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Abstract

We propose a local reinforcement technique for lattices in the vicinity of a stress-raiser such as a notch,

in order to elevate the macroscopic strength and ductility. A spatially non-uniform waviness distribution

of sinusoidally-shaped struts is assumed in the vicinity of the notch, and the sensitivity of macroscopic

tensile response to strut waviness distribution is studied by finite element analysis. Optimized lattice

structures are determined in order to maximise the macroscopic tensile strength or ductility from these

various strut waviness distributions. Both hexagonal and triangular lattices are studied as these geometries

are representative of bending-dominated and stretching-dominated lattices, respectively.
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1. Introduction

Periodic networks of struts, called lattice materials, are increasingly used in a large variety of engineering

applications, e. g. tower structures in civil engineering, the cores of lightweight sandwich panels, microscopic

mechanical filters [1], and soft network materials utilized in bio-integrated electronics [2]. Recent studies

have mostly focused on the design, fabrication and modelling of perfect lattice materials. However, in some

practical applications, lattice materials contain local stress-raisers such as holes [3], notches [4, 5] and solid

inclusions [6]. Ronan et al. [6] explored the sensitivity of strength and ductility of a regular honeycomb to

the notch, and found that the crack-like irregular cell, as generated by missing cell walls, can significantly

knock-down the macroscopic ductility and strength of the hexagonal lattice. In order to reinforce a lattice
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material in the presence of a stress-raiser, we propose the use of a spatially non-uniform waviness distribution

of struts in the vicinity of the notch.

1.1. Classes of lattice

Lattices can be classified as bending-dominated structures, such as the hexagonal lattice, or stretching-

dominated structures, such as the triangular lattice [7]. On a lower scale of structural hierarchy, each

strut can exhibit a bending or stretching response depending upon its shape; for example, a sinusoidal

shape confers high axial compliance due to induced bending under an axial load. These hierarchical lattice

structures can be sub-divided as follows [8]:

(i) stretching lattice: A triangular lattice with straight struts is stretching-dominated, both on the lattice

scale or on the strut scale. This lattice has a high macroscopic modulus and inherits the ductility of

the cell wall material [9].

(ii) stretching-bending lattice: The macroscopic stiffness of a stretching-dominated lattice (such as the tri-

angular lattice) is reduced by increased axial compliance of the struts due to waviness.

(iii) bending lattice: A hexagonal lattice with straight or wavy struts deforms by bending of the struts.

1.2. Influence of strut waviness on macroscopic properties

Wavy struts have a larger axial ductility than straight struts due to the additional macroscopic strain

associated with straightening of the struts. Consequently, a lattice made from wavy struts may possess a

significantly enhanced ductility. In support of this assertion, Ma et al. [2, 10] and Jang et al. [11] found that

polyimide lattice materials, comprising horseshoe-shaped struts embedded in a soft polymeric matrix, possess

a significantly enhanced ductility. Moreover, the macroscopic modulus [11] and Poisson’s ratio [12] can be

modulated by the introduction of wavy struts. For example, Symons and Fleck [13] and Grenestedt [14]

have predicted the reduction in macroscopic stiffness of triangular lattices due to waviness of the struts.
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1.3. Influence of imperfections on lattices

As-fabricated lattices can possess manufacturing defects such undercuts [15] and Plateau borders at the

nodes [6], a random positioning of the nodes, missing cell-walls, and a variation in strut thickness. These

defects affect the macroscopic properties of the lattices to a varying degree, as discussed by Simone and

Gibson [16], Chen et al. [17], Zhu et al. [18, 19], Fleck and Qiu [20], Romijn and Fleck [21], Ronan et al. [6],

and Seiler et al. [15].

Additionally, sub-components made from lattice materials may contain geometric features, such as holes,

notches and solid inclusions that act as stress-raisers. For example, Liu et al. [3] investigated the ductility

of a soft network geometry containing a hole to accommodate hard, inorganic electronic components. The

presence of such stress-raisers can significantly knock-down the overall ultimate tensile strength and ductility

for both stretching-dominated and bending-dominated lattices.

