  

 

Figure 1(b).  The amplitude A ranges from 0 mm (corresponding to a planar interface) to 20 

mm, while the magnitude of wavelength λ, adhesive thickness parameters t and s, and depth 

(into page) B are fixed at λ = 28 mm, t = s = 1.1 mm, and B = 12.8 mm. The pattern 

wavelength and layer thickness were chosen within the practical range for the manufacturing 

and test methods adopted.  Suitably-shaped substrates were water-jet cut to within a 

dimensional tolerance of 0.1 mm.  

 

2.1.1 Specimen Preparation 

Roughening of the substrates was accomplished by manual polishing using 60 grit emery 

paper; the surfaces were then cleaned and degreased by wiping with acetone.  The adhesive 

was applied in accordance with the manufacturer’s recommendations.  A manual applicator 

gun was used with a static-mixing nozzle.  A quantity of adhesive was initially discarded to 

ensure that both components were flowing freely and to remove any bubbles which may have 

                                                 
1 Sabatack Fast, produced by SABA Dinxperlo BV, Industriestraat 3, 7091 DC Dinxperlo, Netherlands. 
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accumulated in the component tubes.  The adhesive layer thickness t was adjusted by shims 

prior to infiltration of the gap by the adhesive.  All specimens were cured in ambient air for 

one week at room temperature, and G-clamps were used to prevent relative movement of the 

substrates.  A starter crack was generated in all specimens by making use of fresh razor 

blades:  the razor blade was broached to a depth of 5mm, for to give an initial crack length of 

30mm.  Additionally, the uniaxial response of the SMP adhesive was measured by casting a 

dogbone specimen from the adhesive, of gauge length 20 mm and square cross-section 

6.5 mm x 6.5 mm.   

 

2.1.2 Test Procedure 

Mechanical tests were conducted using a screw-driven test machine, as follows. 

(i)  Uniaxial tension tests on dogbone specimens of SMP adhesive were performed in 

accordance with ASTM D638-14 at machine displacement rates in the range 0.01 mm s-1 to 

1000 mm s-1 to characterise the viscoelastic nature of the adhesive.   

(ii)  At least three DCB specimens of each joint geometry were tested, and the scatter was 

expressed in terms of the standard deviation of each set of specimens.  The tensile load on 

each specimen was measured by the load cell of the test machine, while the displacement was 

measured by the test machine and by a laser extensometer2.  The machine-measured 

displacement was corrected for the compliance of the test machine and was used to 

corroborate the measurements of the laser extensometer, which were used to generate the 

results presented in the current study.  The tests on double-cantilever beam (DCB) joints were 

conducted at a displacement rate of 0.007 mm/s, and photographs3 were collected at a frame 

rate of 0.5 frames per second to monitor crack growth.  Additionally, tests on the DCB 

specimens with planar joints were interrupted and the specimens were placed in a 3D 

computed tomography (CT) machine4 in order to observe the formation of voids within the 

adhesive layer ahead of the crack tip.  The CT scan took 30 minutes, and there was little 

change in the opening profile of the specimen during the scan due to the presence of the 

wedge.  The main purpose of the CT tomography was to examine the process zone within the 

adhesive joint for the planar specimen.  It proved difficult to obtain high resolution images of 

the square wave joints, and to the study was limited to CT tomography of the planar joint. 

                                                 
2 Electronic Instrument Research Laser Extensometer, Model LE-05. 
3 PixeLINK PL-B776U Aptina MT9T001 Machine Vision Camera. 
4 Nikon X-TEK 3D CT Machine (Model XT 225ST). 
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(iii)  The tensile traction versus opening displacement of square-wave butt joints were also 

determined using a machine displacement rate of 8 x 10-3 mm·s-1 corresponding to a 

normalised displacement rate �̇�/𝑡  of approximately 7 x 10-3 s-1. At least three specimens of 

each joint geometry were tested. 

