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Abstract   

The tensile strength of an adhesive joint is predicted for a centre-cracked elastic layer, 

sandwiched between elastic substrates, and subjected to remote tensile stress. A tensile 

cohesive plastic zone, of Dugdale type, is placed at each crack tip, and the cohesive zone is 

characterised by a finite strength and a finite toughness. An analytical theory of the fracture 

strength is developed (and validated by finite element simulations). The macroscopic strength 

of the adhesive joint is determined as a function of the relative magnitude of crack length, 

layer thickness, plastic zone size, specimen width and elastic modulus mismatch between 

layer and substrates. Fracture maps are constructed to reveal competing regimes of behaviour. 

The maps span the full range of behaviour from a perfectly brittle response (with no crack tip 

plasticity) to full plastic collapse. When the sum of crack length and cohesive zone length is 

less than 0.3 times the layer height, the effect of elastic mismatch between substrate and 

adhesive layer has only a minor influence upon the macroscopic fracture strength.  For this 

case, the cracked adhesive layer behaves as a centre-crack in an infinite solid made from 

adhesive, and a transition from toughness control to strength control occurs when the crack 

length is comparable to that of the cohesive zone length. Alternatively, when the sum of 

crack length and cohesive zone length exceeds 0.3 times the layer height, the elastic 

mismatch plays a major role; again there is a transition from toughness control to strength 

control, but it occurs at a ratio of crack length to layer thickness that depends upon both the 

elastic mismatch and the ratio of cohesive zone length to layer height.  The study also 

highlights the importance of a structural length scale in the form of layer height times 

modulus mismatch: this scale is on the order of 1 metre when the layer height equals one 
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millimetre and the elastic modulus of the substrate is one thousand times that of the adhesive 

layer.  The in-plane structural dimensions (including crack length) must exceed this structural 

dimension in order for a remote K-field to exist within the substrate.  Experimental validation 

of the cohesive zone approach is achieved by measuring the sensitivity of fracture strength to 

crack length and layer height for a centre-cracked strip made from cellulose acetate layer, 

sandwiched between aluminium alloy substrates. 

 

Keywords: cohesive zone, adhesive layer, fracture mechanics, finite element analysis, failure 

maps  

 

1.  Introduction 

There is significant interest in the use of polymer-based adhesives to bond together 

lightweight metallic or composite materials (such as glass fibre and carbon fibre reinforced 

polymers) in the aerospace, automotive, marine and wind-turbine industries (Higgins, 2000, 

Dillard 2010, Camanho and Tong, 2011; da Silva et al., 2018). A wide range of adhesive 

types (from elastomeric to epoxy) and adhesive thickness (from micron-scale to millimetre-

scale) are used in joint design in order to give a joint of suitable stiffness, thickness and gap-

filling capability. However, the strength of these adhesive joints is sensitive to the presence of 

defects, such as pores and cracks, that arise from manufacture or use. The ability to predict 

accurately the failure strength of adhesive joints as a function of pore or crack size is essential 

if engineering structures containing adhesive joints are to be manufactured in a reliable 

manner.  

Cohesive zones are commonly used to idealise the crack tip plastic zone in metals 

(Barenblatt, 1962; Tvergaard and Hutchinson, 1992, 1994, 1996), crazing in polymers (Hui et 

al. 1992; Pandya, Ivankovic and Williams, 2000) and crack bridging in fibre composites 

(Schellekens and de Borst, 1996; Camanho et al., 2004; Yang and Cox 2005; Li et al., 2006). 

In the present study, the tensile strength of an adhesive joint is predicted for the geometry of a 

centre-cracked elastic layer of height 2h, sandwiched between elastic substrates, and 

subjected to remote tensile stress, as shown in Figure 1. The idealization of the adhesive by a 

linear, elastic solid of Young’s modulus 
2E , which differs from the value 1E

 
for the 
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substrates, allows for the role of material mismatch 
12 /E E
 
upon the stress state (and fracture 

strength) to be explored. Initially, the centre-crack, of length 2a, is treated as a Griffith crack 

of finite crack tip toughness   but with no cohesive zone present. Subsequently, a tensile 

cohesive plastic zone, of Dugdale type, is placed at each crack tip, and the cohesive zone is 

characterised by a finite strength ̂  and a finite toughness  . This 2-parameter description (

̂ , ) allows for a prediction of failure strength over a wide range of crack lengths.  

It is recognized that the tensile strength ̂  and mode I toughness   of an adhesive layer 

may depend upon the thickness of the layer (Bascom et al., 1975;  Lee  et al.,  2004; Pardoen 

et al., 2005; Martiny et al., 2012) but the details of this dependence are beyond the scope of 

our study. The pragmatic approach adopted here is to assume that values of (̂ ,  ) have 

been measured for an adhesive layer of given thickness, and the aim of this study is to 

explore the sensitivity of macroscopic strength to /a h   and 
1 2/E E . Commonly, the 

measured value of ̂  is adequately approximated by the uniaxial tensile strength of the bulk 

adhesive (Blackman et al. 2003; Salomonsson and Andersson, 2008; Sun et al., 2008, 

Thouless et al., 2008; Carlberger and Stigh, 2010; Stigh et al., 2010) but it may depend upon 

the degree of plastic constraint (Varias et al., 1991; Tvergaard and Hutchinson, 1996; 

Pardoen et al., 2005). Size effects can also exist for thin adhesive layers, see, for example, 

Fiedler et al. (2001) and Chevalier et al. (2016).  

The magnitude of   will depend upon the degree of crack extension if the solid displays 

a pronounced R-curve. However, polymeric adhesive commonly display a negligible R-curve 

particularly in the form of a thin layer between substrates. This reduction in R-curve due to 

constraint has been quantified for a thin metallic sandwich layer by Tvergaard and 

Hutchinson  (1996). Typically, the ratio 
SS 0/   of steady-state fracture toughness 

SS  to the 

initiation value 
0  

for polymeric adhesives in bulk form is of magnitude 1.5 for most 

epoxies1, acrylic, and polyurethane-based adhesives (Blackman et al., 2003; Martiny et al., 

2012; Banea et al., 2014; Monteiro et al., 2015; Lopes et al. 2016; Bonaldo et al., 2018). The 

degree of R-curve is reduced when the adhesive is in the form of a thin layer between elastic 

substrates, as explained by Tvergaard and Hutchinson (1996). Consequently, the effect of an 

R-curve on crack growth is ignored in the present study.  

                                                 
1 Rubber-modified epoxies are an exception as they may exhibit a pronounced R-curve in bulk form (Du et al., 

1998; Imanaka et al., 2015). 
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1.1 The semi-infinite crack in an adhesive layer 

Consider first the asymptotic problem of an elastic adhesive layer of height 2h 

sandwiched between two elastic substrates, and containing a semi-infinite crack, as shown in 

Figure 2. The crack is placed along the mid-plane of the adhesive layer. Assume that the 

substrate (material 1) and the adhesive (material 2) are isotropic, homogeneous and linear 

elastic solids.  The Young's modulus and Poisson's ratio of the substrate and adhesive are 

 11,E   and  2 2,E  , respectively. We consider a general, plane problem, where E  and   

denote E and  in plane stress, but  2/ 1E E    and  / 1     in plane strain.  This 

crack problem has been considered before by Fleck et al. (1991) and by Ryvkin (2000) using 

Fourier transforms, but the findings below were not presented in these previous studies.   