1.4. Scope of study

The purpose of this study is to control the macroscopic tensile response of lattice materials by the choice

of strut topology in the vicinity of a stress-raiser such as a notch. Each strut has a sinusoidal shape but

the amplitude can vary strut by strut (spatially graded wavy). Part A reports a combined experimental

and finite element (FE) study on the tensile response of low carbon steel hexagonal and triangular lattices,

manufactured by rapid prototyping, with wavy struts present near a central notch. The sensitivity of the

macroscopic tensile response to the presence of waviness is demonstrated. In Part B, a parametric FE study

is performed on a representative volume element (RVE) of a periodic lattice (hexagonal and triangular)

containing a notch and the influence of waviness distribution of the struts upon the macroscopic tensile

response is investigated. A design map is constructed to show the effect of waviness and its spatial extent

upon macroscopic strength and ductility. Optimal designs are identified in order to maximise the ultimate

tensile strength or ductility.
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2. Part A: An assessment of reinforcement near a notch by local waviness (experiments and

FE)

2.1. Tests on notched lattices

The potency of graded wavy lattices to ameliorate the effects of a stress raiser in a lattice upon strength and

ductility is revealed by preliminary experiments. Specimens were water-jet cut from hot-rolled steel sheets

of grade S275 (low carbon steel with a maximum of 0.25% C by weight) of Vickers hardness 170HV30.

The sheets were of thickness B = 3 mm. Hexagonal and triangular lattice specimens with straight struts

(Figs. 1(a) and (b)) or wavy struts (Figs. 2(a) and (b)) were water-jet cut with a centre-notch of length 2a

resulting from nb missing struts. The zone of wavy struts was limited to the vicinity of the centre-notch,

with a range of values of maximum waviness. The relative density of the as-manufactured hexagonal and

triangular lattices was ρ = 0.17± 0.003, where

ρ = α
t

`
, (1)

in terms of strut thickness t, strut length ` while the coefficient α = 2
√

3 and 2/
√

3 for the triangular and

hexagonal lattices [22], respectively

Sketches of lattices (gauge area of width W and length H) with straight struts are presented in Figs. 1(a)

and (b), and those with graded waviness close to the centre notch are shown in Figs. 2(a) and (b). The

gauge area W × H was of size 156 mm× 140 mm for the hexagonal lattices (comprising 17× 10 cells) and

was of size 212 mm× 184 mm for the triangular lattices (comprising 16× 12 cells).

With ζ measured along the straight strut from one end Fig. 2(a), the initial deflection δ of the strut (in

unloaded state), from its straight configuration, is given by

δ = A sin
(

2πζ
`

)
(2)

where A is the amplitude of the wavy strut and ` the distance between the end points of the strut, i. e. the

length of the strut in the limit A→ 0. The distribution of amplitude of waviness A of struts in the vicinity
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of the centre notch is given by

A

`
= max

(
0, Am

`

[
1− 5.4

( xc

W

)2
− 16

(yc

H

)2
])

(3)

where Am is the maximum amplitude, and xc and yc are the Cartesian coordinates of the centre of struts

measured with respect to the centre of the specimen. We emphasise that this distribution of the waviness

amplitude has been chosen based on the ability to manufacture specimens: here we report the ability of

the FE simulations to capture experimental measurements and then in Section 3 present a detailed FE

parametric study where we determine the optimal amplitude distribution. Both triangular and hexagonal

lattices comprise the same strut thickness t = 0.75 mm but different strut lengths (`hex = 5.0 mm and

`tria = 15.3 mm) such that the relative density of the lattice absent the notch is ρ = 0.17. The increased

waviness near the notch leads to greater strut arc lengths between the joints, and consequently the effective

relative densities of the triangular and hexagonal lattices are slightly increased (see Seiler et al. [15] for

details).