 

3.  Results and Discussion 

 Bulk Properties of Elastomeric Adhesive 

The uniaxial tensile stress versus strain response of the SMP adhesive is given in Figure 2 for 

three values of nominal strain rate (3 x 10-3 s-1, 3 x 10-1 s-1 and 30 s-1). Both the nominal and 

true stress versus strain responses are plotted. Note that the shape of the stress versus strain 

response is independent of strain rate but the strain to failure (and associated tensile strength) 

is mildly sensitive to strain rate. As the strain rate is increased from 3 x 10-3 s-1 to 30 s-1, the 

nominal failure strength, that is, the ultimate tensile strength UTS, increases from 2.5 MPa to 

3.6 MPa and the true (logarithmic) strain to failure increases from 0.95 to 1.42, while the 

Young’s modulus E is almost constant at 2.5 ± 0.2 MPa. 

 

 Planar Joints 

The load P versus displacement u response of a double-cantilever beam (DCB) with a planar 

adhesive layer (A = 0 mm) is shown in Figure 3(a).  No plastic deformation of the aluminium 

substrates was observed, and this was confirmed by load-unload tests.  This is consistent with 

the relative strengths of the two solids:  the aluminium alloy has a yield strength of 250MPa 

whereas the SMP adhesive has a UTS of 2 MPa.  The non-linear behaviour observed in the 

initial portion of the DCB load versus displacement response can be traced to the non-linear 

tensile response of dogbone specimens made from the bulk adhesive, recall Figure 2.   

Crack growth in the DCB specimens with a planar adhesive layer begins shortly after peak 

load, and crack advance leads to a decreasing load.  CT images of the mid-plane of the 

adhesive layer are shown in Figure 3(b) at the following snapshots in time, upon interruption 

of the testing: (i) initial state, (ii) prior to peak load and (iii) after a crack advance of 42 mm.  

Recall that the DCB specimens are of thickness B=12.8mm (in the z-direction), which can be 

used as a length scale in interpreting the fracture surfaces of Figure 3(b).  The leftmost end of 

the images in Figure 3(b) are aligned with the initial crack tip (at a pre-crack length of 
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30mm), while the rightmost end of the images are 100mm ahead of the initial crack tip.  

(Recall that the specimen ligament is of width 200mm ahead of the initial crack tip).   

In the initial state, only a few small voids are visible.  At the loading point (ii) of the P versus 

u curve, microvoids exist within the adhesive, but the voids are too small to be resolved by 

the CT machine.  (Large voids are visible as white circles, while microvoiding is dispersed 

throughout as grey scale.)   Since the effective density of the adhesive is reduced by the 

presence of the microvoids, the image becomes lighter, as shown in the light grey region 

ahead of the crack tip in (ii) of Figure 3(b).  The SMP adhesive can sustain a large amount of 

voiding prior to void coalescence, in contrast to an epoxy, for example. Thus, voids can exist 

far ahead of the crack tip.   

Beyond peak load, at point (iii), a new zone of microvoids (light in appearance) is present 

ahead of the current crack tip, along with a low volume fraction of larger voids. The lighter 

zone in (iii) is a developing damage zone that progressively fails to give rise to crack 

advance.  Note that the voided zone extends beyond the rightmost end of the image in (iii) of 

Figure 3(b).  At this stage of loading, a few larger voids have also nucleated and grown ahead 

of the grey-zone of microvoids.  A representative fracture surface is shown in Figure 3(c):  it 

reveals that the microvoiding occurs from filler particles within the adhesive.   

The combination of microvoids and occasional larger voids has been observed in the previous 

study of Maloney and Fleck (2017) in butt joint tests on this adhesive.  The similarity in the 

observed progression of damage for the DCB geometry and for the butt joint geometry 

supports the use of the measured traction versus opening response of the butt joint in 

calibrating the cohesive zone model for the DCB tests. 

