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Abstract

Recent advances in additive manufacturing methods make it possible, for the first time, to manufacture

complex micro-architectured solids that achieve desired stress versus strain responses. Here, we report ex-

perimental measurements and associated finite element (FE) calculations on the effect of strut shape upon

the tensile response of two-dimensional (2D) lattices made from low-carbon steel sheets. Two lattice topolo-

gies are considered: (i) a stretching-dominated triangular lattice and (ii) a bending-dominated hexagonal

lattice. It is found that strut waviness can enhance the ductility of each lattice, particularly for bending-

dominated hexagonal lattices. Manufacturing imperfections such as undercuts have a small effect on the

ductility of the lattices but can significantly reduce the ultimate tensile strength. FE simulations provide

additional insight into these observations and are used to construct design maps to aid the design of lattices

with specified strength and ductility.
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1. Introduction

Recent advances in manufacturing methods [1, 2] have facilitated the manufacture of lattice materials with

complex topologies over a wide range of length scale. This class of materials is used in a large variety

of engineering applications, e. g. tower structures in civil engineering, the cores of lightweight sandwich

panels, and microscopic mechanical filters [3]. In the present study, we consider the tensile behaviour of 2-

dimensional (2D) triangular and hexagonal lattices. This choice of lattice topology is motivated by the broad
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range of their mechanical properties: stretching-dominated triangular lattices have high in-plane stiffness

and strength whereas hexagonal lattices are compliant, bending-dominated structures [4, 5]. Wavy struts

of sinusoidal shape are introduced in order to modify the macroscopic stress versus strain response of each

lattice.

1.1. Tensile deformation of lattice materials

Two-dimensional (2D) lattices of triangular and hexagonal geometry comprise struts of node-to-node length

` and in-plane strut thickness t. The macroscopic properties of these lattices scale with their relative density

ρ, as defined by the ratio of volume occupied by solid material to the total volume of the lattice. For straight

slender struts, the relative density ρ scales linearly with the stockiness t/` of each strut according to

ρ = A
t

`
(1)

where the coefficient A depends upon the architecture of the lattice (A equals 2
√

3 for triangular lattices

and 2/
√

3 for hexagonal lattices [6]). It is evident that, for the same value of t/`, triangular lattices have a

greater density than to hexagonal lattices. Note that Eq. (1) is an approximation as it neglects the volume

of the nodes of the lattice but it suffices for low relative densities (typically ρ < 0.2).

Consider a lattice made from elastic, perfectly plastic cell walls of elastic modulus Es and yield strength

σYS. Then, the macroscopic in-plane modulus E and yield strength σY of an infinite periodic lattice scale

with ρ via the relations [6]

E = CρcEs and σY = DρdσYS (2)

where C = 1/3, c = 1, D = 1/3, and d = 1 for the triangular lattice and C = 3/2, c = 3, D = 1/2, and

d = 2 for the hexagonal lattice [6, 7].

While Eqs. (2) characterise the small strain response, the response under finite deformations is more complex.

For example, the uniaxial tensile response of an elastoplastic hexagonal lattice exhibits four regimes, as

discussed by Tankasala et al. [5] and Ronan et al. [8]. The sequence of deformation modes with increasing
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applied macroscopic strain are: (i) elastic bending of struts, (ii) plastic bending of struts (iii) elastic stretching

of struts as the inclined struts rotate towards loading direction, and finally (iv) plastic stretching of the

struts aligned with the loading direction. In contrast, triangular lattices deform by stretching at low levels

of applied strain and exhibit three regimes: (i) elastic stretching of struts, (ii) plastic stretching and rotation

of the struts towards the direction of macroscopic straining, and (iii) a final regime involving stretching of

struts that are aligned with the loading direction [5]. Failure may intervene during any of these regimes

depending upon the properties of the cell wall material.

1.2. Classes of lattices

Typically, lattices are bending-dominated (hexagonal) or stretching-dominated (triangular) structures. Fur-

thermore, each strut can comprise a finer-scaled lattice, with a bending or stretching response at this lower

length scale [9]. The following cases are considered in this study:

(i) stretching lattice: A triangular lattice possesses a sufficiently high nodal connectivity (Z = 6) that the

lattice is stretching-dominated. Provided each strut is straight, deformation of the lattice induces

stretching of each strut and thus we shall refer to the topology as stretching on the lattice scale as

well as stretching on the strut scale. Such a lattice has a high modulus and inherits the ductility of

the cell wall material [10].

(ii) stretching-bending lattice: Now consider a stretching-dominated lattice such as the triangular lattice,

with struts which have enhanced axial compliance due to waviness of the struts. We refer to such a

lattice as a stretching-bending lattice.