The as-manufactured hexagonal and triangular lattices also contained defects in the form of undercuts, of

depth e, and Plateau borders of radius rn; see Fig. 1. The influence of these defects on the macroscopic

behaviour has been reported recently by Seiler et al. [15]. In the present study, X-ray computer tomography

(CT)1 of the mid-plane of the manufactured lattices revealed that the Plateau border radius has a normal

distribution with a mean value rn = 0.11 mm and a standard deviation ∆rn = 0.01 mm; this is expressed

via the notation rn = 0.11 ± 0.01 mm. Likewise, the undercut depth was measured as e = 0.10 ± 0.04 mm,

and the strut thickness of manufactured lattices was t = 0.80± 0.33 mm. The reported mean values of the

strut thickness, undercut depth, and Plateau border radius were used to create the FE models.

2.2. Material characterization

Macroscale dogbone specimens of the parent material were manufactured to characterise the solid material

properties. The material properties of the solid, low-carbon steel sheets were measured from a large dogbone-

1X-TEK, XT H 225ST, voxel size: 30 µm.
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shaped specimen tested at nominal tensile strain rates of 2× 10−4 s−1 and 2× 10−3 s−1. Preliminary tests

were done with the loading direction either aligned with the rolling direction or transverse to the rolling

direction; the degree of anisotropy was negligible (within a few percent), and so the tensile response is

reported only for tests with the loading direction aligned with the rolling direction. The true stress versus

true strain response of solid dogbone specimens is only mildly sensitive to the strain rate in the above range

(see Fig. 3) and therefore rate effects are neglected in the current study. The Young’s modulus of the solid

material, as measured from the dogbone specimen, is Es = 210± 12 GPa. The 0.2% offset yield strength is

σYS = 338±12 MPa, the ultimate tensile strength is σUTS = 500±6 MPa, and nominal tensile failure strain

is εfs = 0.24± 0.01. The measured true stress versus true strain response is shown up to maximum load in

Fig. 3, and the extrapolated response was used in the FE analysis.

2.3. Tensile tests on notched lattices

The tensile response of the lattices were conducted using a screw-driven test machine, and Digital Image

Correlation (DIC) to measure displacements. All lattices were tested in uniaxial tension. The macroscopic

nominal strength and ductility for lattices are defined in terms of the measured load P and the extension

U of the gauge section of length H (Fig. 1). Results are presented in terms of a nominal stress P/(WB)

and nominal strain U/H. All lattices were tested at a nominal strain rate of ε̇ = U̇/H = 2 × 10−4 s−1.

The nominal stress versus strain response of notched specimens with graded waviness is shown in Fig. 4(a)

for hexagonal lattices and in Fig. 4(b) for triangular lattices with the deformed lattices shown in Figs. 4(c)

and (d). The solid black lines represent the measured tensile response of lattices comprising straight struts

(Am/` = 0) without a centre notch, as well as those with a length of the centre notch of 4 cells (resulting

from nb = 4 missing struts in hexagonal lattices and nb = 3 in triangular lattices, see Figs. 1(a) and (b))

and peak amplitude Am/` from 0 (straight struts) to 0.075.

Consider first the response of the hexagonal lattices. The graded waviness increases the macroscopic ductility

of notched samples along with a minor change in tensile strength. Consequently, the (nominal) energy

absorption capacity, as estimated by the area under the P/(WB) versus U/H curve, is enhanced by the

presence of strut waviness. In contrast, additional waviness in a triangular lattice has a negligible effect
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upon macroscopic ductility, but knocks down the strength. Thus, the addition of waviness degrades the

energy absorption capacity of the triangular lattice. The tensile strength Pf of the lattices normalized

by the strength of the un-notched sample P0 is shown in Fig. 5(a) as a function of Am/`. Likewise, the

macroscopic ductility Uf/H is plotted as a function of Am/` in Fig. 5(b). These plots emphasize the trends

already noted in Fig. 4: the addition of graded waviness near the notch in a hexagonal lattice leads to a

large increase in Uf/H and to a smaller increase in Pf/P0. In contrast, for the triangular lattice, Uf/H is

almost insensitive while Pf/P0 drops significantly with increasing Am/`.