In the introductory problem under consideration, the adhesive joint is subjected to a 

remote mode-I K field of magnitude K . The normal stress component 
yy , perpendicular to 

the crack plane and directly ahead of the crack tip, has been calculated by finite element (FE) 

analysis, for selected values of modulus-mismatch ratio 
12 /E E  

 
and 

1 2 3/ 7   ; the 

details of this routine calculation are reported in Appendix A.  The normalized stress 

component, /yy h K 
, is plotted in Figure 3a as a function of normalized distance from the 

crack tip, /x h , for the representative case 2

2 1/ 10E E  . 

Path-independence of the J-integral (Rice, 1968) implies that the remote K -field and 

the local tipK -field at the crack tip are related by (Trantina 1972, Wang et al., 1978; Fleck et 

al., 1991) 

 tip 2
2

1

1

E

E
K K 

  
 

  . (1) 

Hence, as can be seen in Figure 3a, the stress at the crack tip within the adhesive layer is 

shielded by the presence of stiffer substrate material.  Adjacent to the crack tip, the stresses 

are given by the leading term of the William’s singularity analysis (Williams, 1957), with 

yy  given by 
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yy h E

E

h

K x





 
  
 

  . (2) 

Consistent with the requirement (1), the stress component 
yy  remote from the crack tip 

scales as 

 

1

21

2

yy h

x

h

K





 
  
 

  . (3) 

Equations (2) and (3) provide asymptotes to the stress distribution ahead of the crack tip, as 

plotted in Figure 3a.  The stress follows the local tipK  field close to the crack tip provided x/h 

is less than a transition value designated by 
T1( / )x h . Alternatively, at sufficiently large x/h, 

above a second transition value 
T2( / )x h , the stress state is given by the remote K

 field. 

Relations (2) and (3) imply that  

 1

T2 T12

x x

h h

E

E

   
   

   
  . (4) 

The stress distribution is plotted as a function of /x h  along the crack plane for selected 

values of modulus-mismatch ratio in the range 
12 /E E
 
= 1 to 3

12 / 10E E   in Figure 3b.  The 

tensile stress has a plateau value for x/h values intermediate between the two transition values 

T1( / )x h  and 
T2( / )x h .  As the modulus mismatch becomes more extreme, the plateau stress 

tends to the asymptotic limit of 

  
1/2

2

2tip
1

yy

K

h




     , (5) 

which is the solution for a semi-infinite crack in an adhesive layer between two rigid 

substrates and subjected to a uniform opening displacement (Knauss, 1966; Rice, 1967; 

Wang, 1997).   
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Note from Figure 3b that the value of 
T1( / )x h  equals approximately 0.2 independent of 

the magnitude of 
12 /E E  over the range considered2. Consequently, relation (4) reduces to 

1 2T2 0( .2/ ) /h Ex E , with the immediate implication that a remote K  field can only exist in 

a specimen of characteristic in-plane dimensions (such as crack length, height and ligament 

width) that significantly exceed the value of 
1 2.2 /0 hE E .  Assume that an in-plane dimension 

on the order of 
1 2/hE E is required to meet this condition.  This places a severe restriction on 

the relevance of a remote stress intensity factor for thick polymeric adhesive joints between 

metallic or composite substrates.  For example, consider an epoxy adhesive of thickness 1 

mm and Young’s modulus 1 GPa sandwiched between steel substrates of modulus 210 GPa.  

Then, an in-plane structural dimension of 
1 2/hE E  = 210 mm is required in order for a remote 

K-field to exist.  This requirement is significantly more restrictive for the choice of a thick 

elastomeric adhesive between steel substrates (as used in shipbuilding) such that h = 10 mm 

and 
2E  = 0.1 GPa; the minimum in-plane dimension then becomes 21 m.  For such 

applications, it is necessary to consider a prototypical specimen of finite crack length and 

subjected to a remote stress, such as the centre-cracked sandwich panel shown in Figure 1, 

and recognize the fact that a remote K-field may not exist for this specimen.  This is the main 

geometry under consideration in the present paper.  

 

Scope of study 

The aim of this study is to determine the sensitivity of the tensile strength of an adhesive 

joint to crack length, thickness of adhesive layer, modulus-mismatch ratio, and to the 

toughness and cohesive strength of the adhesive.  Mode I loading of the crack within the 

adhesive layer is considered, and the crack is either a classical Griffith crack (with a finite 

value of tip toughness but absent a cohesive zone) or the crack is endowed with a tensile 

cohesive zone of both finite strength and finite toughness. An experimental study on a centre-

cracked cellulose acetate strip, sandwiched between aluminium alloy substrates, is used to 

validate and illustrate the theory. 

                                                 
2 Ryvkin (2000) adopted a more severe criterion for the definition of 

T1( / )x h  by the location at which the 

value of yy  deviated by 5% from its asymptotic value (2), and thereby concluded that 
T1( / )x h  = 0.03 for 

12 /E E  < 0.1.)   
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2. Theory 

Consider the finite sandwich joint shown in Figure 1.  The joint consists of an adhesive 

layer of height 2h  and width 2W  sandwiched between two substrates, each of length L.  A 

through-thickness centre-crack of length 2a  lies parallel to the interface at mid-height of the 

adhesive layer.  The substrate is identified as material 1, and the adhesive is identified as 

material 2, each being isotropic, homogeneous and linear-elastic, with elastic properties, 
1E , 

1  and 
2E , 

2 , as defined above.  The sandwich layer is loaded by a remote tensile stress  

  

parallel to the y-axis.  It is assumed that the adhesive has a crack-tip cohesive zone that obeys 

a tensile traction versus separation law of the form shown in Figure 1, with a finite cohesive 

strength ̂  and finite toughness. The presence of the cohesive zone leads to the existence of 

a material length scale 
Sl  of magnitude 

 2
S 2ˆ
l

E





    (6) 

following Tvergaard and Hutchinson (1992). The macroscopic strength of the sandwich joint 

f
  is a function of normalized crack length /a h , modulus-mismatch ratio

12 /E E , and 
S /l h , 

and can be written in non-dimensional form as3 

 Sf 2
1 2

12

, , , , ,
la W

h h

h E
f

EE h


  

  
   

  
  . (7) 

The role of Poisson's ratio is minor and is neglected in this study.  However, the sensitivity of 

joint strength to the other non-dimensional groups is explored in detail.  First, we will 

consider the limiting case of a Griffith crack in an elastic layer of finite toughness but 

unbounded cohesive strength such that 
S /l h 0.  Then, we take into account the existence 

of a finite value of cohesive strength ̂ . 

 

2.1 Griffith crack in an elastic layer 

We begin by considering the two extreme cases of a very short crack and a very long 

crack in an elastic, perfectly brittle adhesive layer (of unbounded cohesive strength ̂ ), and 

                                                 
3 Describing the elastic constants by Dundurs' parameters would reduce the number of terms by one.  However, 

the effects of Poisson's ratio are not a focus of this study, and so this rationalization is not employed. 
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then consider the more complex case of an intermediate crack length.  The terms ‘short’, 

‘long’ and ‘intermediate’ are made precise below. 