(iii) bending lattice: A hexagonal lattice with straight struts deforms by bending of the struts. The presence

of strut waviness has a negligible effect upon the bending stiffness of the strut and thereby has a

negligible effect upon the macroscopic compliance. We refer to this lattice as a bending lattice.

1.3. Imperfections in struts

The sensitivity of modulus, strength, and ductility to imperfections within a foam or a lattice has been

studied systematically, see for example [5–8, 11–17]. Imperfections include missing struts, misaligned struts,
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misplaced joints, Plateau borders and cell-level inclusions for the case of metallic foams [8]. Recently, the

sensitivity of the dispersion in macroscopic properties to the statistical distribution of imperfections has

been analysed for brittle [18] and visco-plastic honeycombs [19] made by rapid prototyping: a scatter in

strut thickness and in strut ductility have a major detrimental effect on the macroscopic strength.

1.4. Influence of strut waviness on macroscopic properties

Wavy struts can have a profound influence on the macroscopic properties of lattice materials: lattices

comprising wavy struts allow tuneable Poisson’s ratio [20] and macroscopic stiffness [21]. Symons and Fleck

[11] and Grenestedt [22] predicted the influence of sinusoidal strut waviness on the macroscopic stiffness of

triangular, stretching-dominated lattices. The axial stiffness k of a strut with such waviness of amplitude a

is [11]

k = Est

`

1
1 + 6(a/t)2 (3)

where t is the strut thickness, ` the node-to-node strut length and Es is the axial modulus of the parent

material. Thus, a waviness amplitude a/t = 2 leads to a knock-down in the axial stiffness of the strut

by a factor of 25 and consequently there is a similar knock-down in the overall modulus of a triangular

lattice comprising such wavy struts. While waviness reduces lattice stiffness it can enhance lattice ductility.

For example, Ma et al. [23, 24] and Jang et al. [21] investigated polyimide lattices materials comprising

horseshoe-shaped struts embedded in a soft polymeric matrix. The inherent waviness of the horseshoe

shaped struts significantly enhanced the ductility of these lattices.

1.5. Scope of study

The aim of the current study is to investigate lattice designs that deliver desired ductilities and ultimate

strengths. We constructed two-dimensional (2D) steel lattice materials of constant relative density ρ =

0.1 and made from wavy struts. Detailed measurements of the tensile responses of the lattice materials,

their manufacturing induced defects and their constituent materials are reported. The measurements are

accompanied by FE simulations that include the observed manufacturing defects. The combined effect of

strut waviness and manufacturing defects is mapped out by FE simulations for both the bending-dominated
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and stretching-dominated lattices to give guidelines for the design of lattice materials comprising wavy

struts.

2. A preliminary assessment of the significance of undercut and waviness

A major focus of this study is to understand the interplay between as-designed “imperfections” such as

strut waviness, and typical as-manufactured defects. A preliminary examination of steel hexagonal and

triangular lattices manufactured by water-jet cutting revealed the presence of undercuts near joints; see the

3-dimensional (3D) computerised tomography (CT) scan images shown in Fig. 1(a) for both triangular and

hexagonal lattices. Here we report a finite element (FE) assessment of these undercuts by modelling their

effect on the tensile response of a single straight strut or wavy strut.

Consider a two-dimensional (2D) strut of length `, in-plane thickness t, sinusoidal waviness of amplitude

a and out-of-plane thickness B (Fig. 1(b)). We introduce an undercut into this strut at a distance ξ from

one end of the strut, with the undercut characterised by its radius rs and depth e as shown in Fig. 1(b).

The plane strain tensile response of the strut was analysed via FE simulations using the commercial finite

element package Abaqus. The strut was discretised by quadratic elements (CPE8 in the Abaqus notation)

with 10 elements across the strut thickness. The solid material is idealised by a deformation theory solid

with a tensile stress versus strain response parameterised by the Ramberg-Osgood relationship

ε

ε0
= σ

σ0
+ α

(
σ

σ0

)1/N

(4)

with the choice of parameters ε0 = 0.002, reference strength σ0 = 400 MPa, α = 5 and hardening exponent

N = 0.1. A monotonically increasing axial displacement u was applied to the strut until the conjugate load

P reached a peak value associated with necking of the strut. Peak load defines the onset of failure of the

strut.

