
1 

 

The in-plane elastic-plastic response of an incompressible, filled hexagonal honeycomb  

H Tankasala*, V S Deshpande+ and N A Fleck+ 

* Now at School of Mechanical, Aerospace & Automotive Engineering, Coventry University, 

Priory Street, Coventry CV1 5FB, UK 

+  Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ, UK 

8 May 2021 

Abstract 

 Exact solutions are derived for the small-strain, in-plane, elasto-plastic response of a 

hexagonal honeycomb using slender beam theory;  incompressibility of the honeycomb is enforced 

by filling its voids with an incompressible, inviscid fluid.  The honeycomb has sides of equal 

length, but its inclined struts subtend an angle that can deviate from 120o with respect to the vertical 

side walls.  The relative density is sufficiently small that the struts are slender and can be treated 

as Euler-Bernoulli beams.  Exact solutions are obtained for the elastic moduli and macroscopic 

yield surface of the rigid, ideally plastic lattice under general in-plane loading:  the solutions satisfy 

equilibrium, compatibility and the constitutive response of each elastic, ideally plastic beam.  Prior 

to conducting an elastic analysis, and a rigid, ideally plastic analysis, initial insight is gained by 

exploring the vector space of inextensional collapse mechanisms of the pin-jointed, compressible 

version of the hexagonal truss.  Two inextensional collapse mechanisms of the compressible 

honeycomb are identified from the null space of the kinematic matrix.  The presence of an 

incompressible, inviscid fluid in the voids of the honeycomb locks-up one mechanism but the other 

mechanism survives and generates macroscopic shear strain.  Consequently, the incompressible 

hexagonal honeycomb with rigid joints has a high shear compliance and a low shear strength, with 

values equal to that of the unfilled, compressible honeycomb.  In contrast, macroscopic tensile 

straining of the incompressible honeycomb requires the stretching of bars in addition to bar-

bending, and the tensile modulus and strength of the incompressible honeycomb are thereby 

elevated.  Explicit analytical formulae are derived for the macroscopic tensile modulus and 

strength of the incompressible honeycomb.   

 

Keywords:  lattice materials, hexagonal honeycomb, plasticity, yield surface, kinematic matrix, 

pin-jointed-truss, collapse mechanisms 
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1.  Introduction 

 Much is known about the elasto-plastic response of unfilled 2D lattices at low relative 

density, see for example, Gibson and Ashby (1997).  Less is known about the mechanics of lattices 

with a compressible core, and there is a negligible literature on the mechanics of lattices filled with 

an incompressible medium (fluid or solid) of negligible deviatoric strength.  Although an extensive 

literature exists on the mechanics of unfilled honeycombs (see for example the recent review by 

Wang (2019)), there is little open literature on honeycombs with an incompressible infill.  We 

begin by summarising some of the main results from the literature on the mechanics of the unfilled 

honeycomb, and of a honeycomb filled with a compressible solid. 

 

1.1  Mechanics of unfilled honeycombs 

 The mechanics of an unfilled hexagonal honeycomb has received much attention within 

the mechanics community since the pioneering monograph by Gibson and Ashby (1997).  Gibson 

and Ashby made use of simple beam theory in order to analyse the effective properties of a periodic 

honeycomb in terms of its relative density 1  .  They found that plastic collapse modes 

involving only hinge rotation (without bar extension) are much weaker than modes that also 

require bar extension.  For example, the shear strength of a regular hexagonal honeycomb 

( )o30 =  involves plastic hinge formation in inextensional bars such that the macroscopic shear 

strength scales as 
2 .  In contrast, the hydrostatic tensile strength of the regular honeycomb 

requires bar plastic stretching and consequently the hydrostatic strength scales as  .  

Subsequently, analytical and finite element studies have explored the sensitivity of in-plane 

response to various imperfections such as wavy cell walls or randomly moved nodes, see for 

example, Chen et al. (1999), Wang and McDowell (2004) and Ronan et al. (2016).   