 

 Square-wave Joints 

The load P versus displacement u responses of a planar DCB joint (A = 0 mm) and three 

square-wave DCB joints with amplitudes A = 2.5 mm, 10 mm and 20 mm are presented in 

Figure 4(a).  The adhesive layer thickness t is equal to 1.1 mm for all joints.  The peak load of 

the joint with amplitude A = 2.5 mm is 1610 N, and this is 13% less than that of the planar 

DCB joint (A = 0 mm).  Also, the small-amplitude square-wave joint dissipates 25% less 

energy than that of the planar joint.  However, upon increasing the square-wave amplitude A 

to above 2.5 mm, the peak load and dissipated energy increase monotonically with increasing 

A. 
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The tensile traction versus separation (T-δ) response of the “square-wave” adhesive butt joint 

has also been measured as a function of square-wave amplitude A, including the limit of the 

planar adhesive joint, with the adhesive layer thickness fixed at 1.1mm.  The traction is 

defined as the tensile load divided by the projected cross-sectional area of the joint normal to 

the loading direction;  the separation  δ is the tensile relative opening displacement across the 

adhesive joint, as measured by a laser extensometer.  The traction T versus separation δ 

responses of a planar butt joint and three square-wave butt joints with amplitudes A = 2.5 

mm, 10 mm and 20 mm are presented in Figure 4(b).  It is observed from repeat tests that the 

average peak traction increases monotonically from 2.2 MPa to 2.4 MPa for joints with 

square-wave amplitudes in the range 0 mm ≤ A ≤ 10 mm, and jumps to 2.9 MPa for the large-

amplitude joint.  The double-peak in the T- curve for A=20mm in Figure 4(b) is discussed in 

detail in Maloney and Fleck (2017).  The double peak is due to the fact that the square wave 

has 2 failure modes:  the tensile zones at the top and bottom of the square wave fail in the 

manner of a tensile butt joint, and give the first load peak.  The sides of the square wave are 

loaded in shear in the manner of a lap joint, and fail independently at a larger displacement 

across the joint. 

Recall that the ultimate tensile strength UTS of the dogbone specimens is 2.3MPa at a 

comparable strain rate to that of the square wave butt joints, compare Figures 2 and 4(b).  

Also the nominal failure strain of the dogbone specimens is on the order of 1.6.  The planar 

butt joint (A=0) has a peak strength of 2.3 MPa, and a failure strain δ /t =2.0, which are of 

similar magnitude to those of the tensile dogbone specimens.  However, the degree of elastic 

constraint is significantly higher in the butt joint specimens. 

The energy dissipated  is calculated as the area under the T-δ curve.  The value for  is 

based on the projected area of the square-wave, that is the side faces of the square-wave are 

neglected.   This is consistent with the definition of traction T per unit projected area of the 

joint. The energy dissipated  by double-cantilever beam joints and tensile butt joints is 

presented in Figure 4(c) as a function of square-wave amplitude A.  The cross-sectional area 

of the DCB arms (ahead of the initial crack tip) was used in the calculation of the energy 

dissipated per unit area.   

For both types of specimen, the average dissipated energy initially decreases from values for 

planar specimens (A = 0 mm) to those for square-waves of amplitude A = 2.5 mm.  This is 

followed by an increase in dissipated energy for square-wave joints of amplitude A = 10 mm 

and A = 20 mm to levels that exceed those for planar specimens.  There is good agreement 

between the dissipated energy for butt joints and DCB joints for all square-wave amplitudes.  
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For the amplitude range 2.5 ≤ A ≤ 20 mm, the increase in dissipated energy follows an 

approximately linear trend, similar to the findings of Zavattieri et al. (2007) and Cordisco et 

al. (2016) for the Mode I toughness of adhesively-bonded sinusoidal interfaces. 

The observed failure sequence of a DCB joint with square-wave amplitude A = 20 mm is 

presented in Figure 5. The sequence of debonding in the adhesive layer ahead of the crack tip 

is compared to the failure sequence of a tensile butt joint from Maloney and Fleck (2017).  

Consider an unstrained region of the interface ahead of the crack tip. As the adhesive layer 

undergoes tensile separation, debonding occurs at the internal corners of the square-wave 

interface, see image (i). As the load-line displacement increases, the voids at each corner 

expand (image (ii)) and the tensile regions eventually fail, see image (iii). Subsequently, 

cracks are initiated along each edge of the shear region and experience stable growth under 

increasing displacement (iv).  Finally, opposing shear surfaces fail (see image (v)) and 

separate from each other.  The point when the adhesive in each shear region fails is not 

obvious, as they continue to bear load in the form of friction between the failed surfaces.  The 

observed failure sequences for all DCB square-wave joints are similar to those observed for 

butt joints of the same interface geometries. 

