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Abstract

The degree to which the toughness of a lattice material can be enhanced by the suitable

placement of multiple phases is explored. To achieve this, the resistance to mode I and mode

II crack growth in a two-dimensional (2D), elastoplastic, triangulated lattice is investigated

using finite element (FE) simulations. The cell walls are treated as truss elements, with each

strut endowed with an axial tension versus elongation response, rather than treated as con-

tinuum. The axial response of each bar is based upon the uniaxial tensile response of an

elastoplastic solid with power-law hardening. When the tensile force in the strut attains a

critical value, a linear softening law is adopted for the force versus elongation response of

the strut to simulate its failure. FE simulations of crack growth are performed under small-

scale yielding conditions, and the sensitivity of the crack growth resistance curve (R−curve)

to the cell wall strain hardening exponent and cell wall ductility is determined. Three con-

cepts for enhancing the R−curve of a triangulated lattice are explored: (i) a brittle lattice

reinforced by long ductile fibres transverse to the cracking plane, (ii) a bilattice such that a

small scale brittle lattice is reinforced by a large scale ductile lattice, and (iii) a 2D version of

an interpenetrating lattice wherein a large scale ductile lattice is bonded at its joints to an

underlying small-scale brittle lattice.
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1. Introduction

Lattice materials made from metals, polymers, and fibre-reinforced composites are finding

increasing use in light-weight applications that demand high stiffness, strength, resistance

to fracture, and energy absorption [1, 2, 3]. Of the many choices in topology of lattice mate-

rial, the stretching-dominated arrangement (such as the triangular or Kagome configuration

in 2D or the octet-truss in 3D) offers the best combination of strength, stiffness, and dam-

age tolerance at low weight [4, 5]. The current literature on the mechanical behaviour of

lattice materials details the effective medium properties of a wide range of lattice topolo-

gies. Typically, the mechanical properties of interest are the elastic stiffness and the tensile

strength. Scaling laws have been derived for these effective properties in terms of the mate-

rial properties of the cell wall solid by a combination of analytical and numerical techniques

[6, 7, 8]. For example, the recent study by Tankasala et al. [9] predicted the tensile response

of polymeric lattices at finite strain. It is widely recognized that as-manufactured lattices

suffer from imperfections such as missing/broken cell walls, wavy struts and variable strut

thickness. These imperfections degrade the performance of the lattice, and the imperfection

sensitivity of macroscopic stiffness and strength has been documented in both the experi-

mental and numerical literature [10, 11].

In addition to stiffness and strength, the fracture response of lattice materials is of significant

practical importance. Theoretical studies have explored the sensitivity of crack initiation

fracture toughness KC to pure mode I loading, pure mode II loading, and to combined, mixed-

mode loading [7, 12, 13]. These predictions of KC have been verified experimentally, see for

example Alonso and Fleck [14] for brittle-ceramic diamond lattice, O’Masta et al. [15] for

the titanium alloy octet-truss lattice, and Gu et al. [16] for the aluminium alloy triangular

lattice. It remains to predict the crack growth resistance curve, the so-called R−curve, for

a macroscopic crack in a ductile lattice or in a ductile bilattice. This is the objective of the

present paper.

Our focus is on crack growth in a two-dimensional (2D) elastoplastic triangular lattice, see

Fig. 1. We adopt a boundary layer approach whereby the displacement field associated with

the mode I stress intensity factor KI (or with the mode II stress intensity factor KII) is ap-

plied to the outer boundary of the finite element mesh. We build on the previous studies of

Fleck and co-workers for the prediction of crack initiation in lattice materials using a similar
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boundary layer approach [7, 14, 17]. Crack advance by the sequential failure of struts ahead

of the advancing crack-tip is also considered. A brief review of the fracture toughness of lat-

tice materials, and crack propagation in bulk solids is first presented to motivate the present

study.

A number of numerical approaches are available for modelling the fracture response of a

lattice. For lattice topologies with high nodal connectivity, such as a fully triangulated lat-

tice with 6 bars joining at a node, much insight is gained by idealising its structural response

by that of a pin-jointed truss wherein each strut is under uniform stress and uniform strain

states. The next level of sophistication is to idealise the lattice by rigid-jointed bars, with

each bar comprising an array of Euler or Timoshenko beam elements. In general, the stress

(and strain) state varies across the thickness and length of the strut, and consequently, there

is choice in the criterion for crack advance. Two extreme choices have been explored in the

literature for beam elements. A strut in the lattice fails when (i) the maximum local (point-

wise) tensile stress (or strain) anywhere in the strut attains the solid tensile strength (or

failure strain), or (ii) the mean tensile strain at any cross-section of the strut, upon averag-

ing the axial strain over the strut thickness, attains the solid failure strain. The point-wise

stress criterion is an appropriate choice for lattices made from ceramics and brittle metal-

lic alloys which develop cracks when a maximum tensile strain is achieved [18, 19, 20]. In

contrast, the average strain criterion is suitable for ductile solids which fail by necking [21].

More refined calculations of lattice behaviour may be performed in which each strut of the

lattice is represented by many continuum elements. Such an approach enables assessment

of the local strain distribution arising from the precise geometry of the struts and the joints

between the neighbouring struts, albeit at a huge computational cost. Predictions of the

fracture toughness of lattices as obtained from the idealized beam models are now reviewed.