2.4. Finite element simulations

Finite element simulations were performed using ABAQUS/Standard v2018 to simulate the tensile response

of the lattices under uniaxial tension. All struts had identical defects with a Plateau border radius and

undercut depth equal to the mean value measured from the midsection of CT images of as-manufactured

specimens (see Section 2.1). Uniaxial loading of the finite lattice was simulated by constraining all degrees

of freedom along the bottom edge of the specimen while the top edge was subjected to uniform displacement

in the y-direction of the specimen. The FE mesh of the lattice comprised 8-noded, plane-strain elements

with quadratic shape functions (type CPE8). A mesh sensitivity study revealed that adequate accuracy is

achieved by placing at least 4 elements across the thickness of each strut.

J2 flow theory was assumed, with the tensile stress σ versus strain ε response of the cell wall solid given by

the measured true stress versus true strain relation shown in Fig. 3. The finite element simulations were

taken to the point where one of the struts of the lattice begins to neck. A neck was defined as a reduction of

the strut thickness by 20% compared to its original thickness. Excellent agreement is noted between the FE

predictions and the measured responses, see Figs. 4 and 5. This gives confidence in the use of FE simulation

to model the response of the lattices containing both as-manufactured defects and macroscopic notches.

The increased strength and ductility of hexagonal, bending-dominated lattices by the presence of local

waviness suggests that the addition of graded waviness near stress-raisers can give structural benefit. In the

following, the potency of graded waviness is explored by a more general FE-based parametric study of the

distribution of strut amplitude, for a range of notch lengths in both hexagonal and triangular lattices.
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3. Part B: The search for an optimal distribution of waviness

3.1. Finite Element Analysis

A comprehensive set of finite element simulations were performed using ABAQUS/Standard v2018 to simu-

late the tensile response of the lattices under uniaxial tension. The 2D geometries for FE models are defined

from the Pythonscript interface of Rhinoceros v 62. Plateau borders radius rn = 0.11 are included for all

struts, but undercuts are not included in the simulations.

3.2. Parametric study and optimisation

A periodic Representative Volume Element (RVE) of lattice is studied, for both hexagonal and triangular

lattices, see Figs. 6 and 7. The non-uniform distribution of strut waviness of RVE is illustrated in Fig. 6(b)

and Fig. 7(b). The wavy struts are sinusoidal in shape, with an amplitude A defined by the Gaussian spatial

distribution

A(r) = A∞ + (Am −A∞) · exp
(
− r

2

λ2

)
(4)

where r is the distance from the centroid of a strut to the centre of RVE, such that r2 = x2 + y2. This

Gaussian distribution makes use of 3 non-dimensional parameters A∞/`,Am/` and λ/`. The dependence

of the macroscopic strength and ductility on these three parameters was mapped via an extensive FE

investigation with the optimal locations for performing FE calculations in the design space chosen via the

Optimal Latin Hypercube sampling method [23]. The design space spanned A∞/` and Am/` ∈ [0, 0.2] and

λ/` ∈ [0, 20] for the hexagonal lattice. The corresponding space for the triangular lattice was A∞/` and

Am/` ∈ [0, 0.06] and λ/` ∈ [0, 20]. Design maps with contours were constructed from the discrete FE results

using a Gaussian fitting procedure. Further, a refined optimisation was performed near the minima/ maxima

in strength and ductility estimated using the Gaussian fitting to accurately define optimum parameters. This

local optimisation employed a NLPQL (Nonlinear Programming by Quadratic Lagrangian) algorithm [24].