We conclude that square-wave interfaces only provide mechanical benefits (i.e. higher peak 

load, greater energy dissipation), in the DCB joint and in the butt joint configuration, when 

the square-wave amplitude A is sufficiently large.  Specimens of small amplitude (A = 2.5 

mm) fail at a comparable peak load but dissipate slightly less energy than planar joints of the 

same adhesive layer thickness:  only stages (i) to (iii) in the failure sequence of Figure 5 are 

observed for the small-amplitude square-wave interface, as shear regions fail concurrently 

with tensile regions.  These specimens of small amplitude square-wave possess stress rasers 

at the corners thereby promoting void nucleation and growth.  However, it is somewhat 

surprising that these specimens are not tougher than the DCB specimens with planar joint in 

view of the fact that the shear zones of the square –wave act in the manner of a tough lap 

joint compares to the tensile butt-joint facets of the square wave.  For specimens of large 

square-wave amplitude (A = 20 mm), a substantial increase in dissipated energy over joints 

with planar interfaces (A = 0 mm) is attributed to the presence of friction between failed shear 

surfaces, i.e. a pull-out force or the presence of “mechanical interlocking,” as observed in 

tensile specimens of the same interface geometry in a previous study (Maloney and Fleck, 

2017). 
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4.  Numerical Methods 

Finite element simulations were performed with the implicit solver of ABAQUS (version 

6.12-2). The two-dimensional finite element model consisted of two rectangular elastic 

substrates joined by a thin cohesive layer (of negligible thickness tcz = 0.1 mm as the intent is 

to mimic a traction-separation law across the adhesive joint).  The finite element simulation 

demands a finite thickness of cohesive zone element for its implementation It is emphasised 

that both the square-wave DCB specimens and DCB specimens with a planar adhesive joint 

are modelled as planar specimens, but with a cohesive zone of traction-separation law that 

has been measured from tests on a butt joint of identical joint architecture.  The cohesive 

zone law for the square-wave joint is meant to capture the average traction-separation law 

associated with several failure events averaged over the wavelength of the square wave.  This 

is a reasonable approach provided the process zone length in the DCB specimens exceeds the 

wavelength of the square wave.  This is clearly the case, recall Figure 5.   

All double-cantilever beam joints were modelled with the same finite element mesh, and the 

traction T versus separation δ response of the cohesive elements was used to model the square 

wave topologies.  The aluminium alloy substrates of the DCB joint were treated as linear 

elastic and isotropic, with a Young’s modulus E = 70 GPa and a Poisson ratio ν = 0.33.  The 

substrates were meshed with 4-node plane-strain reduced-integration quadrilateral elements 

(CPE4R).   

Both the square-wave and planar adhesive layers were idealised by a planar cohesive zone (of 

thickness one element), and was meshed by 4-node cohesive elements (COH2D4).  The 

cohesive elements for the square wave and planar joints were defined by a normal traction 

versus separation response with three parameters: a normal stiffness K, a critical traction T0 

indicating the onset of damage, and a damage variable D(δ) which describes the evolution of 

damage as the cohesive element undergoes displacement δ.  

A representative cohesive law is presented in Figure 6.  A maximum nominal stress-based 

damage criterion is used such that damage is initiated when a critical traction T0 is reached. 

The normal traction exerted on the interface by each cohesive element is calculated as  

 𝑇 = {

                𝐾𝛿                  𝛿 ≤ 𝑇0/ 𝐾

  [1 − 𝐷(𝛿)]𝐾𝛿          𝛿 > 𝑇0/𝐾
  (1) 

where the initial stiffness K and critical traction T0 are measured values for each of the  

tensile butt joints of identical micro-architecture to that of the DCB specimens.  These values 
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are listed in Table 1.  The cohesive zone laws for the planar joint and square wave joint are 

taken directly from the load versus displacement response of the tensile butt joints.  

Consequently, the initial stiffness K is measured and is geometry dependent. 