Consider, for example, a triangular lattice comprising cell walls of thickness t and length

`, made from an elastic-brittle solid of fracture strength σfs. The relative density ρ of the

triangular lattice scales with t and strut length ` as1

ρ = 2
√

3 t/` (1)

1 Note that the scaling law (1) over-estimates the relative density owing to the double-counting of the ma-

terial at the joints. It is therefore strictly valid for low values of t/` such as t/` < 0.1. For large values of t/`,

the relative density is lower by a factor of
(

1−
√

3t/2`
)

, see [6].
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In their numerical prediction of the fracture toughness of an elastic-brittle lattice, Romijn

and Fleck [7] and Fleck and Qiu [12] idealized each cell wall of the lattice by several Euler

beam elements. A point-wise stress criterion was assumed for the failure of a critical strut

at the macroscopic crack-tip. The mode I fracture toughness KIC of the lattice is defined as

the remote mode I stress intensity factor for which the local tensile stress in a critical cell

wall at the crack-tip attains the value σfs. The magnitude of KIC scales with σfs, and for the

triangular lattice, KIC is given by

KIC = 0.5 ρσfs
√
` (2)

as first reported by Romijn and Fleck [7].

In contrast, when the cell wall solid has an elastoplastic response, the macroscopic mode

I fracture toughness is sensitive to the mode of cell wall failure, as discussed by Tankasala

et al. [17]. They idealized each strut of the lattice by several Timoshenko beam elements, and

assumed that the true stress σ versus true strain ε response of the solid material in uniaxial

tension is of Ramberg-Osgood form,
ε

ε0
=

σ

σ0
+

(
σ

σ0

)n
(3)

in terms of a yield stress σ0, yield strain ε0 and hardening parameter n. The first term on the

right hand side of Eq. (3) is the elastic strain (normalized by ε0) while the second term is the

plastic strain (again normalized by ε0). The Young’s modulus of the solid ES equals σ0/ε0.

Tankasala et al. [17] made predictions of KIC for a range of lattice topologies by assuming that

failure occurs in a critical strut at the crack-tip of the lattice when (i) the maximum point-

wise tensile strain attains the cell wall failure strain, εf, or (ii) the average tensile strain across

the strut attains the value εf. The sensitivity of KIC to these alternative failure criteria was

found to be mild for stretching-dominated lattices such as the triangular lattice. KIC scales

with ρ and ` in the same manner as that stated in (2), but now also depends upon the degree

of material strain hardening n and upon εf. They found that the critical fracture toughness

KIC for the elastoplastic triangular lattice scales as

KIC ≈ 0.5 ρ

(
εf

ε0

)n+1
2n

σ0
√
` (4)

Further, the extent rP of the plastic zone ahead of the crack-tip, at a given value of stress

intensity factor KI, scales with the lattice relative density ρ and cell wall yield strength σ0 as

rP = α

(
KI

σ0ρ

)2

(5)
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The constant α depends upon n such that α equals 1.4, 1.7, and 2.6 for n equal to 3, 10, and ∞,

respectively. As the crack-tip is approached, within this plastic zone, the macroscopic stress

and macroscopic strain approach the J-field for a dilatant plastic solid. This asymptotic field

is a variant of the well-known HRR field for an isotropic von Mises solid with finite strain

hardening.

Little is known about crack growth in a lattice material made from an elastoplastic solid,

and so, by way of background, we briefly review crack advance in the fully dense, parent

solid. Under conditions of small-scale yielding, crack growth in a fully dense ductile solid is

generally of the form

K = KR(∆a) (6)

where the KR(∆a) curve is treated as a material characteristic, termed the R−curve. It is

broadly accepted that, for ductile fracture, KR(∆a) rises steeply above the initiation value

KIC due to the effects of crack-tip plasticity and non-proportional loading in the wake of the

advancing crack-tip. Many of these features of ductile crack growth have been captured by

the cohesive zone model of Tvergaard and Hutchinson [22]. Their analysis suggests that the

R−curve is sensitive to the ratio of peak cohesive strength to the yield strength of the solid.

A limited literature exists on crack growth in a lattice material. In an early numerical study

on the crack growth resistance of metallic foams, Chen et al. [23] idealised the foam as a

compressible, elastoplastic, power-law hardening solid. They determined the crack growth

resistance of a semi-infinite crack in the foam by placing a cohesive zone at the crack-tip

in similar manner to that of Tvergaard and Hutchinson [22], and they calibrated the crack-

bridging law from independent experimental measurements on these foams. The predic-

tions of Chen et al. [23] for the crack growth resistance curves reveal a pronounced R−curve:

the advancing crack experiences a rapidly increasing resistance to its growth, with the extent

of R−curve sensitive to the compressibility of the metal foam. They found that the asymp-

totic steady-state mode I fracture toughness increases with increasing compressibility of the

foam. In a parallel study, Schmidt and Fleck [24] simulated crack growth in a 2D hexagonal

lattice comprising cell walls made from a bi-linear elastoplastic solid. Crack growth in their

FE model was simulated by deleting beam elements that had attained the cell wall strength.

Failure of these elements was achieved by assuming a local softening response: nodal loads

were gradually reduced to zero in accordance with a specified work of fracture. The result-
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ing K versus ∆a resistance curves were sensitive to the choice of hardening modulus and to

the fracture strength of the parent solid, and an appreciable elevation in the R−curve was

noted. In a recent experimental study, O’Masta et al. [15] measured the fracture response of

an octet truss lattice made from a titanium alloy and also observed a rising R−curve during

crack propagation, akin to that of a bulk solid.

The present study considers crack propagation in a elastoplastic triangular lattice made from

a power-law hardening solid of assumed failure strain2. The choice of this topology is moti-

vated by the fact that the triangular lattice has a high fracture toughness KIC due to its high

nodal connectivity and is thus a promising 2D lattice. Its fracture response also gives insight

into the response of 3D lattices of high nodal connectivity, such as the octet truss.