 

Asymptotic analysis for a very short or very long crack 

In the limit of a very short crack length / 1a h  , the presence of the substrate can be 

ignored, and the crack tip stress intensity factor is given by 

 tip aK     .  (8) 

Crack growth occurs when the energy release rate  attains the toughness   of the adhesive, 

such that 

 
 

2
tip

2

K

E
     ,  (9) 

and the macroscopic fracture strength is then given by  

 

2

1

2
f hh

aE







 

   
 

  . (10) 

Alternatively, for a very long crack, / 1a h  , the presence of the adhesive layer can be 

ignored.  Provided that / 1a W  , the appropriate stress-intensity factor is given by 

 K a     .  (11) 

Then, from (1), the failure strength of the joint is  

 

2

1

2
f

2

1h E

E a

h

E






  
   

  
  . (12) 

General analysis for an intermediate length of crack  

We proceed to develop analytical expressions for   for a crack of intermediate length 

with respect to both the adhesive thickness and width of the joint.  As can be seen in the 

Appendix B, a series of FE results confirmed the accuracy of the analysis presented below.  

Consider the joint shown on the left of Figure 4, and write u  as the extra displacement of 

the ends of the specimen due to the presence of a crack of length 2a  and an end load P per 

unit thickness. Thus, u  equals P C  where ( ) ( ) (0)a C aC C   is the extra compliance 

due to the presence of the crack. Note that (Tada et al., 2000):  
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2 (

4

)P C

a

 



   (13) 

and, for a specimen of infinite height, C  is unbounded but C  is finite. Now proceed to 

idealise the adhesive joint problem on the left of Figure 4 by the summation of two problems 

on the right-hand side, case (1) and case (2), such that  

 

(1) (2)( ) ( ) ( )C C C

a a a

     
 

  
  . (14) 

Case 1 neglects the presence of the adhesive layer in the determination of the additional 

compliance due to the presence of the crack. Case 2 is an approximate analysis for the 

additional compliance due to the presence of the crack when a strip of height 2h and made 

from material 1 is replaced by a strip of material 2. Thus, in case 2, the substrate is treated as 

rigid and the replacement strip is of effective modulus Ê  such that: 

 1

2 2

2

2 1
ˆ

1 11

E EE

 


 
   (15) 

The constraint factors 
1

2(1 ) and 
2

2(1 )  arise from the fact that the strain component in 

the replacement layer vanishes in the tangential direction. 

We seek expressions for (1)( ) /C a    and (2)( ) /C a   . From Tada et al. (2000), 

(1)( ) /C a    satisfies: 

 
(1) 2

2

1

( )C aF

a W E

 



  , (16) 

where the finite width correction factor ( / )F a W  has already been determined (Federsen, 

1966; Tada et al., 2000): 

 

1
2 4

2

  1 -  0.025 c
2

se0.06F
a a a

W W W

      
 

 


       

      

 . (17) 

For case (2), the net section stress is 

 

1

net 1
2

P a

W W




 
  

 
   . (18) 
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and the specimen compliance is approximately given by 

 
  

(2) (2)( ) ( )
ˆ 1 /

h

E
C a C a

W a W
 


   ,  (19) 

Now, make use of the Irwin relationship, 
1

2tip

2( )EK   and relation (13) to obtain 

 

1

2
tip

2

( )

2

P C

a
K E

  
 

 
   .  (20) 

The normalized strength  , as defined in (7), is related to P and tipK  by 

 f

tip

2
2

h hP

W KE






 


  . (21) 

Upon making use of (14), (16), (18) and (20), we then obtain the general formula 

    
1/2

2

2 22

1 1

22

12 + 1 1 1
E E

F
E E

a a

h W
   


  

     
  





 
 
 

 . (22) 

For 
1 2    ,  this relation reduces to 

  
1/2

2

2 2

1 1

2 2 + 1 1 1
E E

F
E E

a a

h W
  


  

    
   

 
 

 
 . (23) 

Note that (23) implies a plateau value in the strength for intermediate values of /a h , and for 

2 1/ 1E E   this reduces to the limit  

  
1/2

2

21 


    ,  (24) 

consistent with (5) above, upon noting  and fyy   .  For very small cracks, 

the small-crack asymptote (10) becomes valid.  The transition between these two regimes is 

obtained by equating the strengths from expressions (10) and (24), thereby giving a crack 

length of 

 

2

21a

h






   . (25) 

K tip = E
2
G
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The expressions (10) and (23) for   are plotted as a function of a/h in Figure 5a for the 

case h/W=0 and for selected values of 
2 1/E E

 
in the range of 0 to 1.  The short crack 

asymptote (10) exists in the region as identified as regime B in this plot, whereas the case of 

intermediate to long cracks is termed regime C.  (A more precise definition of these regimes 

will be made clear below).  The long-crack asymptotes of (12) are included in the plot of 

Figure 5a. The fracture strength decreases with increasing 
2 1/E E  in regime C, but is 

independent of the magnitude of 
2 1/E E  in the short crack regime B.  The sensitivity of the 

strength   to crack length, for a modulus-mismatch ratio of
 

2

2 1/ 10E E   and for selected 

values of /h W  ranging from 0 to 0.1, is given in Figure 5b.  As the crack length a 

approaches W the strength   drops sharply: this is consistent with the usual form of the K-

calibration for a finite specimen. 

 

2.2 Effect of plasticity at the crack tip: cohesive zone model 

 

Asymptotic analysis for a very short crack 

We proceed to explore the effect of a finite length of cohesive zone at the crack tip on the 

strength of the joint as depicted in Figure 1.  We emphasize that the cohesive zone is of 

uniform strength ̂  and toughness  , and the material length scale Sl  is a derived material 

property via (6).  In general, Sl  is not equal to the length c of cohesive zone: this is only the 

case for a semi-infinite crack in a homogeneous, infinite solid made from the adhesive. For 

example, consider the case of a short crack of length 2a in a homogeneous, infinite solid, 

such that Sl > a. Then, at failure, the remote stress 
f
  is slightly less than ̂  but the cohesive 

zone size c exceeds both a and Sl . 

 

Consider first the case for which Sa hl  .  Then, the crack and cohesive zone exist 

within a much larger layer of adhesive, and the joint strength can be predicted by ignoring the 

presence of the substrate.  We can then make direct use of the strip yield model of Dugdale 

(1960) and Barenblatt (1962), as is appropriate for the assumed traction-separation 

relationship defined in Figure 1.  In the Dugdale model, the crack-tip opening displacement 
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tip  for a through crack of length 2a  in a linear-elastic, infinite sheet under a remote uniaxial 

tensile stress    is given by  

 tip

2

ˆ8
n ec

2
l s

ˆ

a

E

 


 

  
  

  
  . (26) 

Now recognize that 
C̂  , where 

C  is the value of tip  at
 f   ; then (26) can be re-

expressed as  

 S f

2

C2 ln sec
ˆ2ˆ

8l a

h h h

E  

  

  
    

  
  (27) 

and is valid provided that 
sa hl   and / 1h W  . This equation is an implicit relation for 

  as a function of a/h, upon noting the direct connection between   and 
f / ˆ   via the 

definition (6) for Sl :   

   

1/2

f f f

2 2

ˆ

ˆ ˆ
S

h h h

lE E

  


  

    
    

   
 .            (28) 

General analysis for an intermediate crack length  

We proceed to address the case where the combined length of a  and 
Sl  are on the order 

of, or larger than, h .  Again, an approximate analytical analysis is performed for the cohesive 

zone problem, as stated in the left hand side of Figure 6.  In order to confirm the analytical 

results of this section, we conducted additional FE calculations to compute the dependence of 

strength upon geometry and modulus mismatch ratio.  The numerical results are presented in 

Appendix B and confirm the accuracy of the analyses presented here. 