2https://www.rhino3d.com
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3.3. Tensile response of lattices with graded waviness

The preliminary experimental and numerical assessments in Part A of the current study have demonstrated

that graded waviness around a notch modulates the macroscopic tensile responses of the lattices. In the

experimental assessment, the strut thickness was held fixed at t = 0.75 mm. Consequently, the relative

density of the lattice increases locally by the presence of strut waviness. In this parametric FE study

(Part B), we held the relative density fixed at ρ = 0.17 by varying the strut thickness t of each strut such

that t`s = constant for each strut where `s is the arc length of the strut. Uniaxial tensile loading of the

periodic RVE was simulated by imposing an axial strain in the y-direction. The FE mesh and material used

in the simulations is the same as described in Section 2.4.

3.3.1. Hexagonal lattices

The square RVE (Fig. 6(a)) of side length 2D (D/` = 12) contains a central notch of length 2a, such that

a/` = 3.5 corresponds to a notch with 4 missing struts (nb = 4) and a/` = 0.9 corresponds to nb = 1. The

waviness of struts varies throughout the RVE in accordance with Eq. (4), where r is the distance from the

centroid of the strut to the centre of RVE (Fig. 6(b)). Based on a set of 80 such simulations, contours of the

normalized macroscopic tensile strength σ̂ and ductility ε∞f of the hexagonal lattice are plotted in Fig. 8 as

a function of the 3 non-dimensional groups λ/`, A∞/`, and Am/` for the cases of nb = 1 and 4.

Here, strength σ̂ is defined as

σ̂ = σUTS(A∞/`,Am/`, λ/`, nb)
σUTS (0, 0, λ/`, nb) (5)

where the nominator σUTS(A∞/`,Am/`, λ/`, nb) is the peak nominal stress for any choice of imperfection

parameters; the denominator is the corresponding strength of the lattice with the same notch but straight

struts. The ductility ε∞f is defined by the nominal strain at which σUTS is attained. According to the design

maps of Figs. 8(a) and (b), the strength of the notched hexagonal lattice is maximised for a finite zone of

waviness near the notch and straight struts (A∞/` = 0) remote from the notch. Alternatively, the strength

is minimised by employing straight struts near the notch Am/` = 0 but wavy remote struts with A∞/` > 0.

This quantitative behaviour persists for hexagonal lattices with nb = 1 and 4, but the optimal values of
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(A∞/`,Am/` and λ/`) is dependent upon the value of nb. The ductility design maps for hexagonal lattices

are given in Figs. 8(c) and (d); they reveal that, for both nb = 1 and nb = 4, the macroscopic ductility

increases with the strut waviness either near the notch or remotely. The geometric parameters that optimise

strength and ductility in the design region are summarized in Table 1.

It is clear from both Figs. 8(a) and (b) that the notch strength is maximised by the choice A∞/` = 0, and

by intermediate, finite values of Am/` and λ/`. The key results are summarized in Fig. 9(a) by plotting σ̂

versus Am/`, with A∞/` = 0 and λ/` = 1.5 for nb = 1, and λ/` = 4 for nb = 4. These choices of A∞/`

and λ/` define lines in (A∞/`,Am/`, λ/`) space that pass through the maximum value of σ̂. Note that

the hexagonal lattice with a larger notch requires a greater waviness Am/`, and a larger wavy region radius

λ/` to obtain maximum strength. The corresponding trajectory of macroscopic ductility ε∞f versus Am/`

is shown in Fig. 9(b), indicating that the ductility increases with maximum waviness Am/` in a monotonic

manner.

It is instructive to determine the sensitivity of tensile response to the degree of waviness by considering

selected cases. The nominal stress versus strain responses of the periodic hexagonal lattices is shown in

Fig. 10, for the choice of waviness that maximises and minimises strength in addition to the reference case of

straight struts, for the notch size (nb = 4). We note that the presence of graded waviness can significantly

modulate the macroscopic tensile response of hexagonal lattices. The design that maximises the strength

also slightly increases the ductility, thereby increasing the energy absorbing capability. The design that

minimises the strength σ̂ significantly increases the ductility.