The finite element models of triangular lattices of the present study contain up to 107 struts

in order to model a remote K-field and an inner J−field for crack extensions of up to 50`. It

was prohibitive, computationally, to model each strut by a large number of continuum ele-

ments. Note that the triangular lattice is stretching-dominated under all macroscopic stress

states due to its high nodal connectivity. The structural response of a pin-jointed (truss)

of high nodal connectivity, such as the triangular lattice, is in close agreement with that

of the rigid-jointed lattice (frame), see for example [25, 26]. The aforementioned features

of triangular lattice permit its idealization by truss elements, thereby enabling the use of a

single finite element per strut. An average failure strain criterion is used for the struts of

the triangular lattice, following Tankasala et al. [17]: they used beam elements to show that

the failure criterion of average strain across the section of the beam is able to mimic a lo-

cal tensile strain criterion. More refined, periodic cell calculations on a smaller lattice with

continuum elements could be performed to relate the axial strain in a truss element (of the

idealized lattice) to the detailed local strain distribution within a strut. In so doing, the lo-

cal strain distribution will be sensitive to the local geometry of joints between neighbouring

struts [27]. Such a detailed approach is beyond the scope of the present study.

2The necking strain εn of a bar of perfect geometry follows from Considére criterion as εn = 1/n. The

presence of local geometric imperfections in the bar leads to a softening response at values of strain less than

1/n. In the current study, we explore the sensitivity of the lattice response to failure strain below the necking

value.
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1.1. Scope of study

Mode I crack propagation in a elastoplastic triangular lattice is studied under small scale

yielding conditions. The crack growth resistance curve (R-curve) of the lattice is predicted

from finite element (FE) simulations. An asymptotic K−field approach is adopted, and crack

growth within the lattice occurs by the progressive failure of struts under a monotonically

increasing remote KI. Denote KR as the remote value of KI corresponding to a crack exten-

sion ∆a. Then, the R-curve of the lattice is the KR(∆a) response.

Our study is organized as follows. First, the R-curve for an elastoplastic triangular lattice

under mode I loading is predicted via an asymptotic K−field boundary layer approach. The

sensitivity of both the R−curve and the crack path to the choice of cell wall material prop-

erties such as the ductility and extent of strain hardening, along with the relative density of

the lattice, is explored by FE simulations. A regression analysis is performed to provide an

expression for the R−curves in terms of the solid material properties.

Next, three design concepts for enhancing the crack growth resistance of a triangular lat-

tice are explored: (i) a fibre-reinforced lattice, comprising a brittle lattice phase and reinforced

by long ductile fibres transverse to the plane of the pre-crack, (ii) a bilattice, generated by

reinforcing a small brittle lattice with a large ductile lattice, and (iii) an interpenetrating lat-

tice wherein a large- scale ductile lattice is attached at its joints to an underlying small-scale

brittle lattice. In each case, the predicted R-curves are compared with those of single phase

lattices to highlight the role of ductile reinforcements on the R−curve. Finally, a compara-

tive study is performed to analyse the crack growth resistance of single-phase elastoplastic

lattices under remote mode II loading.

2. Numerical approach

The crack growth resistance of an elastoplastic triangular lattice is determined via a bound-

ary layer analysis within the finite element (FE) framework. Quasi-static FE calculations are

performed with ABAQUS/Explicit v6.14 to simulate crack growth in an elastoplastic lattice.

The FE mesh of the pin-jointed triangular lattice comprises struts of length ` in a square

domain of edge length 1600`. The pre-crack spans 800`, and the tip of the crack is located at

the centre of the square mesh, as shown in Fig. 1. It is assumed that the pre-crack splits the
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joints on the cracking plane, behind the crack tip. Each strut of the lattice is modelled by a

single two-noded truss element (type T2D2) which can only carry an axial load. The outer

boundary of the FE mesh is subjected to the asymptotic displacement field associated with

the mode I stress intensity factor KI. Crack advance is by failure of struts (and not joints)

using a Johnson-Cook type damage model for each strut. The size of the FE mesh is sufficient

for small scale yielding conditions to prevail for an extension ∆a ≤ 50`. The FE simulations

assumed finite deformations and finite strains. Details of the boundary layer approach and

the assumed material model are presented below.

2.1. Boundary layer method

Consider a semi-infinite crack in a triangular lattice with cell walls of power-law hardening

characteristic, and loaded by a remote mode I K-field. The crack is along the negative x1

axis with its tip at the origin (x1, x2) = (0, 0), as shown in Fig. 1. Write the displacement

field in Cartesian form as ui(xj) , and introduce the polar coordinate system (r, θ) centred

on the crack-tip, with the crack faces lying along θ = ±π. Here, (r, θ) are related to (x1, x2)

in the usual manner as r = (x2
1 + x2

2)
1/2 and θ = tan−1(x2/x1). The displacement field in

an elastic annulus surrounding the crack-tip plastic zone scales with KI according to

u0
i =

KI
√

r
G

fi(θ) (7)

where G is the shear modulus of the triangular lattice written in terms of Young’s modulus E

and Poisson’s ratio ν as G = E/2(1 + ν) where E = ρES/3 and ν = 1/3, as stated by Gibson

and Ashby [6]. The non-dimensional function fi(θ) is taken from Sih et al. [28]. The linear

scaling of E with ρ is limited to the regime where the struts can be idealized as truss elements

such that t/` ≤ 0.2. Note that t/` = 0.1 corresponds to ρ = 0.34 in a 2D triangular lattice

and it corresponds to ρ = 6
√

2(t/`)2 = 0.08 for a 3D octet truss lattice. Consequently, the

use of truss elements is pertinent to much higher values of ρ in a 2D lattice than in a 3D

lattice.