Predictions of the normalised load P/(Btσ0) versus normalised displacement u/` are included in Fig. 1(c)

for a strut of aspect ratio t/` = 0.03. The figure includes predictions for both a straight strut (a/t = 0) and
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a wavy strut of sinusoidal shape with a wavelength ` and amplitude a, such that a/t = 3. Results are given

for two choices of normalised undercut depth e/t = 0 and e/t = 0.2, with the normalised undercut radius

and position held fixed at rs/t = 0.5 and ξ/` = 1/8, respectively.

First, consider the case with no undercut (e/t = 0). The straight strut has an initial sharply rising load

versus displacement response. The response then displays a plateau as the strut material undergoes plastic

deformation. In contrast, the wavy strut has a sigmoidal load-displacement response: initially, the wavy

strut straightens by bending. Thereafter, the response is similar to that of the straight strut. The predictions

in both cases are terminated at peak load (marked by a cross) corresponding to the onset of necking of the

strut.

Second, consider the case of the struts with an undercut e/t = 0.2. The load-displacement response up to the

onset of necking is identical to that with no undercut. The undercut induces early necking at the location of

the undercut and the location of the peak load is marked by the cross on the curves in Fig. 1(c). We define

the peak load Pf as the failure load and the corresponding displacement uf as the failure displacement. A

cross-plot of the normalised failure load Pf/(Btσ0) versus the normalised failure displacement uf/` is included

in Fig. 1(d) for both the straight strut and strut with a/t = 3, for selected undercut depths e/t; rs/t and ξ/`

are held fixed at 0.5 and 1/8, respectively. The failure load is largely unaffected by waviness and increases

with decreasing undercut depth. However, the failure displacement for a given undercut depth increases

sharply with increasing waviness and also increases with decreasing undercut depth (corresponding to the

increase in the failure load). These results are insensitive to the choice of undercut radii and locations over

a broad range of values (rs/t = 0.5− 2.0 and ξ/` = 0.1− 0.9). We proceed to use this basic understanding

to investigate first experimentally and then numerically the design of lattice materials with prescribed strut

waviness.

3. Experimental programme

Specimens were manufactured by water-jet cutting of hot-rolled B = 3 mm thick steel sheets of grade S275

(low carbon steel with a maximum of 0.25% of carbon by weight) and hardness 185HV30. Three different
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specimen types were employed: (i) macroscale dogbone specimens (Fig. 2(a)) of the parent material to

characterise the solid material properties; (ii) specimens that replicate the geometry of single struts within

the lattices (Figs. 2(b) and (c)) and (iii) triangular and hexagonal lattice specimens (Figs. 2(d) and (e)) of

relative density ρ = 0.1.

The tensile response at a nominal tensile strain rate of 2× 10−4 s−1 was measured using a screw-driven test

machine, with the load cell of the machine used to measure the applied tensile load P . A laser extensometer

was used to measure the gauge section extension of the dogbone parent material specimens while Digital

Image Correlation (DIC) was used to measure displacements in the single strut and lattice specimens.

3.1. Geometry of struts and the single strut specimens

The struts of the lattices investigated here were either straight (S) or wavy. Two wavy geometries were

employed: (i) a single sinusoidal (SS) waveform and (ii) a decaying sinusoidal (DS) waveform. These

waveforms are parameterised as follows. In the local Cartesian co-ordinate system (x′, y′), the equation

parameterising the SS waveform is

y′ = a sin
(

2πx′
`

)
(5)

where a is the amplitude of the wavy strut, and the wavelength ` is the distance between the end points of

the strut; see Fig. 3. The DS waveform retains the symmetry of the SS waveform about the mid-span of the

strut and is parameterised by

y′ = 1.6 a sin
(

4πx′
`

)
exp

(
−4x′
`

)
(6)

where the factor of 1.6 has been included to ensure that the maximum amplitude of the waviness equals a

as seen in Fig. 3.

In order to investigate the tensile responses of these struts within the lattices, we also manufactured single

strut specimens as shown in Figs. 2(b) and (c). These specimens comprise either straight or wavy struts

and comprised the same node geometries as are present in the triangular and hexagonal lattices.
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3.2. Lattice specimens

The tensile response of triangular and hexagonal lattices comprising straight and wavy struts was investigated

using dogbone shaped specimens (Figs. 2(d) and (e)) to ensure that failure occurred within the gauge section.

The gauge section of the triangular and hexagonal lattice specimens comprised 8 × 8 and 11 × 10 cells,

respectively. The specimens were bolted to 3 mm thick steel end tabs to enable gripping of the specimens

for tensile loading. The specimens were manufactured by water-jet cutting of the 3 mm thick steel sheets,

with the tensile loading direction of the specimens aligned with the rolling direction of the steel sheets. The

radius of the water-jet nozzle was 0.34 mm and thus the corner radii of the nodes exceeds 0.34 mm.