The damage variable D is closely linked to the secant modulus:  D evolves from an initial 

value of zero to a final value of unity, indicating failure of a cohesive element, as the 

displacement δ increases such that the numerically-constructed curve matches the 

experimental response.  D is defined as follows:   

(i) damage does not initiate (D = 0) under compressive traction (T ˂ 0);  

(ii) damage also does not initiate (D = 0) for tensile traction less than or equal to the critical 

traction (T ≤ T0); and  

(iii) for tensile traction T ˃ T0, D(δ) evolves in accordance with Eqn. (1) in order to replicate 

the measured response of the tensile butt joint specimen.  

D(δ) was specified at no less than thirty values of δ for each cohesive law and introduced into 

the finite element simulation in tabular form. For intermediate values of δ, the finite element 

solver used linear interpolation to determine the value of the damage variable D from 

adjacent data points.  

 

5.  Predictions by the Finite Element Method 

The finite element method is used to predict the response of planar and square-wave DCB 

joints by a suitable choice of the traction T versus separation δ response of the cohesive 

elements.  The T-δ responses of cohesive elements are constructed from the measured 

response of tensile butt joints as presented in Figure 4(b).  

The predicted load P versus displacement u responses of the finite element model for a planar 

DCB joint (A = 0 mm) and for three square-wave DCB joints of amplitude A = 2.5 mm, 10 

mm and 20 mm are compared with the measured responses in Figure 7(a).  Satisfactory 

agreement is observed between model and experiment for the planar case and for the small-

amplitude (A = 2.5 mm) case.  The finite element model underpredicts the peak load of the 

medium-amplitude (A = 10 mm) square-wave joint, although the difference is on the order of 

the scatter for these specimens. The model overpredicts the peak load of the large amplitude 

(A = 20 mm) square-wave joint, and only approximately predicts the shape of the P-u curve 

for the two square-wave joints of A equal to 10 mm and 20 mm. 
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We note that the bending stiffness of a cantilever beam with square-wave interface geometry 

may be significantly less than that of a uniform rectangular beam as adopted implicitly within 

the finite element model.  Our modelling approach so far assumes that each substrate of the 

DCB joint is modelled as a planar substrate of height H= 25.4 mm.  This assumption is an 

approximation particularly for the large-amplitude square-wave DCB joint:  although the 

average thickness of each substrate equals 25.4 mm, the elastic bending stiffness of the beam 

is sensitive to the distribution of beam height as dictated by beam theory.  Note that, for the 

choice A = 20 mm, the height of the beam varies from 15.4 mm to 35.4mm.  Consequently, 

the effective beam stiffness in these specimens is substantially lower than that assumed in the 

finite element simulations and this discrepancy contributes to the mismatch between the 

results of the cohesive zone model and experimental curves.  

To address this, the accuracy of the finite element model was improved by assuming an 

effective beam height Heq in the arms of the DCB specimens such that the bending stiffness 

of the effective beam equals the average bending stiffness of a cantilever beam with square-

wave profile.  To achieve this, each arm of the DCB beam was idealised by a single 

wavelength of square-wave geometry and this arm was subjected to a uniform bending 

moment at each end in a finite element simulation.  The relative rotation of the two ends of 

the unit cell was determined, and upon dividing this rotation by the length of the unit cell, the 

average curvature along the length was determined, thereby giving the effective bending 

stiffness.  The equivalent beam height Heq is the height of uniform beam that possesses the 

same effective bending stiffness as that of the above simulation.  This method was used to 

obtain the equivalent height for substrates of uniform height corresponding to square wave 

joints of height A = 2.5, 10 and 20 mm.  Finite element simulations were then performed on 

DCB specimens of this equivalent height, and results are compared with the measured 

responses in Figure 7(a).  The agreement with the measurements is improved, compare 

Figures 7(a) and (b).   

The slightly higher residual deviation in load at the tail end of the tests in Figure 7(b) can be 

ascribed to slightly larger interlocking and friction in the DCB specimens as a result of slight 

tilting compared to the butt joint tests (as used to calibrate the cohesive zone model), 

particularly at large amplitude A.  It is appreciated that the butt joint will not deliver an 

accurate traction versus separation law for use in finite element predictions of the DCB 

response when the ratio of amplitude A to adhesive layer thickness s is high, by the following 

argument.  Tilting of the mating arms of the DCB specimen will lead to inter-locking at high 

A/s and thereby to increased dissipation compared to the butt joint specimens.  Consequently, 
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the load versus displacement response of the DCB specimens will exceed the finite element 

prediction at high A/s.   