As the value of KI is increased, a plastic zone develops at the crack-tip and envelopes an

increasing number of cells, recall (5). A critical strut within the plastic zone and directly

ahead of the crack-tip attains the cell wall tensile failure strain εf at KI = KIC, as given by

(4). Progressive failure of the strut then follows, in accordance with a specified damage law

(described below in Section 2.2). A sequence of struts fail under an increasing value of KI,

thereby leading to a rising R-curve.
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2.2. Material model

Each strut of the lattice is specified with an axial force versus elongation response. The

axial response of each strut is based upon the uniaxial tensile response of an elastoplastic,

von Mises solid with power-law hardening. When the tensile force in the strut attains a

critical value, a linear softening law is assumed between the force and elongation of the

strut, in accordance with a prescribed work of fracture. Since, a priori, the stress and strain

are enforced to be uniform within the strut, softening law for the strut leads to a linear

softening response of the strut material. It is recognized that a softening law at the material

level would lead to localization at some location within the strut, but this is not at issue here

since the stress and strain states are assumed uniform, and merely express the strut force

versus elongation response as re-scaled values. Details of this implementation are as follows:

(i) The initial response of the cell wall material is characterized by the solid Young’s mod-

ulus ES and Poisson’s ratio νS.

(ii) The post-yield response of the solid is idealized by a power-law relation between the

true stress σ and the true plastic strain εP of the form

σ

σ0S
= 1 +

(
εP

ε0S

)N

(8)

in terms of the material flow strength σ0S and a representative material strain ε0S. The

index N is the Ludwik/Holloman strain hardening exponent. We emphasize that the

two relations (3) and (8) can be brought into alignment at a sufficiently large value of

plastic strain upon identifying σ0 = σ0S, ε0 = ε0S and N = 1/n.

(iii) Damage initiates within the strut when the average tensile plastic strain in the strut,

εP, attains a critical value εf, or equivalently, a strength σf as indicated in Fig. 2(a), as

suggested by Johnson and Cook [29].

(iv) Damage evolves within the strut as follows. The axial stress σ in the strut drops linearly

from σf to zero over a plastic strain increment of ∆εf, see Fig. 2(a). Write Γ0 as the

work of fracture, per unit cross-sectional area of strut, in the softening regime. Then,

Γ0 = σf∆εf`/2 in terms of the strut length `. The total work of fracture per unit cross-

sectional area of the strut Γf follows as

Γf = `
∫ εf

0
σ dεP + Γ0 (9)
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(v) Some struts in the wake of the advancing crack-tip unload but remain intact. The un-

loading modulus Eu of these struts depends upon the value of instantaneous plastic

strain εP as follows: Eu = ES for εP ≤ εf and Eu = (1− D)ES for εf ≤ εP ≤ εf + ∆εf

where the damage index D is defined by D = (εP − εf)/∆εf. Note that D increases

from zero (no damage) to unity (failure).

The tensile stress versus strain response of the cell wall based on the above description is

shown in Fig. 2(b) for εf = 0.1, ε0S = 0.001 and for selected values of N. In order to visu-

alise the linear softening regime in the figure, we show the softening curves for the choice

Γ = Γ0ES/σ2
0S` = 50. It is emphasized that the response of the lattice during crack growth

is almost insensitive to the value of Γ0. In the numerical study, we choose Γ0 to be suffi-

ciently small that the elastic energy released by the strut in its softening phase is negligible.

The softening phase leads to mild local oscillation in the displacement field near the crack

tip when Γ0 is below a critical value Γc. This value of Γc is dependent upon the unloading

modulus σf/∆εf of the failing strut in relation to the modulus of the neighbouring intact,

but plastically deforming, bars. The choice Γ0 = Γc would give rise to a quasi-static solution

with no generation of kinetic energy during the failure of the strut. Checks have been made

to determine the value of Γc for selected crack growth simulations.

The following numerical device was used in order to estimate Γc. In brief, a subsidiary im-

plicit finite element calculation was performed with the remote K set to a constant value

Kf during strut failure. Here, Kf is the mode I stress intensity factor corresponding to the

onset of softening i.e. the attainment of σf in the first critical strut ahead of the crack tip.

The softening response of this strut during failure was now modified by the introduction of

a monotonically increasing thermal strain εT within this strut such that

σ = σf + ES

(
εP − εf − εT

)
This replaces the softening branch of Fig. 2(a). The thermal strain εT is incremented until the

axial stress in the strut drops to zero in the finite element calculation. The corresponding

value of axial strain εP in the strut equals εf +∆εf, and the value of ∆εf is thereby determined.

It was found that the σ
(
εP) response is almost linear during the softening phase and we can

thereby write Γc = σf∆εf`/2.

The assumed value of Γ0 in the FE simulations of crack growth is an order of magnitude
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less than Γc; however, there was no observable difference in the two R−curves for Γ0 = Γc

and Γ0 = 0.1Γc. This is consistent with the fact that the elastic energy released by the

strut during failure (with our assumed value of Γ0) is two orders of magnitude less than the

plastic work in a strut up to the point of failure. Thus, the small oscillations that accompany

strut failure are quickly damped by a negligible increment of plastic work in the immediate

vicinity of the failed strut.