All lattice specimens investigated here had a relative density ρ = 0.1. While the relative density of lattices

with straight struts is only a function of t/`, the magnitude of ρ for lattices with wavy struts depends

strongly on the strut shape. It is instructive to define the arc-length `s of a strut with node-to-node length

` as

`s =
∫ `

0

√
1 +

(
dy′

dx′

)2
dx′ (7)

where (x′, y′) is the local, Cartesian co-ordinate system and the x′-direction is co-incident with a straight

strut between the nodes. The modified form of Eq. (1) for lattices with wavy struts is then

ρ = A
t`s

`2 (8)

For all lattices investigated here we kept t = 0.81 mm, and t`s/`
2 = 0.03 and 0.09 for the triangular and

hexagonal lattices, respectively, independent of the strut shape, so that ρ = 0.1 in all cases. The specific

geometric parameters of all lattice geometries investigated here are listed in Table 1.

While the water-jet cutting of the lattice used a computed aided drawing (CAD) input1 of the detailed

specimen geometry absent any defects, changes in the cutting speed of the water-jet as it went around the

corners of the lattice and residual stresses within the steel sheet meant that the as-cut lattice did not precisely

match the CAD specification. X-ray CT examination of the manufactured lattices revealed a dispersion in

1Software to generate the wavy lattice geometries: [25].
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the strut thicknesses t, a finite radius rn of corners at nodes, and undercuts within the struts near the nodes

(see Fig. 1(a)). The X-ray CT images were used to characterise these defects by making measurements over

280 struts in 14 different specimens and the findings of these measurements are summarised as follows:

1. While the mean strut thickness at mid-span attained the specified value of 0.81 mm, the strut thick-

nesses in each specimen were normally distributed with a standard deviation of 0.04 mm.

2. The corner radii were also normally distributed, with a mean value < rn >= 0.5 mm and standard

deviation of 0.08 mm.

3. Nearly all struts had undercuts near the nodes, as characterised by a mean radius < rs >≈< rn >

and undercut depths in the range 0.2 ≤ e/t ≤ 0.3; see Fig. 1(b) for the definitions of rs and e.

4. Material characterisation

4.1. Solid material response

The material properties of solid low-carbon steel sheets were measured from the response of a large dogbone-

shaped specimen of gauge dimensions Ld = 80 mm and td = 10 mm (see Fig. 2(a)) at 0° and 90° to the

hot-rolling direction of the steel sheets. The measured true stress σt versus true strain εt responses of the

solid dogbone specimens are shown in Fig. 4. All specimens respond in a ductile manner with a negligible

effect of the hot-rolling direction upon the tensile response, such that the Young’s modulus is Es = 210 GPa,

yield strength is σYS = 338 ± 12 MPa, ultimate tensile strength is σUTS = 465 ± 6 MPa and the nominal

tensile failure strain is εfs = 0.24± 0.003. Over a strain range 0.03 < εt < 0.12, the true stress versus true

strain response is well-approximated by σt/σ0 = (εt/ε0)N where N = 0.1.

4.2. Single strut response

Single struts specimens (with t`s/`
2 = 0.03 and 0.09 to resemble struts in the triangular and hexagonal

lattices) were tested in uniaxial tension. The wavy struts had a normalised waviness amplitude a/t = 2.7.

The measured nominal stress, defined in terms of the measured tensile load P as P/(tB), versus nominal
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strain u/`, where u is the applied axial displacement responses of the struts, are included in Fig. 5. In

Fig. 5(a) the responses are plotted for the t`s/`
2 = 0.03 struts that are representative of those in the

triangular lattices while in Fig. 5(b) we include measurements for the t`s/`
2 = 0.09 struts that mimic those

in the hexagonal lattices. First, consider the straight struts (S). It is evident that the tensile strength is

comparable to the solid material response. However, the ductility uf/` of straight struts is knocked down

to 0.05 and 0.1 for the struts in the triangular and hexagonal lattices, respectively, compared to the parent

material valure of εrmf ≈ 0.24. The reduction in ductility of the straight single struts compared to that of

the solid material is due premature necking at the undercuts introduced by water-jet cutting near the joints.

Strut waviness of amplitude a/t = 2.7 brings about a qualitative change to the response. Wavy struts are

first straightened before they neck and therefore waviness increases the ductility of single struts, with the

largest increase of ductility exhibited by decaying sinusoidal struts (DS). However, it is worth noting that

the ultimate tensile strength is largely unaffected by the presence of waviness.