The analytical approach assumes that the crack tip displacement for the full problem (as 

given in the left hand side of Figure 6) is adequately given by the superposition of the crack 

tip opening displacement for problems (1) and (2) as stated on the right hand side of Figure 6:   

 tip (1) (2)      . (29) 

Here, (1)  is the crack-tip opening displacement for a crack of length 2a  in a linear-elastic 

sheet of infinite width of material 1 under a remote tensile stress of  
 (see case 1 of Figure 

6), and (2)  is the crack-tip opening displacement for a crack of length 2a  in a linear-elastic 

sandwich layer with Young’s modulus equal to
 

Ê , defined earlier in (15), and clamped 
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between two rigid substrates of finite width subjected to a remote tensile stress    (see case 

2 of Figure 6). This approximation is exact in the limit of 
2 1/ 0E E   and for the 

homogeneous case 
2 1/ 1E E  . 

Now make use of (26) to write the crack-tip opening displacement of case 1 as  

 (1)

1

ˆ8
n ec

2
l s

ˆ

a

E

 


 

  
  

  
  . (30) 

For case 2, the value of the J-integral taken around the crack tip is given by 

 (tip 2)ˆJ   . (31) 

However, for a linear-elastic system the value of the J-integral taken around a remote contour 

J   equals the energy-release rate, and  can be deduced from the expression for the derivative 

of the compliance as given by (19), such that 

 

2 2

1
ˆ

h a
J

WE




  
 





 . (32) 

Upon invoking the path-independence of the J-integral, (31) and (32) can be combined to 

give 

 

2 2

(2) 1
ˆ ˆ

h

E

a

W







 
 

 
   . (33) 

The relation (29) becomes, via (30) and (33), 

 

2 2tip

1

ˆ
ln sec 1

ˆ ˆ

8

2 ˆ

a

E E

a

h h W

   

  

   




 
     

  
  .  (34) 

Upon recalling the definition of 
Sl  in (6), we can rephrase Sl  as 

S C 2
ˆ/El   , where 

C  
is 

the critical crack-tip opening displacement.  At fracture, 
f   and 

C

tip  , thereby 

giving our main result 

             2
2

2

2
1

2

2 2S f f

2

1 1

8 1
n

2
l sec 1 1 1

ˆ ˆ

l aE E a

h hE WE

 
 

   

  




  







    
          

    
  . (35) 

For the case 
1 2    , this relation reduces to 
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2 22

S f f

2

1

2 2

1

1
ln s

ˆ

8
ec 1 1

ˆ2

l E E

E

a a

h h WE

  

   

         
          

     



 . (36) 

We note in passing that, in the limit of 
f

ˆ/ 0   , expression (36) reduces to 

  
2

22 2 2

2 2

f 11

1 1 1
(

1

)

a a

h

E

E h W

E E

E
 

 





   
       

  
 . (37) 

which is in close alignment with (23) upon re-writing (23) as 

  
2

2 22 2

2

11

1 1 1
1 a a

h W

E E
F

E E
 




  

      
  

  (38) 

The expressions (37) and (38) differ only by the factor 2F  in the first term on the right hand 

side of (38). Note that F , as defined in (17), is close to unity for small values of /a W . For 

example, ( / 0) 1F a W    and ( / 0.3) 1.06F a W   . Further, the first term on the right hand 

side of (37) and (38) is negligible in comparison to the second term for sufficiently small 

values of 2 1/E E . 

2.3 Regimes of behaviour 

There are four regimes of behaviour for the joint problem as defined in Figure 1. The 

four regimes can be plotted on a map with axes /a h  and 
S /l h  as follows.  First, there is a 

broad division into whether the behaviour can be described by an asymptotic limit for which 

the effect of the substrate can be ignored.  This condition is approximated by the geometric 

relation 

  S 0.3l a h    . (39) 

It is illustrated in the 
S /l h  versus /a h   failure map as a solid transition line separating 

regions A and B from regions C and D, see Figure 7. Within the adhesive-governed regime 

that satisfies (37), there is a sub-division between toughness-controlled fracture and strength-

controlled fracture, defined as follows. We adopt the criterion that strength-controlled 

fracture occurs when 
f 99/ ˆ 0.   , which implies from (27) that  

 S 3.37
l

a
   . (40) 
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This criterion has been added to Figure 7 to distinguish between regime A, where fracture is 

controlled by strength, and regime B where fracture is controlled by toughness. We 

emphasize that this boundary is independent of the value of 
2 1/E E . 

Now consider the geometries that satisfy  S 0.3l a h   such that the presence of the 

substrate needs to be accounted for.  Again there exists two sub-regions, labelled C for the 

regime of toughness-control and regime D for strength-control.  It is convenient to identify 

the boundary C/D between toughness-controlled fracture and strength-controlled fracture in 

the substrate-governed regime again by the criterion 
f . 9/ ˆ 0 9   .  The resulting trajectory 

of the C/D boundary in  s / , /l h a h  space follows directly from (36) and is expressed by 

  2 2

2

2S

1 1

3.37 0.31 1 1 1
l a a

h hE W

E E

E



  

      
  

 , (41) 

for 
1 2    .  This boundary is plotted in Figure 7 for n = 3/ 7, h/W = 0 and for 2 1/E E  

equal to zero or 0.01.  Sketches are included in Figure 7  to illustrate the relative magnitude 

of the length scales  / , /c h a h  in regimes A to D, where c is the length of the cohesive zone 

at fracture, and is, in general, different from the material length scale 
Sl .  Contours of strength 

 f
ˆ 0.1,0.35,0.99/    have also been added to Figure 7 by making use of (27) and (36).  

It is instructive to cross-plot f / ˆ 
 as a function of /a h  in Figure 8a for selected values 

of 
S /l h  and for 2 1

2/ 10E E  , n = 3/ 7, and h/W = 0.  The plots have again been constructed 

by making use of (27) and (36).  Predictions for f / ˆ 
 are included for the limit 2 1/ 0E E   

(shown as dotted lines). Recall that f / ˆ 
 can be re-written in terms of 

f 2/h E     

and of S /l h  by making use of the identity (28). Also, in the limit of an elastic, ideally brittle 

Griffith crack, ̂  is unbounded whereas f / ˆ 
 and 

S /l h  both vanish. The non-dimensional 

strength   remains finite in this limit. Thus   has been plotted as a function of /a h   in 

Figure 8b in order to make contact with the results for the Griffith crack, recall Figure 5.  

Now re-consider Figure 7, and focus on the transitions from regime to regime with 

increasing /a h , for 3 selected values of  S /l h  = 10-3, 0.1 and 1. First, for  S /l h  = 10-3, the 

active fracture mode switches from the adhesive-governed regime B to the substrate-
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governed regime C with increasing /a h . Both regimes B and C are toughness-controlled. 

The plot of   versus /a h  for 2 1/ 0E E   in Figure 8b is indistinguishable from that for 

2 1

2/ 10E E   in regime B, but the predictions become sensitive to the value of 2 1/E E  with 

increasing /a h  in regime C.   

Second, assume a small length of plastic zone, as parameterised by 
S /l h  = 0.1, in the 

map of Figure 7;  with increasing /a h  there is a transition from strength-control, regime A, 

to toughness-control, regimes B and then C.  In regime A, f / ˆ 
 equals unity (see Figure 

8a).  Then, for 0.03 < /a h  < 0.25 regime B is active, such that the crack and its cohesive zone 

are shorter than the adhesive height (a + lS < 0.3h) and f / ˆ 
 drops with increasing /a h , 

see Figures 8a or 8b.  At longer crack lengths, /a h  > 0.25, regime C is entered and the 

strength f / ˆ 
 is below the yield value of unity and independent of /a h  for 2 1/ 0E E  , see 

Figure 8a. In contrast, for 2 1

2/ 10E E  ,  f / ˆ 
 decreases with increasing /a h  due to the 

fact that the crack (and cohesive zone) are embedded within the outer K-field of the substrate, 

and the long crack asymptote (12) is approached. 