The achievable design space for the hexagonal lattice, in terms of maximum and minimum strength σ̂ and

ductility ε∞f , is plotted in Fig. 11 for graded waviness within the regime A∞/`,Am/` ∈ [0, 0.2] and λ/` ∈

[0, 10]. By designing a hexagonal lattice with graded waviness in this design region, the macroscopic strength

can be increased up to 6% for nb = 1 and 26% for nb = 4. On the other side, the macroscopic strength can

also be as low as 35% and 52% that of the straight strut lattices, for nb = 1 and 4, respectively (Fig. 11(a)).

The macroscopic ductility of the hexagonal lattice can also be significantly modulated (Fig. 11(b)). For

example, for nb = 1, the ductility ranges from 0.29 to 0.82 in relation to ε∞f = 0.32 for the reference design
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with straight struts. Similarly for nb = 4, ε∞f ranges from 0.23 to 0.78, in comparison to 0.27 for the

straight-strut design.

Insight into the effect of waviness upon the failure mode is gleaned from the undeformed and deformed

configurations of hexagonal lattices as shown in Fig. 12, for nb = 4. Three designs are shown: the straight

strut design A∞/` = Am/` = 0 (Fig. 12(a)), the maximised strength design A∞/` = 0, Am/` = 0.15, λ/` = 4

(Fig. 12(b)) and the minimised strength design A∞/` = 0.2, Am/` = 0, λ/` = 4 (Fig. 12(c)). The deformed

configurations are shown at peak load for that geometry. Contours of normalized von Mises effective stress

σe are included in the form of σ = σe/σYS. The stress distribution directly ahead of the notch is sensitive

to the waviness distribution with the key findings being:

(i) For the hexagonal lattice with straight struts, the strut at the notch tip fails first (Fig. 12(a)), followed

by the adjacent strut, with increasing applied strain.

(ii) For the graded waviness design that maximises the strength, the set of vertical struts directly ahead of

the notch root fail almost simultaneously, as is evident by the high stresses σ and the onset of necking

as shown in Fig. 12(b).

(iii) The design that minimises the strength has straight struts around the notch, and remote waviness

(Fig. 12(c)). Here, the struts adjacent to the notch fail first, while the wavy struts next to them are

not stretched out completely and are far from reaching the tensile necking strain.

3.3.2. Triangular lattices

A similar study has been performed on triangular lattices, with a representative square periodic RVE of size

2D × 2D (D/` = 12) and notches of length a/` = 0.6 and 1.7, corresponding to nb = 1 and 4, respectively

(Fig. 7). The graded waviness of struts is again defined by Eq. (4). The design maps of Fig. 13 show

normalized macroscopic tensile strength and ductility for triangular lattices over a wide range of waviness

distribution A∞/`,Am/` ∈ [0, 0.06], λ/` ∈ [0, 10], for the cases of a notch as characterized by nb = 1 and

nb = 4.

The imposition of graded waviness onto the triangular lattice degrades the tensile strength for nb = 1 and
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only leads to a 1% increase in tensile strength for nb = 4, see Figs. 13(a) and (b). This is in contrast

to the significant elevation in tensile strength for the hexagonal lattice, recall Figs. 8 and 9. As for the

hexagonal lattices, the ductility design maps shown in Figs. 13(c) and (d) suggest that the overall ductility

of triangular lattices increases with increasing A∞ or Am. The geometric parameters that maximise strength

and ductility of the triangular lattice are summarized in Table 2. Further, the sensitivity of strength and

ductility to the amplitude of waviness Am/` is shown in Fig. 14 for nb = 1 and nb = 4, with A∞ = 0 and

λ/` = 1.5. The values of A∞/` and λ/` are chosen such that this trajectory of fixed A∞/` and λ/` runs

through the optimal design associated with maximum tensile strength of the triangular lattice.