5. Finite Element calculations

Static finite element (FE) simulations were performed using Abaqus/Standard v2018 to simulate the tensile

response of the single struts and the uniaxial tensile response of the triangular and hexagonal lattices. The

2D plane strain geometry in the FE models mimicked the as-manufactured specimens as observed in the

CT images. All struts were ascribed a thickness equal to the mean measured value, t = 0.81 mm. In

addition, each node of the lattice was assumed to have a corner radius rn = 0.5 mm and an undercut of

radius rs = 0.5 mm. The detailed node geometries were consistent with the CT images, with representative

examples for the triangular and hexagonal lattices shown in Fig. 6(a). The corresponding FE geometries

of the lattice specimens, with details of the nodes shown in insets, are included in Figs. 6(b) and (c) for

the triangular and hexagonal lattices, respectively. The undercut depth e/t varied significantly between

specimens and the measured values were used in the simulations; their values are explicitly specified in the

presentation of the numerical predictions.

The FE mesh of the lattice comprises rectangular elements with quadratic shape functions (CPE8 in Abaqus
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notation). At least 4 elements across the thickness of each strut were present in order to capture the stress

concentration due to the nodes and the undercuts. Uniaxial loading of the lattice specimens was simulated

by constraining all degrees of freedom along the bottom edge of the specimen while the top edge is subjected

to uniform displacement in the y-direction of the specimen, with the x-direction displacement of those nodes

constrained to be zero, see Figs. 6(b) and (c). The solid material was modelled as a J2 flow theory solid

with Young’s modulus Es = 210 GPa, Poisson’s ratio ν = 0.3 and a true tensile stress versus plastic strain

response given by the measurements in Fig. 4. No damage model was employed in the FE simulations with

failure assumed to arise from necking of the struts.

5.1. FE predictions of the tensile response of a single strut

We validated the FE model by comparing predicted and measured single strut responses. The predictions

employed a FE model with the single strut modelled in an identical manner to the struts within the lattice

specimens. The FE predictions of the tensile responses of the single strut are included in Figs. 5(a) and (b)

for choice of undercut depth e/t = 0.1. Excellent agreement is observed in all cases including the onset of

softening due to necking. This demonstrates the fidelity of the FE model and validates the assumption of

not including damage mechanisms in the solid material.

6. Tensile response of lattice specimens: predictions versus experiment

We proceed to present both measurements and FE predictions of the tensile responses of the lattice spec-

imens. Results are presented in terms of a nominal stress P/(WB) and nominal strain u/L where the

specimen gauge width W and gauge length L are defined in Figs. 2(d) and (e), while P and u are the

applied tensile load and corresponding extension of the gauge length of the specimen, respectively.

The measured nominal stress versus nominal strain responses until first strut failure are in Fig. 7, with the

peak load Pf occurring at first strut failure; the macroscopic ductility is defined as εf ≡ uf/L, where uf is

the displacement corresponding to the load Pf . The measured mean undercut depths e/t for each specimen

are reported in Table 1. In Fig. 7 measurements are included for both triangular (T) and hexagonal (H)

lattices with straight (S) struts and wavy struts (0 < a/t ≤ 2.7), with “SS” and “DS” referring to sinusoidal
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and decaying sinusoidal shaped struts, respectively. The choice a/t = 0 refers to straight (S) struts and this

limiting case is included in Fig. 7. The corresponding FE simulations are included for all cases in Fig. 7

and are terminated at the attainment of peak load: similar to the measurements, necking of a strut was

detected in the FE simulations at peak load. These FE simulations assumed the measured value of e/t for

each specimen listed in Table 1.

(i) Consider lattices comprising straight struts, with images of the undeformed and deformed triangular

and hexagonal lattices shown in Figs. 8 and 9, respectively, along with corresponding FE predictions at

peak load; contours of von-Mises stress are shown on the FE images. These lattices behave according

to the regimes defined in [5].

The stretch-dominated triangular lattice has a response that can be divided into 3 regimes. In regime I

the vertical struts that are aligned with the loading direction undergo elastic stretching while the

inclined struts rotate. In regime II, the vertical struts undergo plastic stretching with first failure

occurring in these struts due to necking. Since failure occurs in regime II, these measurements do not

display a regime III wherein the inclined struts rotate to align with the loading direction [5]. Failure

occurs at a relatively low macroscopic strain level and deformation of the lattice at first failure is barely

visible as seen in Fig. 8 (the location of the first strut failure is marked in Fig. 8).

For the bending-dominated hexagonal lattices with straight struts (H-S), regimes I and II are charac-

terised by elastic and plastic bending, respectively, of the struts of the lattice. This bending-dominated

response implies that the hexagonal lattice has a high initial compliance. Rotation of the inclined struts

in regime II aligns them with the loading direction and thereafter the response enters into regime III.