Third, consider the case 
S /l h  = 1 in the map of Figure 7.  The response is in regime D 

such that f / ˆ 
 =1 for the choice 2 1/ 0E E   and all /a h .  Alternatively, for 2 1

2/ 10E E  , 

the response switches from strength control (regime D) to toughness-control (regime C) at 

/a h  = 15, and for crack lengths that exceed this transition value f / ˆ 
 drops with crack 

extension: the crack (and cohesive zone) are embedded within the outer K-field of the 

substrate in a similar manner to that discussed for 
S /l h  = 0.1.  

The transition from strength control (regime D) to toughness control (regime C) in the 

fracture map of Figure 7 occurs at a value of /a h  that depends upon both the modulus 

mismatch 2 1/E E  and S /l h .  This C/D boundary is re-plotted in Figure 9 using axes of 

 S2 1,/ /l hE E  and contours of /a h , for the choicen = 3/ 7 and h/W = 0.  The map has the 

following useful interpretation:  for any given adhesive/substrate combination, the values of 

 S2 1,/ /l hE E  are known and this combination of properties and geometry (via h) can be 

plotted as a point on Figure 9.  Thereby, the transition value of /a h  from strength to 
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toughness controlled fracture can be identified.  It is notable that the transition value of /a h  

equals 0.1 for a very wide range of modulus mismatch 2 1/E E  for the choice 
S /l h  = 0.3. 

It remains to provide experimental support for the above theory, and in particular to 

confirm the existence of the competing failure regimes of Figure 7.  This is now addressed in 

the following section for the choice of an ‘adhesive layer’ made from cellulose acetate and 

substrates made from an aluminium alloy.  The measured value of 
Sl  equals 1 mm for the 

cellulose acetate, and two values of layer thickness are employed, h =1 mm and 5 mm.  Thus, 

S /l h  equals 0.2 and 1, along with 2 1/E E  = 0.09; these values have been added to the map of 

Figure 9, and values of crack length /a h  are employed to ensure that failure is by plastic 

collapse within regime D (sufficiently small /a h ) or within regime C (toughness-controlled 

at a sufficiently large /a h  ) for the choice of 
S /l h  = 1.  The details are as follows. 

3. Tensile strength of a cellulose acetate-aluminum sandwich layer 

3.1 Test method 

Consider a centre-cracked sandwich specimen, with a cellulose acetate strip sandwiched 

between aluminum substrates as shown in Figure 10. The sandwich layer comprises a 

cellulose acetate strip4 of thickness  t = 40 μm adhered to two aluminum alloy substrates5, 

and of identical thickness to that of the cellulose acetate strip.  In turn, the aluminium alloy 

substrates are adhered to aluminium alloy extension sheets of thickness 1.5 mm, which are 

loaded in tension by the loading pins of a screw-driven test machine (see Figure 10).   The 

longitudinal direction of the cellulose acetate tape is aligned with a centre-crack of length 2a 

and with the x-axis, as shown in Figure 10.   

The tensile failure strength f


 of the sandwich layer was measured as a function of 

crack length 2a .  The remote tensile stress was deduced from the applied load as 

 
2

P

Wt
    . (42) 

Tests were performed for h  1 mm and 5 mm, and for a range of crack lengths between 

1a   mm to 25a   mm, for both values for h .  The tests were conducted at a displacement 

rate of 1 mm s-1 for the specimens with 5h   mm, and at a rate of 0.2 mm s-1 for the 

                                                 
4 Scotch Magic 810 tape from 3M (Maplewood, US). The adhesive thickness is negligible compared to that of 

the cellulose acetate. 
5 AT500 tape from Advance Tapes International Ltd (Thurmaston, UK). The adhesive layer thickness is 

negligible to that of the aluminium alloy. 
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specimens with 1h   mm, to ensure a constant value of strain rate within the cellulose 

acetate tape (remote from the crack tip). At least three tests per joint geometry were 

conducted. 

Additional measurements were performed to characterize the mechanical properties of 

the cellulose acetate tape, at nominal strain rates ranging from 10-3 s-1 to 10-1 s-1.  A flat 

dogbone geometry, as shown in Figure 11a, with the longitudinal direction of the tape aligned 

along the loading direction, was used to determine the nominal stress-strain curve. At least 

three uniaxial tensile tests were conducted for each strain rate. The nominal stress-strain 

curve was also measured in uniaxial tension at a nominal strain rate of 10-1 s-1 using the strip 

specimen shown in Figure 11b, for which the longitudinal direction of the tape was 

orthogonal to the loading direction. The nominal strain in the uniaxial tensile tests was 

measured using a laser extensometer over a gauge length of 10 mm.  

The critical mode-I (plane-stress) stress-intensity factor 
cK  of the cellulose acetate tape 

was measured using a double edge-notched tension (DENT) specimen6.  The T-L DENT 

specimen (defined in Figure 11c) contained an initial pre-crack aligned with the longitudinal 

direction of the tape, whereas the L-T DENT specimen (defined in Figure 11d) contained an 

initial pre-crack aligned with the transverse direction of the tape.  The pre-cracks were cut 

with a sharp razor blade, and the plane-stress, mode I fracture toughness 
cK  was calculated 

by making use of the relation 

 c f aK F    , (43) 

where f


 is the tensile failure strength of the specimen corresponding to the peak load, and 

the finite width-correction factor F(a/W) is (Benthem and Koiter, 1972; Tada et al., 2000)   

  

32 1 24 /

0.201.122 0.561 0.471 0.19 15
a a a a a

F
W W W W W



     
      

   

   
       

    
  . (44) 

The length a of the pre-crack ranged from a = 1 mm to a = 6 mm for both the T-L and the L-

T DENT specimens.  Two tests were conducted for each value of a and for each geometry, 

using a cross-head speed of 1 mm s-1.  

                                                 
6 It is shown in the following section that the plastic zone size for a long crack in the cellulose acetate tape is 

close to 1 mm. This value exceeds the tape thickness of 40 μm, thereby justifying the plane stress analysis 

assumption. 
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Write P  and K  as the time-rate of change of load and of the remote stress intensity 

factor, respectively.  Then, K  is given by 

 
 

1

2

t
K

w

a
P


    (45) 

where   and  refer to the nominal width and thickness, respectively, of the DENT 

specimens. The dependence of 
cK  upon  K

 for the T-L DENT specimen geometry of 

Figure 11c was investigated by selected values of the cross-head speed from 0.3 mm s-1 to 6 

mm s-1 for an initial crack length a = 2 mm.   

 

3.2  Material characteristics and sandwich specimen strength 

 

Tensile and fracture toughness responses of the cellulose acetate tape 

The nominal stress 
n  is plotted as a function of nominal strain 

n  in Figure 12 for both 

tensile geometries.  A small degree of anisotropy is evident.  The measured values7,8 of 

Young’s modulus E and yield strength 
y  for each strain rate are reported in Table 1. The 

measured load versus cross-head displacement curves of the DENT specimens were linear in 

nature (not shown), and the maximum load corresponded to brittle fracture with unstable 

crack propagation from the tip of the pre-crack. The measured plane stress fracture toughness 

cK  of the cellulose acetate tape is plotted as a function of initial crack length /a W in Figure 

13a.  The effect of loading rate upon 
cK  is reported in Figure 13b.  Within the range 

explored, the value of 
cK  is independent of crack length, crack orientation and loading rate.  