3. R−curve of an elastoplastic triangular lattice

The FE predictions for the R-curves of a triangular lattice of t/` = 0.1 made from a solid of

ε0S = 0.001, νS = 0.3, Γ = 5, and N = 0.33 are plotted in Fig. 3(a) for selected values of εf

in the range 0.02 to 0.2. The abscissa for these plots is the normalized crack extension ∆a/`

at a given value of KI, as plotted on the ordinate. Each cross mark in Fig. 3(a) denotes the

x1−position of the mid-point of all failed struts at a given value of KI = KR, with the right-

most cross-mark (corresponding to the furthest failed strut from the pre-crack tip) denoting

the crack extension ∆a.

The first strut to fail is the vertical strut, strut A, directly ahead of the crack tip, refer inset

of Fig. 3(d). Its failure defines the onset of crack growth and thereby the initiation fracture

toughness of the lattice, KIC. For the choice Γ = 5, we note from Fig. 3(a) that KIC is within

5% of the predictions of (4) for εf between 0.02 and 0.2. Consider, for example, the case of

εf = 0.1. The second strut to fail is the vertical strut, strut B, nearest to the failed strut A; it

fails at KR/σ0S
√
` = 5. Post failure of the first two vertical struts (A and B), the inclined strut

located between these struts rotates to align with the loading direction and it eventually

fails in tension at a higher value of KR/σ0S
√
` = 5.4. Crack advance is thus accompanied

by a bridging of the cracking plane by the inclined struts. The solid lines in Fig. 3(a) are

conservative curve-fit estimates to the data for each value of εf between 0.02 and 0.2; these

have the form

KR = KIC + α1 ρσ0S
√
`

(
∆a
`

)α2

(10)

The parameters α1 and α2 depend on (N, εf) and are listed in Table 1. It is evident from

Fig. 3(a) that the ductility of cell wall solid has a significant effect on the crack growth resis-

tance such that the magnitude of KR and of the gradient ∂KR/∂∆a increase with increasing

εf. Consider, for example, a crack extension of ∆a = 20`. The associated fractional increase
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in the fracture toughness, KR(∆a)/KIC is 1.3 for εf = 0.02, and is KR(∆a)/KIC = 3 for

εf = 0.2. The reference case of a triangular lattice made from an elastic-brittle cell wall solid

is included in Fig. 3(a), with σ0S now denoting the solid tensile strength. Brittle failure of

the lattice occurs when KI ≈ KIC, with a negligible increase in the fracture toughness as the

crack grows: the R−curve is flat. The nature of crack advance is demonstrated in Fig. 3(d)

by considering the tip opening displacement of the pre-crack, measured at location c, one

bar back from strut A, for the choice of εf = 0.1. Immediately after failure of strut A, and

then strut B, the opening displacement δc continues to increase in a smooth manner with

increasing KR. The softening of struts A or B does not trigger substantial oscillations in the

crack tip opening response.

The sensitivity of the R-curve to the degree of material strain hardening is explored in

Fig. 3(b) for N = 0.1, 0.2, and 0.33, and for a fixed εf = 0.1 and t/` = 0.1. As before, the

cross marks correspond to the x1−position of the mid-points of all struts that have failed at

a given value of KR, and the solid lines are the curve-fit expressions (10) with values of α1 and

α2 as listed in Table 1. The R−curve is steepest for lattices made from material of high strain

hardening consistent with the behaviour of fully dense metallic alloys, see [22] for example.

The R−curve asymptotes to a steady-state tearing value of fracture toughness KR = KSS at

sufficiently large values of crack extension ∆a. For example, for the choice εf = 0.02 and

N = 0.33, steady-state crack growth occurs for crack extensions exceeding 30` and KSS at-

tains the value of 1.5KIC. The amount of crack extension in order to achieve steady state

increases with increasing εf and increasing N, see Fig. 3(a) and Fig. 3(b). These simulations

of crack growth under small-scale yielding are numerically intensive and limitations in com-

putational resource precluded us from attaining steady state at large εf and large N. For a

given εf and N, the normalised fracture toughness KIC/σ0S
√
` and the crack growth resis-

tance KR/σ0S
√
` (at a given value of ∆a/`) scale linearly with t/`, as seen from Fig. 3(c); this

follows immediately from the assumption that the cell walls behave as truss elements.

3.1. Explanation for the rising R−curve, and the crack path

The elevation in KR with increasing εf (and increasing N), as observed in Fig. 3(a) and Fig. 3(b)

for the ductile lattices, can be traced to the plastic dissipation associated with non-proportional

stressing of the struts in the vicinity of the advancing crack-tip, which in turn relates to the
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extent of plastic zone at the crack-tip. Recall from (4) and (5) that the size of plastic zone rP

at the onset of crack growth scales with (N, εf) according to

rP ≈ 0.25 α

(
εf

ε0

)1+N
` (11)

Thus, for a given choice of N = 0.33 and ε0 = ε0S = 0.001, the extent of plastic zone, and

thereby the energy dissipated due to plastic deformation increases with increasing εf. For

example, rP increases from 19` to 402` as εf increases from 0.02 to 0.2, at the onset of crack

growth, following (11).

FE simulations reveal that crack advance under remote mode I loading may deviate from the

plane of the pre-crack. Three classes of crack path can be identified in Fig. 4:

(i) co-planar with the pre-crack for lattices of sufficiently high ductility or of moderate

hardening capacity. For example, crack advance is of this type for a lattice of high

ductility εf = 0.2, and for a lattice of moderate hardening N = 0.2 (and also for N =

0.1, not shown).

(ii) an alternating crack path for an intermediate value of εf and large N. The wavelength

(and amplitude) of the alternating crack path increases with diminishing value of εf and

increases with crack extension. Consider the choice εf = 0.1: the crack-tip advances

along a zigzag path for N = 0.33 but advances along a straight path (co-planar with

pre-crack plane) for N ≤ 0.2.