 

6.  Concluding Remarks 

Crack growth in double-cantilever beam (DCB) joints with planar and non-planar interface 

geometries has been measured and predicted for aluminium alloy 6082-T651 substrates and a 

silyl-modified polymer (SMP) adhesive layer.  Load versus displacement responses were 

measured and the observed failure mechanisms have been determined.  The planar DCB 

joints fail by the growth of voids ahead of the crack tip.  Square-wave interface geometries of 

amplitude A = 2.5, 10 and 20 mm failed by void nucleation at the internal corners of the 

square-wave interface, followed by void growth and coalescence in the portions of the joint 

that undergo predominantly tensile loading.  Failure of the square-wave joint also entails the 

growth of cracks from the corners of the joint along the regions of predominantly shear 

loading.  As the amplitude A of the joint increases, the proportion of load carried by the shear 

regions of the joint increases and the joint switches in character from that of a butt joint to 

that of a lap joint.  The magnitude of energy absorbed in the square-wave joint of the DCB 

specimens increases with increasing A, with the caveat that the square-wave joint of small 

amplitude A = 2.5 mm is slightly less tough than that of the planar joint; this is attributed to 

the presence of the sharp corners in the square-wave joint which leads to early void 

nucleation. 

For all interface geometries (both planar and square-wave), the observed failure sequence of 

DCB joints is similar to the failure sequence of tensile butt joints as presented in a previous 

study (Maloney and Fleck, 2017). Furthermore, the energy dissipated by DCB joints, per unit 

(projected) area, is in close agreement to that in tensile butt joints for all interface geometries.  

A cohesive zone model is able to predict the load versus displacement responses of double-

cantilever beam joints with planar and square-wave interface geometries.  In each case, the 

cohesive zone mimics the tensile response of the adhesive layer, and the cohesive elements 

are calibrated by the observed response of a butt joint specimen of identical topology (i.e. 

square-wave, with same value of amplitude A).  Satisfactory results are achieved for all joints 

when the stiffness of the modelled beams is adjusted to match the stiffness of the profiled 

beams. 

The approach adopted herein addresses the following question: can the tensile traction versus 

separation response of a tensile butt joint of square-wave architecture be used to predict the 
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progressive cracking response of a DCB specimen of identical joint architecture?  It is not 

immediately obvious that this will be the case.  The critical ratio to consider is the length of 

the process zone in the DCB specimen compared to the square-wave wavelength.  When this 

ratio is large (as it is in the present study), then it is expected that the current approach will be 

satisfactory.  However, when this ratio of length scales is not large, then it is anticipated that 

the failure sequence in the DCB specimen may involve void growth only at the crack tip 

within the adhesive layer, rather than failure at a number of sites ahead of the main crack tip;  

consequently, the failure mode for the DCB specimen may differ from than in the butt joint 

specimen.  

In contrast, a more sophisticated analysis could assume the existing of competing cohesive 

zones along the adhesive/adherend interfaces or within the adhesive of the square-wave 

geometry.  Additionally, the adhesive could be modelled as an elastic (or visco elastic) solid.  

This alternative approach is in the same spirit as that of Pardoen et al. (2005) and of Suzuki et 

al. (2013, 2015), and could explore explicitly the effect of adhesive layer thickness, and 

square wave topology, upon macroscopic toughness.  However, this alternative approach 

would require a number of additional assumptions, and material calibrations, on the 

constitutive response of the adhesive and on the mixed mode cohesive zone law for both 

interfacial and adhesive failure.  Such an analysis is beyond the scope of the present study.  