Based upon a total of 34 individual measurements,  
cK  = 3.0 ± 0.4 MPa m  (where the 

uncertainty corresponds to a 95% confidence level of two standard deviations).  

Tensile strength of the sandwich layer 

The measured failure strength f / ˆ 
 of the centre-cracked cellulose acetate-aluminium 

sandwich layer is reported in Figure 14 as a function of crack length a/h for h/W = 0.1 and 

                                                 
7 The Young’s modulus is based on the slope of the initial linear part of the measured nominal stress versus 

nominal strain curves. 
8 The yield strength corresponds to the value of the peak load subsequent to the initial linear, elastic regime of 

the measured load versus cross-head displacement curve. 

w t
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h/W = 0.02.  For this plot, we have assumed that ̂  equals 54 MPa, corresponding to the 

average tensile yield strength of the strip specimen (see Figure 12) at a strain rate of 10-1 s-1.   

In order to include predictions according to (35) in Figure 14, it is first necessary to 

deduce the value of Sl .  This, and other pertinent material properties, were estimated as 

follows. The elastic constants, E  and  v  are simply taken as their plane-stress values of E  

and  . At the appropriate strain rate, 
2E   equals  6.4 GPa and 

2  
is taken to be 0.38 (Tsou et 

al., 1995). Upon assuming  
1/2

c 2 0.43.0K E   
 
MPa m , the material length scale for 

the cellulose acetate material is Sl  0.98  mm via (6). The modulus of aluminum is 
1E  

= 70 GPa and 
1  equals 0.33 (Callister, 2007), implying a modulus mismatch of 

2E /
1E = 

0.09. 

The predictions (35) are shown in Figure 14 for three assumed values of Sl  as follows.  

The solid line and dotted lines for h/W=0.02 are for the mean value Sl = 0.98 mm and the 

upper and lower limits ( Sl  equals 1.26 mm and 0.70 mm, respectively).  Note that the mean 

value of S /l h  equals 1 for this choice of h/W=0.02, and this implies that regime D is active 

for a/h < 3 while regime C is active for a/h > 3, recall Figure 9. The measured strengths 

broadly support this: the strength drops with increasing a/h in the regime C of toughness 

control.  The strength ratio f / ˆ 
 is close to 0.9 at a/h < 0.3, which is within 10% of the 

plastic collapse load, f
ˆ 1/   . The source of this minor discrepancy is unclear; the analysis 

neglects the strain rate sensitivity of ̂  and assumes perfect bonding between the cellulose 

acetate strip and the substrates. A detailed investigation into the sources of the discrepancy is 

beyond the scope of the present paper. 

Now consider the case h/W = 0.1.  Then, the thick dashed assumes a mean value Sl  = 

0.98 mm, whereas the dotted lines assume upper and lower limiting values of Sl  equal to 1.26 

mm and 0.70 mm, respectively.  Note that the mean value of S /l h  equals 0.2 for this choice 

of h/W = 0.1.  Examination of the maps of Figures 7 and 9 reveals that regime C (toughness-

control) dominates over strength control, regime D, and the measurements support this: the 

strength drops with increasing a/h as predicted by (35), to within scatter.  In summary, the 

 0.28
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analytical model, with the attendant fracture maps of Figures 7 and 9, is supported by the 

series of experiments, confirming the existing of the competing failure regimes. 

Concluding remarks 

Our study highlights a number of fundamental features of a cracked, elastic sandwich 

layer that have received minor attention in the literature to date.  Most notably, a large region 

of almost constant tensile stress exists ahead of a crack tip, when the sandwich layer has a 

much lower Young’s modulus than that of the substrate. Consequently, the existence of an 

outer K field for the cracked sandwich specimen may require a large specimen, or 

engineering structure.  Comprehensive maps are presented to show regimes of failure 

mechanism as a function of elastic mismatch and material non-linearity (in deformation and 

fracture response), as modelled by a tensile cohesive zone at the crack tip.  

The tensile strength of an adhesive joint, comprising an adhesive layer made from a 

linear, elastic material of Youngs modulus 
2E  and two substrates made from a linear, elastic 

material of modulus 
1E , is predicted as a function of crack length and material mismatch 

ratio, 
12 /E E . Consider first the case of an elastic-brittle response for a Griffith crack. The 

relation between the normalized tensile strength and normalized crack length switches from 

an adhesive-governed regime for the case where the crack is much smaller than the adhesive 

layer height to a substrate-governed regime for the case where the crack is much longer than 

the adhesive layer height. The normalized strength of the joint is independent of normalized 

crack length for intermediate crack lengths up to a value on the order of 
1 2/hE E . The role of 

crack tip plasticity on the normalized strength versus normalized crack length trend is 

explored by the use of a strip yield model and design diagrams are constructed. The 

developed analytical theory is verified by finite element calculations. Further, the observed 

dependence of tensile strength of a sandwich layer upon crack length is validated by a series 

of tests on a centre-cracked cellulose acetate tape sandwiched between two aluminium alloy 

substrates. 
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Table 1 Measured Young’s modulus E  and yield strength y
 
 of the cellulose acetate 

tape. The uncertainty corresponds to a 95% confidence level of two standard 

deviations.  The dogbone geometry is sketched in Figure 11a, and the strip 

geometry is sketched in Figure 11b. 

 

 

 

 

 

 

  

n  (s-1) 
 

 

Geometry 

 

    Dogbone 

 

    Dogbone 

 

 

  Dogbone 

 

    Strip 

) (GPaE y ) (MPa

310 1.7 0.6 36.1 2.8

210 3.2 0.9 45.3 3

110 7.1 0.8 56.1 4.4

110 6.4 1.0 53.9 4.8
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List of figure captions 

Figure 1  Cross-sectional view of a sandwich joint consisting of an adhesive layer of 

thickness 2h, with a through-thickness crack of length 2a, and loaded by a remote stress   .  

The traction-separation law for the cohesive zone in the adhesive is shown on the right, and 

results in a cohesive zone of length c at the crack tip. 

 

Figure 2  A linear-elastic adhesive layer (material 2) of height 2h is sandwiched between 

two linear-elastic substrates (material 1).  A semi-infinite crack in the adhesive layer exists on 

the mid-plane of the adhesive layer, parallel to the interfaces.  The joint is subjected to a 

remote mode I loading of magnitude, K
. 

 

Figure 3  The tensile stress distribution directly ahead of a semi-infinite crack in a 

sandwich layer. (a) The tensile stress is normalized by K
 and the modulus mismatch ratio is 

1

2

2 / 10E E  ;  (b) The tensile stress is normalized by 
tipK . 

 

Figure 4  Superposition procedure to calculate the K-calibration for a Griffith crack in an 

elastic layer. 

 

Figure 5  Strength   versus normalized crack length a/h for an elastic-brittle Griffith 

crack, (a) for / 0h W   and (b) for 
1 2/E E =10-2.  The dotted lines are the asymptote (12), 

while the solid lines are (23) in regime C and (10) in regime B. 

 

Figure 6  Superposition procedure to calculate the macroscopic tensile strength of a 

centre-cracked sandwich layer, for finite values of 
Sl , and  a is comparable to, or larger than  

h. 