(iii) the crack kinks at an angle −30o to the plane of the pre-crack in the elastic-brittle

limit.

It is instructive to compare the present results with the crack path predictions of Schmidt

and Fleck [24] for a 2D hexagonal lattice made from a bi-linear elastoplastic solid. They also

observed that, subsequent to the first strut failure, the initial symmetry about the plane of

the pre-crack is disrupted and the crack advanced in a zigzag manner.

4. Two-phase lattices for enhanced crack growth resistance

Design concepts for enhancing the toughness of a lattice are now explored. Three designs of

a two-phase lattice are considered: a fibre-reinforced composite lattice, a composite bilattice
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and an interpenetrating lattice, see Fig. 5. The topologies of the fibre-reinforced lattice and

bilattice are inspired by the design of rip-stop nylon, a tear-resistant woven fabric made

from nylon and consisting of thick reinforcement threads spaced evenly after every 10 thin

fibres. The interpenetrating topology resembles that of double network hydrogels which

derive their high toughness from the synergy of two mechanisms: crack bridging by the

larger network of covalent crosslinks, and hysteresis due to unzipping of the smaller network

of ionic crosslinks [30].

All three lattices comprise a ‘brittle’ phase of tensile failure strain εf = 0.02 and a ‘ductile’

phase of ductility εf = 0.1. The elastic and plastic properties of the two phases are otherwise

identical such that N = 0.33, ε0S = 0.001, νS = 0.3 and Γ = 5. In all three designs of two-

phase lattices, the brittle phase comprises a fully triangulated lattice of strut length ` and

strut thickness t. The ductile phase is also of thickness t but is on a larger grid, as follows.

Consider first, the fibre-reinforced composite lattice; it comprises longitudinal ductile fibres

at a spacing s = 3
√

3`/2, as shown in Fig. 5(a). These fibres replace the brittle phase of the

same location. Second, consider the composite bilattice, as shown in Fig. 5(b). The ductile

phase exists on a triangular grid of side length 3` and again substitutes for the brittle phase at

this location. In contrast, the interpenetrating lattice comprises a triangular grid of ductile

struts that are in addition to, and overlap, the brittle phase: no brittle struts are replaced

by the ductile phase, see Fig. 5(c). The effective Young’s modulus and Poisson’s ratio of the

interpenetrating lattice are E = 8
√

3ESt/9` and ν = 1/3, respectively, as obtained from

separate FE simulations on a periodic unit cell of this lattice (not shown here). The R−curve

responses of the three two-phase lattices are discussed in turn.

4.1. R−curve of a fibre-reinforced composite lattice

Consider the fibre-reinforced composite lattice of Fig. 5(a). The assumed morphology of the

macroscopic pre-crack is such that a ductile strut of the fibre phase exists directly ahead of

the crack-tip. Crack growth in this lattice occurs by the sequential failure of both brittle and

ductile struts under increasing KI. The R−curve response of the fibre-reinforced lattice,

based on the failure of brittle struts, is compared with that of the monolithic brittle lattice

(of εf = 0.02) in Fig. 6(a). The R−curve for the brittle phase of the fibre-reinforced lattice

lies above that of the monolithic brittle lattice. Note that the extent of crack extension ∆a

in the ductile phase of the fibre-reinforced lattice is less than that of the brittle phase for

14



the same value of KI = KR. Consequently, we can identify an R−curve for the ductile fibre

phase which is distinct from that for the brittle phase.

A set of additional calculations have been performed in order to determine the sensitivity of

the R−curves to the state of residual stress within the lattice. Commonly, thermal processes

are used in composite manufacture and these can result in either tensile or compressive

residual stress σR in the fibre phase. To assess the significance of the residual stress upon

the R−curves, a two-step FE analysis is performed. In the first step, the struts of the ductile

phase are subjected to thermal tensile strain such that, at equilibrium, they have a resid-

ual tensile stress of magnitude σ0S/2 whereas the struts of the brittle phase have a residual

compressive stress of equal magnitude, σ0S/2 . In the second step of the FE analysis, the

displacements u0
i associated with a remote mode I K-field are applied to the boundary of the

lattice, recall (7). The R−curves for ductile fibres subjected to σR = σ0S/2 and σR = −σ0S/2

are compared in Fig. 6(a); for completeness, the corresponding R−curves in the brittle phase

are included. It is found that plastic flow near the crack-tip largely eliminates the effect of

residual stress upon the R−curves.

4.2. R−curve of a bilattice

Assume a macroscopic pre-crack in a bilattice such that a ductile strut exists directly ahead

of the crack-tip, as shown in Fig. 5(b). The sequence of strut failure with increasing KI is

plotted in Fig. 6(b) for both the brittle phase and the ductile phase of the bilattice; both

axes are expressed in terms of the strut length ` of the brittle phase. In order to assess the

increase in crack growth resistance due to the presence of the ductile reinforcement, we

include in Fig. 6(b) the R-curve of a small brittle lattice with εf = 0.02 and strut length `. We

note from Fig. 6(b) that the small brittle lattice is toughened when a fraction of its members

are replaced by ductile struts in the bilattice. For this bilattice, the first ductile strut to

fail does so after 8 vertical struts of the brittle phase have already failed. Thus, the ductile

struts provide significant bridging of the crack faces in the wake of failed brittle struts, for

the bilattice. This contributes to the observed resistance to crack growth, in addition to the

contribution from crack-tip plasticity ahead of the growing crack-tip.