In this regime, the struts of the bending-governed hexagonal lattice stretch and then fail by necking.

While the ductility of the lattice struts is approximately the same for the triangular and hexagonal

lattices the macroscopic strain associated with bending and rotation of the lattice struts endows the

hexagonal lattice with a greater ductility than that of the triangular lattice (εf ≈ 3 % and 15 % for the

triangular and hexagonal lattices, respectively). Moreover, unlike the triangular lattice (Fig. 8), tensile

stretching of the hexagonal lattice involves significant transverse contraction as seen in the deformed
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images in Fig. 9. This contraction is inhibited by the gripping of the lattice at the top and bottom of

the specimens and subsequently we shall show that this results in enhanced stresses in the struts at

the edge of the hexagonal lattice specimens. As a consequence, the first strut that fails is at the edge

of the specimen (marked in Fig. 9).

(ii) Consider the lattices with wavy struts with the nominal stress versus strain responses given in Fig. 7,

and the corresponding images of the deformed lattices given in Figs. 8 and 9. While the peak load Pf

decreases only mildly with increasing waviness amplitude a/t, the ductility εf of both the triangular

and hexagonal lattices increase substantially with increasing a/t. For a given lattice topology and

waviness amplitude a/t, struts of decaying sinusoidal shape result in higher ductility than struts of

sinusoidal shape in line with the single strut results of Section 4.2. Also, the bending-dominated

hexagonal lattices have a higher ductility than the stretching-dominated triangular lattices. The images

in Fig. 8 and Fig. 9 show that, at the instant of first strut failure (location marked in both figures), all

struts of the hexagonal lattice have lost their waviness by axial stretch while the inclined struts of the

triangular lattice retain significant waviness. Failure of the triangular lattices occurs after the waviness

in the vertical struts has been eliminated. On the other hand, bending-dominated deformation of the

hexagonal lattices implies significant scissoring of the struts; strut stretching, required to neck the

struts, initiates only after all struts have aligned with the loading direction and waviness has been

eliminated.

The FE predictions of the tensile responses of the lattices are included in Fig. 7 while predictions of

the deformed configurations at peak load are presented in Figs. 8 and 9. Recall that the e/t value

for each specimen is different and is listed in Table 1. Upon assuming the appropriately chosen value

of e/t, excellent agreement is observed between the FE predictions and measurements including the

deformed lattice shapes. However, we emphasise that e/t has a strong influence and this is mapped

out in detail in Section 7.
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6.1. Effect of finite specimen size

The above results suggest that the constraint imposed by the gripping of the specimens results in the

development of high stresses in struts along the side edges of the specimens (Fig. 9). This is particularly

pronounced for the hexagonal lattices as they have a high value of plastic Poisson’s ratio. Here we use FE

simulations to investigate the effect of finite specimen geometry upon the tensile responses of the lattices

by contrasting specimen predictions with those of corresponding infinite lattices. The infinite lattices were

simulated by considering a representative volume element (RVE) comprising a single unit cell, and uniaxial

tension was simulated by imposing periodic boundary conditions on this RVE. All struts in the RVE had

an undercut of normalised depth e/t = 0.1 and, in order to make a fair comparison, we also report FE

predictions of the tensile responses of lattice specimens (of identical geometry to those considered above)

but with all struts in the lattice having an undercut of depth e/t = 0.1. Predictions are given up to the onset

of necking in any strut within the lattice; this point also corresponds to the attainment of peak macroscopic

load in the predictions.

Consider the triangular lattice responses shown in Fig. 10(a) for straight, sinusoidal and decaying sinusoidal

strut shapes (a/t = 2.7 for wavy struts). The difference in responses is small for the finite lattice specimen

and infinite lattice although we observe that the infinite lattice has a slightly higher ductility due to a more

compliant response just prior to peak load. These results can be contrasted to the corresponding hexagonal

lattice predictions included in Fig. 10(b). While the peak strengths of the infinite and finite hexagonal

lattices are approximately equal, the ductility of the infinite lattices is significantly higher in all cases (i. e.

straight, sinusoidal and decaying sinusoidal strut shapes). This can be understood from the deformed lattice

specimen images in Fig. 9. The constraint of the grips limits the degree of plastic Poisson contraction of the

hexagonal lattices, thereby straightening the struts at the specimen sides at smaller applied values of u/L.