The macroscopic nominal stress versus strain responses of triangular lattices with straight struts, and with

graded waviness that maximises or minimises the strength over the design range, are included in Fig. 15

for the choice nb = 4. The graded waviness design that maximises σ̂ exhibits a stress versus strain curve

that is almost identical to that of the lattice with straight struts. In contrast, the stress-strain curve for

the minimum strength design with nb = 4 has a much reduced initial yield strength and only a slightly

enhanced ductility.

The range in strength and ductility of triangular lattices in the feasible design region (A∞/`,Am/`) ∈

[0, 0.06], λ/` ∈ [0, 10] is shown in Fig. 16. The normalized tensile strength σ̂ ranges from 0.92 to 1.0 for

nb = 1, and from 0.93 to 1.01 for nb = 4 (see Fig. 16(a)); the range of achievable ductility for triangular

lattice is 0.115 to 0.147 for nb = 1, and 0.105 to 0.142 for nb = 4. We conclude that the presence of graded

waviness is detrimental to both strength and ductility except for a limited choice of waviness for which the

improvement in strength or ductility is minor. The deterioration in strength and ductility is associated with

an increased stress concentration at the notch root when graded waviness is present; this was deduced from

deformed meshes (of similar type to that shown in Fig. 12 for the hexagonal mesh) that are omitted here

for the sake of brevity.
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4. Concluding remarks

The present study has revealed, by a combination of experiment and finite element analysis, that the presence

of graded waviness near a notch can have a major effect upon the collapse response. By a suitable choice

of the amplitude and size of wavy domain, in relation to the notch length, it is possible to increase both

the strength and ductility significantly for a hexagonal lattice but not for a triangular lattice. A similar

approach can be adopted for other types of stress-raiser such as a hole or inclusion. Other local reinforcement

strategies are possible: whilst the addition of local waviness may not change the local relative density of the

lattice, it is also possible to adopt other strategies such as a change in strut thickness that will change the

distribution of relative density. More substantial changes to lattice configuration are also possible: lattice

size and connectivity can be modified near a stress-raiser, analogous to the refinement of a finite element

mesh near a stress-raiser. These more sophisticated approaches as well as investigations of the control

of notch sensitivity for other notch geometries and lattice topologies such as auxetic lattices await future

studies.
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Tables

nb = 1 nb = 1 nb = 4 nb = 4 nb = 1 nb = 1 nb = 4 nb = 4
σ̂(max) σ̂(min) σ̂(max) σ̂(min) ε∞f (max) ε∞f (min) ε∞f (max) ε∞f (min)

A∞/` 0 0.2 0 0.2 0 0.2 0 0.2
Am/` 0.1 0 0.15 0 0 0.2 0 0.2
λ/` 1.5 1.5 4.0 4.0 NA NA NA NA

Table 1: Geometric parameters for optimized graded waviness distributions of hexagonal lattices in the
design region A∞/`,Am/` ∈ [0, 0.2] and λ/` ∈ [0, 10], with notch size nb = 1 and 4.

nb = 1 nb = 1 nb = 4 nb = 4 nb = 1 nb = 1 nb = 4 nb = 4
σ̂(max) σ̂(min) σ̂(max) σ̂(min) ε∞f (max) ε∞f (min) ε∞f (max) ε∞f (min)

A∞/` 0 0.06 0 0.06 0 0.06 0 0.06
Am/` 0 0 0.04 0 0 0.06 0 0.06
λ/` NA 1.5 1.5 1.5 NA NA NA NA

Table 2: Geometric parameters for optimized graded waviness distributions of triangular lattices in the
design region A∞/`,Am/` ∈ [0, 0.06] and λ/` ∈ [0, 10], with notch size nb = 1 and 4.
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(a) (b)

Figure 1: Sketch of experimental lattice specimens (ρ = 0.17) containing as-designed defects in the form
of a row of missing cell walls for (a) hexagonal and (b) triangular lattices.
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(a) (b)

Figure 2: Specimens (ρ = 0.17) with graded wavy struts around a centre notch of (a) hexagonal lattices
and (b) triangular lattices. In (b), the red crosses denote cut struts prior to testing. The scale bars are of
length 10 mm.