 

1.2  Honeycombs with a compressible in-fill 

 Honeycombs with empty cells are useful in crash mitigation, and it is to be expected that 

infilling of the cells by a dissipative core may lead to enhanced crash worthiness.  To address this, 

the elevation in strength and in energy absorption of a metallic sandwich plate by polymer foam 

filling of a square honeycomb or triangular corrugated core has been assessed by Vaziri et al. 

(2006).  They performed a finite element analysis to determine the degree of enhancement in plate 
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performance under crushing and impulsive loads by the addition of a polymer foam to the cavities 

of the lattice core of the sandwich plate.  The presence of the foam enhances the core stiffness and 

increases the compressive buckling strength of the core members by supplying lateral support.  

However, the performance of the polymer foam core is traded against that of the metal, and the 

foam-filled core gives negligible advantage over the unfilled core on the basis of a fixed total 

weight of sandwich beam.  Recently, experiments on the low-velocity impact of sandwich panels 

with a corrugated cores have been performed, with the interspaces of the corrugated core filled 

with an aluminium alloy foam (Yan et al. (2021)).  The presence of the foam core reduced the 

buckling wavelength of the corrugated core members and thereby elevated the compressive 

strength of the corrugated core, as predicted previously by Vaziri et al. (2006).   

 Quasi-static, in-plane compressive tests have also been performed on aluminium 

honeycombs filled with a polyurethane foam, Mozafari et al. (2015).  The presence of the foam 

core increases the in-plane compressive strength but does not alter the crush mode:  crush bands 

form in both the empty and foam-filled hexagonal honeycomb, with negligible lateral straining 

parallel to the crush bands.  Since polyurethane foam crushes in uniaxial compression with almost 

vanishing transverse strain (that is the ‘plastic Poisson ratio’ is close to zero), it is to be expected 

that there is only a small synergistic strengthening of the crush bands in a hexagonal honeycomb 

by the presence of the foam.  Mozafari et al. (2015) commented that the presence of the foam-

filling does not change the deformation mode of the hexagonal honeycomb, yet they observed 

significant synergistic strengthening.  Further studies are needed to relate this synergistic 

strengthening to the geometry of the hexagonal honeycomb and to the multi-axial, compressive 

strength of the foam at finite strain.  As a first step it is instructive to consider the simpler problem 

of a hexagonal honeycomb filled by an incompressible solid (or liquid) of vanishing deviatoric 

strength.  It is expected that the presence of an incompressible, inviscid liquid will eliminate the 

crushing mode of a hexagonal honeycomb as uniaxial straining can no longer occur.   

 

1.3  Overview of present study 

 Our study addresses the small strain, in-plane, elasto-plastic response of a filled hexagonal 

honeycomb, with bars of thickness t and length , as shown in Fig. 1(a).  The honeycomb is made 

incompressible by the filling of its voids with an incompressible, inviscid fluid.  The inclined bars 

are at an angle of   with respect to the transverse direction;  consequently, the honeycomb does 

not enjoy 120o rotational symmetry, and is transversely isotropic in its elastic response.  If the 
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hexagon is regular (that is, the bars are of equal thickness and length, and the angles subtended at 

the joints are all 120o) then the in-plane elastic properties are isotropic.  The novelty of the present 

study lies in the fact that the filling of the voids of the honeycomb by an inviscid, incompressible 

fluid constrains the volume V of each honeycomb cell to be constant.   

 A fresh examination of the basic mechanics of the filled honeycomb is warranted in order 

to explore the degree to which incompressibility locks up some of the deformation modes of the 

empty honeycomb under general in-plane loading.  Fluid-filled honeycombs exist in practical 

applications ranging from honey-filled beeswax honeycombs to the local reinforcement of 

aluminium honeycomb by the potting of elastomeric adhesives in aerospace applications.  