A consequence of this straightening is a build-up of tensile stress in struts at the specimen sides which in

turn results in increasing hardening of the tensile response and premature necking of the edge struts.
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7. Design maps

There is a strong interplay between the waviness amplitude a/t and undercut depth e/t that sets the

peak strength Pf and ductility εf . Here we employ FE calculations to explore this interplay for the lattice

specimens of Section 6 with the aim of providing guidance on the design of wavy lattices to achieve a specified

strength and ductility.

FE predictions of contours of normalised tensile failure strength Pf/P
0
f of the triangular lattice with sinu-

soidal and decaying sinusoidal shaped struts, are given in Figs. 11(a) and (b), respectively, in the form of a

map with axes of a/t and e/t. Here, Pf is the failure strength of the lattice for the given choice (a/t, e/t)

while P 0
f is the reference strength of the perfect lattice with e/t = a/t = 0. The corresponding predictions for

the hexagonal lattice with sinusoidal and decaying sinusoidal shaped struts are given in Figs. 11(c) and (d),

respectively. In all cases, the knockdown in strength, as parameterised by Pf/P
0
f , increases with increasing

a/t and e/t; the waviness amplitude a/t has a larger effect on the hexagonal lattice while the undercut depth

e/t plays a more dominant role for the triangular lattices. This is evident from the orientation of the Pf/P
0
f

contours.

Next, consider the effect of a/t and e/t upon ductility. FE predictions of contours of the ductility εf

are plotted in Fig. 12 on a design map with axes a/t and e/t. The contours of εf are nearly vertical

for the hexagonal lattices (Figs. 12(c) and (d) for lattices with sinusoidal and decaying sinusoidal shaped

struts, respectively) indicating that the presence of the undercut does not significantly degrade ductility.

Now consider the contour plots of Figs. 12(a) and (b) for triangular lattices with sinusoidal and decaying

sinusoidal shaped struts, respectively. The contours of εf become more horizontal at low values of a/t

suggesting that the ductility of triangular lattices with nearly straight struts is largely governed by the

undercut depth. Consistent with the findings of the experiments and FE simulations reported in Section 6,

the maps in Fig. 12 show that hexagonal lattices have a higher ductility than triangular lattices. Moreover,

for a given lattice topology, lattices with a decaying sinusoidal shaped struts have a higher ductility then

the corresponding lattices with sinusoidal shaped struts.
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8. Concluding remarks

Our study has explored, by a combination of measurements and finite element (FE) simulations, the sensitiv-

ity of tensile response of bending-dominated hexagonal lattices and stretching-dominated triangular lattices

to strut shape. Lattices of relative density ρ = 0.1 were manufactured by water-jet cutting of 3 mm thick

low-carbon steel sheets. Two strut shapes (sinusoidal and decaying sinusoidal) of varying amplitude were

investigated, alongside the role of manufacturing defects such as undercuts in the struts near the lattice

nodes. Excellent agreement between the measurements and FE simulations allowed us to proceed to employ

FE simulations to develop design maps.

An increased strut waviness greatly enhances the ductility of both types of lattice but has a smaller effect

upon the peak tensile strength. Moreover, for a given waviness amplitude, the lattices with decaying

sinusoidal shaped struts have the highest ductility. The increase in the ductility of stretch-dominated

triangular lattices with increased waviness is mainly due to the fact that waviness in the vertical struts

needs to be ironed-out prior to them undergoing stretching and then necking. On the other hand, the large

rotation of the struts in the bending-dominated hexagonal lattices implies that waviness in all struts needs

to be eliminated prior to strut necking. Thus, the ductility enhancement due to waviness is higher in the

hexagonal lattices. Imperfections such as undercuts in the lattice strut have a larger effect on the ultimate

tensile strength than ductility, and this is demonstrated over a large parameter range via design maps as

developed by FE calculations.
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Tables

lattice geometry strut shape a/t t/` `s/` t`s/`
2 e/t

triangular straight (T-S) 0 0.030 1.00 0.03 0.2
0.7 0.030 1.01 0.03 0.3

sine (T-SS) 1.3 0.029 1.02 0.03 0.3
2.7 0.028 1.05 0.03 0.3
0.7 0.029 1.01 0.03 0.3

decaying sine (T-DS) 1.3 0.028 1.03 0.03 0.2
2.7 0.027 1.11 0.03 0.3

hexagonal straight (H-S) 0 0.089 1.00 0.09 0.2
0.7 0.086 1.03 0.09 0.3

sine (H-SS) 1.3 0.080 1.11 0.09 0.3
2.7 0.069 1.28 0.09 0.2
0.7 0.083 1.07 0.09 0.2

decaying sine (H-DS) 1.3 0.075 1.19 0.09 0.2
2.7 0.062 1.43 0.09 0.2

Table 1: Geometric parameters of the hexagonal and triangular lattices investigated in this study. All
lattices had a relative density ρ = 0.1 with the geometric parameters a, t, `, and `s as specified in the CAD
input. The undercuts of depth e were a consequence of the manufacturing process and we tabulate here the
mean value of e/t measured over all struts for each specimen.
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Figures