 

Figure 7  Failure mechanism map for centre-cracked sandwich specimen for h/W = 0 and 

the 2 choices 
2

2 1/ 10E E   (solid line) and 2 1/ 0E E   (dashed line).  The contours of 

strength are given by (36) in regimes C and D, and by (27) in regimes A and B. 

 

Figure 8 Strength predictions for h/W = 0, and 
2 1

2/ 10E E   (solid line) or 
2 1/ 0E E   

(dashed line) (a) 
f / ˆ   versus /a h ; (b)   versus /a h . In both figures, predictions are 

given by (27) for S /   0.1l h   and /a h  < 0.3.  Otherwise, (36) is used. 
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Figure 9 Boundary between regimes C and D in a map of 
S /l h  versus 

2 1/E E , for selected 

values of /a h , for h/W = 0.  The two data points denote the experimental parameters that are 

measured for cellulose acetate- aluminium alloy in the experimental study. 

 

Figure 10 Sandwich specimen made from cellulose acetate tape containing a centre-crack 

of length  adhered to a tape of an aluminium alloy. L = 35 mm and W = 50 mm. The 

double arrow gives the longitudinal direction of the tape. 

 

Figure 11 Materials tests on cellulose acetate tape. (a) Dogbone geometry with the tensile 

load applied along the longitudinal direction of the tape (W = 24 mm, w = 6.4 mm, h = 40 

mm, L = 50 mm, R = 15.6 mm).  (b) A strip geometry with the tensile load applied along the 

transverse direction of the tape (w = 10 mm, h = 14 mm).  (c) A T-L DENT specimen with w 

= 24 mm, h = 10 mm, and (d) a L-T DENT specimen with w = 24 mm. 

 

Figure 12 Nominal stress, 
n , plotted as a function of nominal strain, n , for the cellulose 

acetate tape in uniaxial tension at 3 nominal strain rates using the dogbone specimen of  

Figure 11a, and at a nominal strain rate of 10-1 s-1 for the strip (S) specimen of Figure 11b, as 

indicated by "S" on this plot. Crosses at the end of the curve denote failure of the specimen. 

 

Figure 13  Plane-stress, fracture-toughness measurements for the cellulose acetate tape: 

(a) 
cK  versus a/W, for the geometries shown in Figure 11c and 11d; (b) 

cK  versus K .  Crack 

length a is measured to an accuracy of 0.2 mm. The mean and range of fracture toughness 

values are included in each figure as a solid line and dotted lines, respectively. 

 

Figure 14 Measured and predicted strength 
f / ˆ   of sandwich specimens versus /a h   

for /h W  = 0.1 and /h W  = 0.02. The values of S /l h  are 0.2 and 1 for /h W  equal to 0.1 and 

0.02, respectively. 
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Figures 

 

 

Figure 1  Cross-sectional view of a sandwich joint consisting of an adhesive layer of 

thickness 2h, with a through-thickness crack of length 2a, and loaded by a 

remote stress   .  The traction-separation law for the cohesive zone in the 

adhesive is shown on the right, and results in a cohesive zone of length c at the 

crack tip. 
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Figure 2  A linear-elastic adhesive layer (material 2) of height 2h is sandwiched 

between two linear-elastic substrates (material 1).  A semi-infinite crack in the 

adhesive layer exists on the mid-plane of the adhesive layer, parallel to the 

interfaces.  The joint is subjected to a remote mode I loading of magnitude, 

K
.  
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Figure 3  The tensile stress distribution directly ahead of a semi-infinite crack in a 

sandwich layer. (a) The tensile stress is normalized by K
 and the modulus 

mismatch ratio is 
1

2

2 / 10E E  ;  (b) The tensile stress is normalized by 
tipK .  
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Figure 4  Superposition procedure to calculate the K-calibration for a Griffith crack in 

an elastic layer.  
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Figure 5  Strength   versus normalized crack length a/h for an elastic-brittle Griffith 

crack, (a) for / 0h W   and (b) for 
1 2/E E =10-2.  The dotted lines are the 

asymptote (12), while the solid lines are (23) in regime C and (10) in regime 

B. 
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Figure 6  Superposition procedure to calculate the macroscopic tensile strength of a 

centre-cracked sandwich layer, for finite values of 
Sl , and  a is comparable to, or larger than  

h.   
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Figure 7  Failure mechanism map for centre-cracked sandwich specimen for h/W = 0 

and the 2 choices 
2

2 1/ 10E E   (solid line) and 2 1/ 0E E   (dashed line).  The 

contours of strength are given by (36) in regimes C and D, and by (27) in 

regimes A and B. 
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Figure 8 Strength predictions for h/W = 0, and 
2 1

2/ 10E E   (solid line) or 
2 1/ 0E E   

(dashed line) (a) 
f / ˆ   versus /a h ; (b)   versus /a h . In both figures, predictions 

are given by (27) for S /   0.1l h   and /a h  < 0.3.  Otherwise, (36) is used. 



33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Boundary between regimes C and D in a map of 
S /l h  versus 

2 1/E E , for 

selected values of /a h , for h/W = 0.  The two data points denote the 

experimental parameters that are measured for cellulose acetate- aluminium 

alloy in the experimental study. 
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Figure 10 Sandwich specimen made from cellulose acetate tape containing a centre-

crack of length  adhered to a tape of an aluminium alloy. L = 35 mm and W 

= 50 mm. The double arrow gives the longitudinal direction of the tape. 
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Figure 11 Materials tests on cellulose acetate tape. (a) Dogbone geometry with the 

tensile load applied along the longitudinal direction of the tape (W = 24 mm, w 

= 6.4 mm, h = 40 mm, L = 50 mm, R = 15.6 mm).  (b) A strip geometry with 

the tensile load applied along the transverse direction of the tape (w = 10 mm, 

h = 14 mm).  (c) A T-L DENT specimen with w = 24 mm, h = 10 mm, and (d) 

a L-T DENT specimen with w = 24 mm. 
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Figure 12 Nominal stress, 
n , plotted as a function of nominal strain, n , for the 

cellulose acetate tape in uniaxial tension at 3 nominal strain rates using the 

dogbone specimen of  Figure 11a, and at a nominal strain rate of 10-1 s-1 for 

the strip (S) specimen of Figure 11b, as indicated by "S" on this plot. Crosses 

at the end of the curve denote failure of the specimen.   
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Figure 13  Plane-stress, fracture-toughness measurements for the cellulose acetate tape: 

(a) cK  versus a/W, for the geometries shown in Figure 11c and 11d; (b) cK  

versus K .  Crack length a is measured to an accuracy of 0.2 mm. The mean 

and range of fracture toughness values are included in each figure as a solid 

line and dotted lines, respectively. 
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Figure 14 Measured and predicted strength 
f / ˆ   of sandwich specimens versus /a h   

for /h W  = 0.1 and /h W  = 0.02. The values of S /l h  are 0.2 and 1 for /h W  

equal to 0.1 and 0.02, respectively.   