19



Figure 3: True stress versus true strain response of solid dogbone shaped specimens and the assumed
response used in the finite element (FE) analysis which includes the used extrapolation.
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Figure 4: Measured stress versus strain response of (a) hexagonal and (b) triangular lattices. Photographs
of the deformed (c) hexagonal and (d) triangular lattices (ρ = 0.17, Am/` = 0.075) before first strut failure.
The scale bars are of length 10 mm.
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(a) (b)

Figure 5: (a) Normalised gross strength Pf/P0 and (b) ductility Uf/H at first strut failure versus the
maximal amplitude Am of graded wavy hexagonal and triangular lattices with a length of the centre notch
of 4 cells.
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Figure 6: Hexagonal lattices with a periodic distribution of flaws. (a) A flaw of length 2a, consisting of
missing cell walls, exists in a periodic RVE of size 2D × 2D. (b) Geometry of a periodic RVE of hexagonal
lattice with graded strut waviness.
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Figure 7: Triangular lattices with a periodic distribution of flaws. (a) A flaw of length 2a, consisting of
missing cell walls, exists in a periodic RVE of size 2D × 2D. (b) Geometry of a periodic RVE of triangular
lattice with graded strut waviness.
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Figure 8: Influence of graded strut waviness on ultimate tensile strength and ductility of hexagonal lattices.
Effect of A∞/`, Am/` and λ/` on normalised UTS σ̂ for hexagonal lattices with notch sizes (a) nb = 1 and
(b) nb = 4, and on ductilities ε∞f of lattices with (c) nb = 1 and (d) nb = 4.
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Figure 9: Effect of waviness amplitude Am upon (a) strength σ̂ and (b) ductility ε∞f of a hexagonal lattice
for the case of straight remote struts (A∞ = 0).
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∞

𝜀∞

Figure 10: Tensile responses for periodic hexagonal lattices with missing cell walls (nb = 4) of designed
graded strut waviness distributions; the lattice is modulated to have the maximum and minimum UTS in
the design region A∞/`,Am/` ∈ [0, 0.2] and λ/` ∈ [0, 10].
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Figure 11: The achievable range of (a) strength and (b) ductility of periodic hexagonal lattices, for a strut
waviness in the feasible design region A∞/`,Am/` ∈ [0, 0.2] and λ/` ∈ [0, 10].
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Figure 12: Undeformed and deformed configuration of periodic hexagonal lattices of nb = 4 with (a)
original straight struts, and graded waviness distribution with (b) maximum and (c) minimum strengths.
The black circle is the boundary for wavy and straight struts, where A−A∞

Am−A∞
= 0.1. The contour value in

the defined meshes is the normalised von Mises stress with respect to the yield stress (σ = σ/σYS).
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Figure 13: Influence of strut waviness distribution on ultimate tensile strength and ductility of triangular
lattices. Effect of A∞/`, Am/` and λ/` on normalised UTS σ̂ for triangular lattices with notch sizes (a)
nb = 1 and (b) nb = 4, and on ductilities ε∞f of lattices with (c) nb = 1 and (d) nb = 4.
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Figure 14: Effect of waviness amplitude Am upon (a) strength σ̂ and (b) ductility ε∞f of a triangular lattice
for the case of straight remote struts (A∞ = 0).
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Figure 15: Tensile responses of periodic triangular lattices with missing cell walls (nb = 4) of designed
graded strut waviness distributions. The lattice has the maximum and minimum UTS in the design region
A∞/`,Am/` ∈ [0, 0.06] and λ/` ∈ [0, 10], with the case if straight struts A∞ = Am = 0 included for reference.

32



(a)

n  b

𝜎 ̂

(b)

n  b

f

Figure 16: The achievable range of (a) strength and (b) ductility of periodic triangular lattices, for a strut
waviness in the feasible design region A∞/`,Am/` ∈ [0, 0.06] and λ/` ∈ [0, 10].
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