(a)

(b)

(c) (d)

Figure 1: (a) Computerised tomography (CT) scan images showing the observed undercuts (marked with
red circles) in various samples (the scale bar is of length 10 mm). (b) FE model for straight and wavy
struts with undercuts. The various geometric parameters are labelled and applied loading shown. (c) FE
predictions of the force versus displacement response for straight (a/t = 0) and wavy (a/t = 3) struts with
undercuts of depth e/t = 0.0 and 0.2 for struts of aspect ratio t/` = 0.3. (d) The failure strength Pf versus
failure displacement uf for the struts in (b) for 2 choices of a/t and selected values of normalised undercut
depth e/t. The undercut geometric parameters rs/t = 0.5 and ξ/` = 1/8 were used in all calculations.
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Figure 2: Geometry of specimens tested in this study. (a) Dogbone specimen for tensile properties of
present material. Single strut specimens mimicking struts in (b) triangular and (c) hexagonal lattices. The
(d) triangular and (e) hexagonal lattice specimens. Leading dimensions are labelled on each of the sketches.
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Figure 3: Shape of the sinusoidal (SS) and decaying sinusoidal (DS) struts as parameterised by Eq. (5)
and Eq. (6), respectively.
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included as a dashed line.
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Figure 5: The measured and predicted nominal stress versus strain responses of the single strut specimens
mimicking struts in the (a) triangular and (b) hexagonal lattices. The wavy struts (SS and DS) have a
normalised amplitude a/t = 2.7 and the FE calculation employed an undercut of depth e/t = 0.1.
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(a) triangular hexagonal

(b) FE geometry

(c)

Figure 6: (a) CT image of a node in triangular and hexagonal lattices (scale bar is of size 5 mm). Geometry,
loading and boundary conditions employed in the FE simulations of (b) triangular and (c) hexagonal lattice
specimens. The insets in (b) and (c) show details of a node to illustrate their geometry and the imperfections
in the form of an undercut.
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Figure 7: Measurements and predictions of the stress versus strain response of the lattices with sinusoidal
(SS) and decaying sinusoidal (DS) shaped struts. (a) Triangular lattices with sinusoidal strut shape (T-SS);
(b) triangular lattices with decaying sinusoidal strut shape (T-DS); (c) hexagonal lattices with sinusoidal
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Figure 8: Experimental observations and FE predictions of the deformed triangular lattices at the peak
load. The experimental images of the undeformed lattices are also included. (a) Lattice with straight (S)
struts; (b) sinusoidal shaped struts with a/t = 2.7 and (c) decaying sinusoidal struts with a/t = 2.7. The
locations of first strut failure are marked on the experimental and FE images with the FE images showing
contours of the Von-Mises stress. The scale bar is of length 15 mm.
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Figure 9: Experimental observations and FE predictions of the deformed hexagonal lattices at the peak
load. The experimental images of the undeformed lattices are also included. (a) Lattice with straight (S)
struts; (b) sinusoidal shaped struts with a/t = 2.7 and (c) decaying sinusoidal struts with a/t = 2.7. The
locations of first strut failure are marked on the experimental and FE images with the FE images showing
contours of the Von-Mises stress. The scale bar is of length 15 mm.
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Figure 10: FE predictions of the stress versus strain responses of the finite lattice specimens and infinite
periodic lattices with straight and wavy struts (a/t = 2.7). An undercut of depth e/t = 0.1 was used in all
calculations. (a) Triangular lattices and (b) hexagonal lattices.
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Figure 11: Design map of the predicted knock-down Pf/P
0
f with axes of normalised undercut depth e/t

and strut waviness amplitude a/t for triangular lattices with (a) sinusoidal (SS) and (b) decaying sinusoidal
triangular (DS) shaped struts. The corresponding hexagonal lattices predictions for the (c) sinusoidal (SS)
and (d) decaying sinusoidal (DS) shaped struts.
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Figure 12: Design map of the predicted ductility uf/L with axes of normalised undercut depth e/t and
strut waviness amplitude a/t for triangular lattices with (a) sinusoidal (SS) and (b) decaying sinusoidal
triangular (DS) shaped struts. The corresponding hexagonal lattices predictions for the (c) sinusoidal (SS)
and (d) decaying sinusoidal (DS) shaped struts.
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