Now compare in Fig. 6(b) the R−curve of the bilattice with the R−curve of a large ductile

lattice of εf = 0.1 and strut length 3`. In so doing, the significance of the small brittle struts
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of the bilattice upon its R−curve can be assessed. It is clear that the brittle phase gives an

initial enhancement of toughness of the ductile phase of the bilattice but the two R−curves

converge at a large crack extension, ∆a > 40`. In broad terms, the R−curve of the bilattice

is dominated by the contribution of the large-scale ductile phase.

4.3. R−curve of an interpenetrating lattice

The R−curve of the interpenetrating lattice of Fig. 5(c) is shown in Fig. 6(c) for the choice

t/` = 0.1, N = 0.33 and ε0S = 0.001. Two reference case of single-phase lattices are included

in Fig. 6(c) for comparison: (i) a small brittle lattice of strut thickness t, strut length ` and

εf = 0.02, and (ii) a large ductile lattice of strut thickness t, strut length 3` and εf = 0.1.

The R−curve of the brittle phase of the interpenetrating lattice is steeper than that of the

single-phase brittle lattice. Further, the value of KI required to break a single strut of the

ductile phase of the interpenetrating lattice is substantially higher than that of the brittle

phase, as well as that of the single-phase large ductile lattice. The crack growth resistance

of the interpenetrating network is thus a consequence of limited plasticity within the small

lattice and bridging of the crack-tip by the ductile struts of the large lattice.

It is instructive to compare the degree of fracture toughness enhancement due to the addi-

tion of a ductile phase for the three designs discussed above. The R−curves of the brittle

phase of the two-phase lattices are taken from Fig. 6 and are re-plotted in Fig. 7(a); it reveals

that the interpenetrating network gives the greatest enhancement of toughness. Note that

the interpenetrating lattice is of higher relative density than the fibre-reinforced lattice and

the bilattice for the same value of t/`: ρ = (8/
√

3)t/` for the interpenetrating lattice and

ρ = 2
√

3t/` for the other two topologies. In order to compare the performance of the three

two-phase lattices on the basis of equal mass, we exploit the linear scaling of KR with t/` for

each lattice and re-plot the KR − ∆a curves in Fig. 7(b), all for ρ = 0.1. We conclude that

the superior performance of the interpenetrating lattice to that of the other two reinforced

lattices is maintained at sufficiently large ∆a > 20`.

5. Comparison of the crack growth resistance under mode I and mode II loading

The boundary layer approach of Section 2 can be extended to determine the resistance to

crack growth of a monolithic elastoplastic triangular lattice under mode II loading. The dis-
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placement field associated with a remote mode II stress intensity factor KII is applied to the

boundary nodes of the lattice, with the functions fi(θ) in (7) now taken to be the corre-

sponding functions for mode II from Sih et al. [28]. Mode II R−curves have been generated

for a monolithic, fully triangulated lattice with t/` = 0.1, ε0S = 0.001 and Γ = 5. The

crack growth responses are shown in Fig. 8(a) for N = 0.33 and selected values of εf in the

range 0.02 to 0.2. The elastic-brittle response is included in Fig. 8(a) for comparison; this

is obtained by assuming a linear elastic response up to a tensile strength of magnitude σ0S

(implying εf = σ0S/ES = ε0S). The sensitivity of the mode II R−curve to the value of the

strain hardening exponent N is shown in Fig. 8(b) for the choice of εf = 0.1.

For all the combinations of (N, εf) considered in this study, FE simulations of the crack growth

in an elastoplastic lattice under mode II loading predict that the crack grows at an inclination

of−30o from the plane of the pre-crack, as a series of vertical struts (labelled A in the insert

of Fig. 8(a)) and inclined struts (labelled as B in the insert of Fig. 8(b)) fail under increasing re-

mote KII. Inclined struts (type B) fail first. The vertical struts (type A) then bridge the crack

faces, and they rotate to align with the local principal direction (θ = −30o) until they also

fail in tension. Accordingly, we show in Fig. 8(a) two R−curves, one corresponding to the

failure of type A struts and the other corresponding to the failure of type B struts. Each cross

mark in Fig. 8(a) denotes the x1−position of the mid-point of all failed struts at a given value

of KII = KR with the rightmost cross-mark (corresponding to the furthest failed strut from

the pre-crack tip) denoting the crack extension ∆a. For the choice N = 0.33 and εf = 0.1,

the FE simulations predict that the first strut A fails after 4 struts of type B have failed, see

Fig. 8(a). Consequently, there is a moderate increase in the mode II fracture toughness due

to bridging by the type A struts; this is evident from Fig. 8(a) for all assumed values of εf

between 0.02 and 0.2. Curve-fit estimates of the R−curves corresponding to struts of type B

are drawn in dashed lines in Fig. 8(a) and Fig. 8(b). These have the form

KR = KIIC + β1 ρσ0S
√
` (∆a/`)β2 (12)

where β1 and β2 are constants which depend upon N and εf , as listed in Table 1.

The sensitivity of the R−curve to strain hardening N is plotted in Fig. 8(b) for selected values

of (t/`, εf) = (0.1, 0.1) and N between 0.1 and 0.33. As before, separate R−curves are shown

for type A and type B struts. Upon comparing the responses of Fig. 3 and Fig. 8, we find that

the crack growth resistance is only mildly sensitive to the mode of remote loading: KII
R ≈
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0.8KI
R for a given value of crack extension ∆a > 0. Whilst the crack path under mode I

loading is sensitive to the choice of (N, εf) of the cell wall solid, the crack path under remote

mode II loading occurs along θ = −30
o for all combinations of (N, εf) assumed in this study.