 

7.  Appendix A: Use of the J-Integral to determine the cohesive 

zone law 

As discussed in the Introduction, the traction versus separation law can be derived from the 

relationship between an elastic calculation of the energy release rate J and the crack tip 

opening displacement δ. Due to the large deformation before failure of the elastomeric 

adhesive, it is necessary to include the contribution of rotation of the substrates near the crack 

tip as a second term in the expression of the energy release rate (Högberg et al., 2007):  

 𝐽 =
12

𝐸𝐻3
(

𝑃𝑎

𝐵
)

2

+
𝑃

𝐵
𝜙 (A.1) 

 where 𝜙 is the opening angle formed by the arms of the DCB specimen at the crack tip.  

The opening displacement δ and angle φ are each measured from sequential photos of DCB 

specimens at the location ao of the initial crack tip, see Figure A.1(a).  The J-integral is 
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plotted as a function of δ in Figure A.1(b);  it is seen that J increases monotonically to a 

steady-state value Jss.  

Very close to the crack tip, the J-integral is defined as  

 𝐽 = ∫ 𝑇(𝛿) 𝑑𝛿
𝛿𝑐

0

 (A.2) 

where δc is equal to the local displacement at which Jss is reached. Due to the path-

independence of J, the two preceding expressions are equal for a crack in an elastic solid. The 

traction acting across the interface follows directly from differentiation: 

 𝑇(𝛿) =
𝑑𝐽

𝑑𝛿
 (A.3) 

This result implies a strong dependence of T(δ) on the form of the equation used to fit the J(δ) 

data. A detailed study is offered by Zhu and colleagues (Zhu et al., 2009), who obtained good 

results from a cubic polynomial fit. In the present work, a cubic polynomial equation is also 

adopted for J(δ).  

Traction versus separation curves are calculated and compared to experimental data for 

tensile specimens in Figure A.1(c). The peak traction of the J-derived cohesive law is 

somewhat below the experimentally-measured value, and such a discrepancy is to be 

expected given the fact that (A.3) entails differentiation of an observed response involving 

both crack opening displacement and crack opening angle, recall (A.1). 

The J-derived T-δ curve is characterised by a non-zero traction at zero displacement, 

implying an unbounded initial cohesive element stiffness. An unbounded element stiffness is 

impossible to implement in the finite element model. The highest possible stiffness is instead 

desirable, so that the energy under the traction versus separation curve remains relatively 

unchanged. A sensitivity study has been conducted to identify the highest stiffness which the 

model can handle without encountering numerical instabilities. Based on this sensitivity 

analysis, an element stiffness of 3 x 1010 Pa/m has been chosen. 

The load versus displacement response of the DCB specimen is predicted by the finite 

element model using the J-derived cohesive zone law is presented in Figure A.1(d). The peak 

load of the cohesive zone model falls below the experimental value. Nevertheless, the 

cohesive zone model provides a reasonable fit. This method has been used by several 

researchers to obtain cohesive laws (Desai et al., 2015; Sørensen, 2002; Stigh et al., 2010; 

Zhu et al., 2009).  
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10.  Tables 

 

Table 1: Parameters of cohesive laws for finite element simulations of DCB joints. 

A  (mm) 0 2.5 10 20 

K  (GPa/m) 20 9 9 12 

T0  (MPa) 1.0 1.0 1.0 1.2 
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11.  Figure Captions 

 

Figure 1: (a) Geometry of experimental double-cantilever beam (DCB) adhesive joint 

specimens, with square-wave interfaces. (b) Parameters of the square-wave interface. 

Figure 2:  Uniaxial tension response of silyl-modified polymer (SMP) adhesive at three strain 

rates, from dogbone specimens. 

Figure 3: (a) Load versus displacement response of a planar DCB joint (A = 0 mm; t = 1.1 

mm). At three instances (as indicated), a shim was inserted and the joint was removed from 

the load frame and scanned using computed tomography (CT). (b) Three CT images of the x-

z mid-plane in the adhesive layer, equidistant from each substrate.  (c)  Fracture surface to 

show voiding from filler particles within the adhesive. 

Figure 4: The tensile responses of (a) DCB joints and (b) butt joints with square-wave 

amplitude A = 0 (corresponding to planar interfaces), 2.5, 10, and 20 mm. (c) Energy 

dissipation of butt joints and double-cantilever beam joints as a function of square-wave 

amplitude A. Adhesive layer thickness t = 1.1 mm. 