Additionally, the in-plane response of the filled hexagonal honeycomb sheds light on the multi-

axial response of their 3D counterparts, such as adipose tissue that comprises closed adipose cells 

filled with low-viscosity lipid oils (Comley and Fleck (2010, 2012)).   

 The in-plane elastic, ideally plastic response is analysed for the periodic hexagonal 

honeycomb of Fig. 1(a); the honeycomb is made incompressible by the filling of its hexagonal 

voids by an incompressible second phase of vanishing shear modulus and shear strength, such as 

an inviscid, incompressible fluid.  We shall show that the response is sensitive to the inclination 

  over the full range 
o o30 90−    and the behaviour changes dramatically for the special case 

of 
o30 = .  This is seen immediately from the dependence of the volume V of the hexagonal unit 

cell upon the inclination  : 

    ( )22 1 sin cosV  = +      (1.1) 

This relation is plotted in Fig. 1(b).  Note that opposing bars come into contact and jam against 

each other at the limiting values 
o30 = −  and 

o90 = . The volume V vanishes at 
o90 =  and 

attains a maximum at 
o30 = .  The relation (1.1) can be used to determine the dilatation of the 

unfilled honeycomb due to a change of inclination   but with symmetry maintained and the bar 

length  held fixed:  the inclined bars remain equally inclined and the vertical bars remain 

vertical.  Then, this perturbation in   from 
o30 =  gives rise to an incompressible, 

inextensional mode of deformation, whereas a volume change occurs for any other value of 

o o30 90−   .  The case 
o30 =  also gives an isotropic elastic response for both the unfilled 

and filled honeycomb.   
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 Initial insight into the elastic and plastic deformation modes of the rigid-jointed hexagonal 

honeycomb is obtained by analysing the kinematics of the pin-jointed hexagonal honeycomb, the 

so-called ‘parent, pin-jointed truss’ of the ‘daughter, rigid-jointed frame’.  If the parent, pin-jointed 

truss possesses inextensional collapse mechanisms that generate macroscopic strain, then the 

daughter, rigid-jointed frame deforms in a macroscopic elastic manner by elastic, inextensional 

bar bending.  Likewise, macroscopic plastic collapse of the rigid-jointed frame is by inextensional 

plastic hinge formation.  Otherwise, macroscopic elastic and plastic deformation response requires 

elastic and plastic bar stretching, respectively.  Bar stretching is a much stiffer and stronger 

deformation mode than hinge rotation alone.  These fundamental notions are discussed in more 

detail below and by Deshpande et al. (2001) and by Fleck et al. (2010).  

 The scope of the study is as follows.  The kinematics of an incompressible, pin-jointed 

hexagonal truss is analysed via the kinematic matrix for the unit cell.  Then, analytical expressions 

for the effective elastic constants of the incompressible honeycomb are obtained as a function of 

relative density   and bar inclination  .  In subsequent sections of the paper, the rigid, ideally 

plastic collapse response of the incompressible honeycomb is obtained in terms of a small number 

of collapse modes.  The calculations are exact in the sense that kinematics, equilibrium and the 

yield response of the bars are respected.  Predictions are made for illustrative examples of filled 

honeycomb with a focus on 
o20 = , 

o30  and 
o40 .  Analytical expressions are also obtained for 

pertinent points on the yield surface.  Numerical checks on the exact solutions of the present study 

were performed via finite element simulations of the macroscopic moduli and yield surfaces.  

Although the finite element simulations provided a useful numerical check that the development 

of the present study contains no algebraic errors, explicit comparisons are omitted herein for the 

sake of brevity.   