We also note that the the critical mode II fracture toughness, KIIC, associated with first strut

failure is approximately of the same magnitude as the critical mode I fracture toughness KIC,

for any given combination of (N, εf). This insensitivity of the critical fracture toughness to

the mode of remote loading was observed previously in the numerical analysis of Fleck and

Qiu [12] for an elastic-brittle triangular lattice. They found that the failure envelope under

a combination of remote (KI, KII) loading is nearly circular in shape, implying KIIC ≈ KIC.

The location of first strut failure is, however, sensitive to the macroscopic loading direction:

under mode I loading, the first strut to fail is the vertical strut directly ahead of the crack-tip

(and along the plane of the pre-crack) whereas under mode II loading, the critical strut is the

strut directly ahead of the crack but inclined at θ = −30o to the plane of the pre-crack. This

finding is consistent with the observations of Fleck and Qiu [12] who noted a similar shift of

the critical failure site from mode I to mode II, in an elastic-brittle triangular lattice.

6. Concluding remarks

FE simulations of crack growth in an elastoplastic triangular lattice suggest that an increase

in fracture toughness occurs with crack extension due to non-proportional stressing of the

struts within the plastic zone at the tip of the advancing crack. Additional toughening by

crack bridging occurs under mode II loading. A strong dependence of the mode I crack path

on εf is noted: for low to moderate values of cell wall failure strain εf such as 0.02 ≤ εf ≤ 0.1

the crack path resembles a triangular waveform with the amplitude and wavelength of the

waveform reducing with increasing εf. A straight-ahead mode I crack path is predicted for

εf > 0.1. In contrast, the mode II crack always propagates along θ = −30o to the plane of the

macroscopic pre-crack for all combinations of material properties considered in this study.

The presence of a ductile phase, either in the form of a large scale lattice, or in the form of

longitudinal fibres transverse to the cracking plane, substantially elevates the mode I frac-

ture toughness of the brittle phase as the ductile struts bridge the crack faces. It remains to

verify these predictions experimentally. While the crack paths can be different under mode
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I and mode II loading for a given combination of cell wall ductility εf and strain hardening

exponent N, the R−curves are only mildly sensitive to the mode of loading. Again, experi-

ments are warranted to confirm (or refute) this finding.
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Tables

N εf α1 α2
KIC

σ0S
√
`

β1 β2
KIIC

σ0S
√
`

Elastic-brittle - 0.66 0.04 0.21 0.06 0.25 0.23

0.1 0.1 3.17 0.43 2 0.72 0.36 2

0.2 0.1 3.55 0.5 3.2 0.98 0.6 2.6

0.33 0.02 1.44 0.32 1.35 0.69 0.46 0.7

0.33 0.05 2.68 0.39 2.4 0.83 0.54 2

0.33 0.1 4.47 0.48 3.6 1.12 0.67 3.2

0.33 0.2 6.93 0.55 6 2.02 0.74 6

Table 1: Values of the constants in the curve-fit expression Eq. (10) for mode I R−curves
plotted in Fig. 3 and values of the constants in expression Eq. (12) for mode II R−curves
(based on failure of type B struts) plotted in Fig. 8.
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Figures
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crack

Fig. 1: Triangular lattice containing a semi-infinite crack and subjected to remote mode I (or
mode II) loading
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Fig. 2: Stress versus plastic strain response of a single strut in tension: (a) material pa-
rameters employed in the continuum damage model for each strut, and (b) response for
N = 0.1, 0.2, and 0.33 for the choice of εf = 0.1 and Γ = Γ0ES/σ2

0S` = 50.
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Fig. 3: Mode I crack growth resistance of an elastoplastic triangular lattice : (a) as a function
of strut ductility εf, (b) as a function of the strain-hardening exponent N, and (c) as a func-
tion of lattice relative density ρ expressed in terms of t/` via (1). In all cases, ε0S = 0.001

and Γ = 5. (d) The dependence of crack-tip opening displacement δc upon KR in the early
stages of crack advance.
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Elastic-brittle

Pre-crack

Fig. 4: Crack path under remote mode I loading as a function of strut ductility εf and strain-
hardening exponent N. In all cases, ε0S = 0.001, t/` = 0.1,and Γ = 5.
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(a)                                              (b)                                               (c) 
Connection points

pre-crackpre-crack pre-crack

Fig. 5: Two-phase lattices: (a) Fibre-reinforced triangular lattice, (b) Triangular bilattice,
and (c) Interpenetrating triangular lattice.
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Fig. 6: R-curves of the two-phase lattices: (a) fibre-reinforced lattice, (b) bilattice, and (c)
interpenetrating (IP) triangular lattice. The R-curve for the brittle lattice is included in (a),
and the R-curves for both the small brittle and large ductile lattices are shown in (b) for
comparison. In all cases, t/` = 0.1, N = 0.33, εf = 0.02 for the brittle phase and εf = 0.1 for
the ductile phase. Data points in (a)-(c) correspond to the location of the mid-points of the
failed vertical struts.
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Fig. 7: Toughening of a brittle lattice by the addition of a ductile phase: (a) for a constant
t/` = 0.1, and (b) for a constant ρ = 0.1 of the two-phase lattice. In all cases, N = 0.33 and
εf = 0.02 for the brittle phase.
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Fig. 8: Mode II crack growth resistance of an elastoplastic triangular lattice : (a) as a function
of strut ductility εf for a choice of N = 0.33, and (b) as a function of the strain-hardening
exponent N for a choice of εf = 0.1. In all cases, ε0S = 0.001, t/` = 0.1,and Γ = 5. Inset of
(a) shows predicted crack path at ∆a = 50` for crack growth under remote mode II loading.
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