.  
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Appendix A: A semi-infinite crack in a sandwich layer 

The stress state ahead of the tip of a semi-infinite crack in a sandwich layer in a state of 

plane stress, and subjected to a remote stress intensity factor K , is determined by finite 

element (FE) calculations using the implicit solver of ABAQUS (version 6.14).  Recall that 

the crack geometry, absent a cohesive zone, has already been defined in Figure 2. The 

displacement field associated with a remote mode-I K - field of magnitude K is applied on 

a semi-circular outer boundary of radius R enclosing the crack tip (Irwin, 1957; Anderson, 

2005) as specified by  
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where u
x
 and u

y
 are the horizontal and vertical displacements of the nodes of the semi-

circular boundary in terms of polar ( ) coordinates, and plane strain conditions are 

assumed. The substrate and the adhesive layer are discretised by 8-noded bi-quadratic plane 

strain elements with reduced integration (CPE8R), and quarter-point elements are used at the 

crack tip. We take R = 180 000h, and the total number of elements is approximately 10 000.  

The Young’s modulus of the substrate material 
1E
 
is held fixed while a range of values are 

assumed for the Young’s modulus of the adhesive layer; the Poisson’s ratios of substrate and 

layer are held fixed at 
1 2 0.3v v v   , implying that / (1 )     = 3/7.  The predicted 

distribution of the tensile stress component yy  along the crack is given in Figure 3. 

 

Appendix B: Finite element validation of the analytical theory 

Two dimensional finite FE simulations are performed using the implicit solver of 

ABAQUS (version 6.14). First, the macroscopic strength of the sandwich layer shown in 

Figure 1 is computed as a function of crack length for the case where the cohesive zone at the 

crack tip is absent, l
S
 = 0.  The effect of modulus mismatch and adhesive layer thickness on 

,r 
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the strength of the joint is explored. Second, a layer of tensile cohesive elements is added 

directly ahead of the crack tip. 

B.1  Finite element simulations for a crack in an elastic sandwich layer absent a 

cohesive zone  

We model the sandwich layer by treating both the adhesive and the substrate as isotropic, 

elastic solids. The length of the cohesive zone c  equals zero, see Figure 1. Simulations are 

performed for normalized crack lengths ranging from /a h  = 0.1 to  /a h  = 30, with 

1/ 10h W   and 2/ 10h W  .  The ratio of Young’s modulus of the adhesive 
2E  to that of 

the substrate ranges from 10-3 to 0.1, with
 1 2 0.3v v v   .  Only a quarter of the sandwich 

specimen is modeled due to the symmetry of the problem. The substrate and the adhesive 

layer are discretized by 8-noded bi-quadratic plane strain elements (CPE8). A quarter point 

element is located at the crack tip and the mesh is refined close to the crack tip. The total 

number of elements is a function of the crack half-length a  and lies in the range of 100 000 

to 200 000. A finite value of remote tensile stress  

 is applied, and the J-integral is 

evaluated at the crack tip.  Upon writing G = J  and   = s
f

¥ , the predicted normalized 

strength   is obtained and plotted as a function of normalized crack length /a h , see Figure 

B1a for a modulus mismatch ratio
 2 1/E E

 
= 10-1. The analytical predictions (10) for the 

adhesive-governed strength regime and (23) for the substrate-governed strength regime are 

included in Figure B1a, and good agreement is noted between the FE predictions and the 

analytical theory. Since the FE analysis assumes plane strain, with 0.3  , the appropriate 

values for   and 
2 1/E E  in the analytical model are given by 3 / 7   and 

2 1 2 1/ /E E E E . 

Equation (23) slightly overestimates   as obtained by the FE simulations in the regime 

where the crack length is comparable to the adhesive layer height.  Recall that the prediction 

(12) for a long crack (a/h >> 1) neglects the presence of the adhesive layer in the Irwin 

relation (9). This asymptote is included in Figure B1a:  the formula (23) converges to (12) for 

a/h > 10.   

The computed   versus /a h  characteristic, as obtained by FE analysis, is plotted in 

Figure B1b for 2 1/E E
 
= 10-2  and in Figure B1c for

 2 1/E E
 
= 10-3. The predictions (10) for 

the adhesive-governed strength regime and (23) for the substrate-governed strength regime 

are included in both figures. Excellent agreement is noted between the predicted values for 

  by the analytical theory and by the FE model for the explored range of /a h  values.  
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Recall that the remote K-field, K , only exists for a sufficient long crack, as discussed in 

relation to (4).  The long-crack asymptote (12) has been added to Figures B1b and B1c, and it 

is expected to align with the prediction (23) for values a/h beyond the range plotted. 

 

B.2  Finite element simulations for a crack in an elastic sandwich layer with a cohesive 

zone  

The strength of the sandwich specimen, as defined in Figure 1, has also been computed 

by accounting for the presence of a cohesive zone at the crack tip. A layer of tensile cohesive 

elements is now included in the FE model of the previous section. The tensile cohesive zone 

extends along the x-axis from the crack tip to the free surface at the right-hand side of the 

sandwich layer. The traction T  versus separation    law of the cohesive elements is linear 

with slope k until  T  attains the cohesive strength ̂ , beyond which ˆT  . We treat the 

adhesive and the substrate as isotropic, homogeneous and linear, elastic materials. 

Simulations are performed for normalized crack lengths ranging from /a h  = 0.03 to /a h  = 

30, for 1/ 10h W   and for 2/ 10h W  . As for the FE simulations absent a cohesive zone, 

the Young’s modulus of the substrate material 
1E
 
is held fixed while a range of values are 

assumed for the Young’s modulus of the adhesive layer; the Poisson’s ratios of substrate and 

layer are held fixed at 
1 2 0.3v v v   . 

The substrate and the adhesive layer are meshed by 8-noded bi-quadratic plane strain 

elements (CPE8), and 4-noded cohesive element (COH2D4) are used for the cohesive 

elements. Define 
el  

as the characteristic cohesive element size. Then, for an accurate 

numerical solution, we require 
2e / 1l k E  . Additionally, el has to be sufficiently small to 

resolve the cohesive zone at the crack tip:
 e S/ 1l l   (del Busto et al., 2017). A mesh 

sensitivity study led to the choice 2e /l k E   100. The total number of elements depends upon 

the choice of a  and lies between 150 000 and 250 000.  

For each simulated geometry, the remote tensile stress    is incremented in the range 

0 1/ ˆ .    to .9/ ˆ 0 9   , and the associated value of cohesive zone opening at the crack 

tip 
tip  is determined.  Upon writing f   , the toughness  corresponding to any 

imposed value of   is obtained by 


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2
tip ˆ

2
ˆ

k


    (B.1) 

and thereby the value of Sl  via (6).  The FE predictions are presented in the form of maps 

with axes ( /a h , S /l h ) for a modulus mismatch ratio 
2 1/E E

 
of 10-1,  10-2 and 10-3, in Figures 

B2a, B2b and B2c, respectively. In each plot, contours of / ˆ   are presented for 

1/ 10h W   and 2/ 10h W  , and the analytical formulae (27) and (36) are included, along 

with the active failure regime, as implied by the analytical formulae. The analytical 

predictions are in close alignment with the FE results. 
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Figures Appendix 
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Figure B1  Predicted   versus /a h   data by the FE model for 1/ 10h W   and 
2/ 10h W   for (a) 1

2 1 1/ 0EE  ; (b) 2

2 1 1/ 0EE  ; and (c) 3

2 1 1/ 0EE  . In 

regime B, the strength is predicted by (10). In regime C, the strength is 

predicted from (23). The dotted asymptotic limit lines in regime C are given 

by (12). 
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Figure B2  Failure map of 
S /l h  versus normalized crack length /a h  for 2/ 10h W   and 

1/ 10h W  . (a) 1

2 1 1/ 0EE  ;  (b) 2

2 1 1/ 0EE  ; and (c) 3

2 1 1/ 0EE  .   
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