Figure 5: Images of failure sequences for a square-wave DCB joint and a tensile butt joint, 

A=20 mm, t= 1.1 mm. The images are compared at similar values of local separation, and 

stages of damage (i) to (v) are indicated for the butt joint. 

Figure 6: Experimental response of a tensile butt joint. The solid line is the experimental 

response and the dotted lines are constant values of damage variable D. Critical traction T0, 

corresponding to the onset of damage, and peak traction Tmax are noted. 

Figure 7: (a) The response of the double-cantilever beam finite element model (dotted lines) 

overlaid on experimental results (solid lines) for square-wave joints of four square-wave 

amplitudes 0 ≤ A ≤ 20 mm. Adhesive layer thickness t = 1.1 mm, beam height H = 25.4 mm.  

(b) The responses of the finite element model with adjusted beam height Heq are compared to 

experimental results. 

 Figure A.1: (a) Crack tip opening displacement δ and opening angle φ measured from photos 

at the location of the initial crack tip (ao = 30 mm) for a planar DCB joint with adhesive layer 

thickness t = 1.1 ± 0.1 mm.  (b) Results of an elastic calculation for the energy release rate J 

as a function of crack tip opening displacement δ.  The hollow data points indicate that crack 

extension has occurred. (c)  Comparison between traction versus separation curves as 

calculated from J(δ), and as measured directly from the tensile response of a butt joint.  (d) 

Load versus displacement response of the planar DCB joint by measurement and by finite 

element model.  



23 

12.  Figures 

 

 

 

 

Figure 1: (a) Geometry of experimental double-cantilever beam (DCB) adhesive joint 

specimens, with square-wave interfaces. (b) Parameters of the square-wave interface. 
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Figure 2:  Uniaxial tension response of silyl-modified polymer (SMP) adhesive at three strain 

rates, from dogbone specimens. 
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Figure 3: (a) Load versus displacement response of a planar DCB joint (A = 0 mm; t = 1.1 

mm). At three instances (as indicated), a shim was inserted and the joint was removed from 

the load frame and scanned using computed tomography (CT). (b) Three CT images of the x-

z mid-plane in the adhesive layer, equidistant from each substrate.  (c)  Fracture surface to 

show voiding from filler particles within the adhesive. 
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Figure 4: The tensile responses of (a) DCB joints and (b) butt joints with square-wave 

amplitude A = 0 (corresponding to planar interfaces), 2.5, 10, and 20 mm. (c) Energy 

dissipation of butt joints and double-cantilever beam joints as a function of square-wave 

amplitude A. Adhesive layer thickness t = 1.1 mm. 
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Figure 5: Images of failure sequences for a square-wave DCB joint and a tensile butt joint, 

A=20 mm, t= 1.1 mm. The images are compared at similar values of local separation, and 

stages of damage (i) to (v) are indicated for the butt joint.  

 

 

 

Figure 6: Experimental response of a tensile butt joint. The solid line is the experimental 

response and the dotted lines are constant values of damage variable D. Critical traction T0, 

corresponding to the onset of damage, and peak traction Tmax are noted. 
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Figure 7: (a) The response of the double-cantilever beam finite element model (dotted lines) 

overlaid on experimental results (solid lines) for square-wave joints of four square-wave 

amplitudes 0 ≤ A ≤ 20 mm. Adhesive layer thickness t = 1.1 mm, beam height H = 25.4 mm.  

(b) The responses of the finite element model with adjusted beam height Heq are compared to 

experimental results. 
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Figure A.1: (a) Crack tip opening displacement δ and opening angle φ measured from photos 

at the location of the initial crack tip (ao = 30 mm) for a planar DCB joint with adhesive layer 

thickness t = 1.1 ± 0.1 mm.  (b) Results of an elastic calculation for the energy release rate J 

as a function of crack tip opening displacement δ.  The hollow data points indicate that crack 

extension has occurred. (c)  Comparison between traction versus separation curves as 

calculated from J(δ), and as measured directly from the tensile response of a butt joint.  (d) 

Load versus displacement response of the planar DCB joint by measurement and by finite 

element model.  