 

2.  The relevance of the pin-jointed hexagonal lattice 

 The relevance of the macroscopic, inextensional collapse modes of a pin-jointed truss to 

the macroscopic stiffness and strength of a rigid-jointed frame has been firmly established, see 

Deshpande et al. (2001) for example.  The connection is straightforward, as follows.  First, recall 

that the elastic bending stiffness of a slender beam is much less than its axial stiffness.  As an 

example, consider a uniform, slender beam of length , height t  , thickness b (into the page), 

with one end free and the other fully built-in.  If the beam is made from a solid of Youngs’s 

modulus SE , then an axial load T at the free end generates an end axial displacement 
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( )/ Su T E bt=  whereas a transverse force T at the free end generates a transverse end 

displacement ( )3 34 / Sv T E bt= .  The ratio of transverse to axial displacement is 
2 2/ 4 /v u t= , 

and consequently /v u  much exceeds unity for a slender beam / 1t  .  The beam can therefore 

be idealised as a rigid, inextensional bar, with a rotational spring at its built-in end of rotational 

stiffness 
2 3/ / 4ST v E bt= .  In the limit of zero rotational stiffness (that is, upon taking the limit 

/ 0t → ), the beam behaves as a pin-jointed bar with free rotation about its end joint.  The same 

argument can be extended immediately to the case of a rigid-jointed framework.  Consider a pin-

jointed truss with the same arrangement of bars as that of a rigid-jointed frame.  The collapse 

modes of the pin-jointed truss coincide with the deformation modes of the rigid-jointed frame that 

involve beam rotation but negligible beam extension.  If the pin-jointed frame has no such collapse 

modes, then the only available deformation modes of the rigid-jointed version involve bar 

extension.  In particular, as / 0t → , the rigid-jointed frame has the same kinematics as the pin-

jointed truss. 

 The conclusion is immediate:  a pin-jointed lattice with collapse mechanisms that generate 

macroscopic strain gives rise to a rigid-jointed lattice that deforms by bar bending when subjected 

to a macroscopic strain state.  Such a bending-dominated lattice has a low macroscopic stiffness; 

the macroscopic Young’s modulus of such a 2D lattice scales as the cube power of its relative 

density.  Alternatively, if the pin-jointed lattice has no strain-generating collapse mechanisms, then 

the rigid-jointed lattice is stretching-dominated and the macroscopic Young’s modulus of such a 

2D lattice scales linearly with its relative density.  An empty hexagonal honeycomb is a common 

example of a bending-dominated lattice whereas a fully triangulated lattice is a common example 

of a stretching-dominated lattice.   

 A similar argument applies to the plastic collapse of the beam.  Assume rigid, ideally plastic 

behaviour such that the beam is made from a solid of yield strength YS .  Then, the axial strength 

of the beam equals Y YST bt= , and its bending strength under a transverse end load YP  is 

2 / 4Y YSP bt=  due to the formation of a plastic hinge at its built-in end.  The ratio of bending to 

axial strength is / / 4Y YP T t= .  Thus, a slender beam has a much lower bending strength than its 

axial strength, and so the collapse response can by idealised by treating the beam as an 

inextensional bar with a ‘rusty hinge’ of bending strength 
2 / 4Y YSM bt=  at its built-in end.  It 

follows immediately that the macroscopic strength of a rigid-jointed frame can be determined by 
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treating it as a pin-jointed truss but with rusty joints of bending strength 
2 / 4Y YSM bt= .  The 

collapse mechanisms of the truss with rusty joints are identical to those for a frictionless, pin-

jointed truss.  If no collapse mechanisms exist for the rusty-jointed truss, then the macroscopic 

strength of the rigid-jointed frame is dictated by the axial strength of its members.  Consequently, 

a bending-dominated lattice has a low macroscopic strength that is dictated by plastic hinge 

formation in its cell walls, whereas the macroscopic strength of a stretching-dominated lattice is 

dictated by the axial strength of the cell walls.  

 Our strategy is to determine whether inextensional collapse mechanisms exist for the 

incompressible pin-jointed hexagonal truss and, if they do, whether these mechanisms generate 

macroscopic strain.  To do so, we extend the matrix analysis of Pellegrino and Calladine (1986) to 

the case of a periodic lattice.  A similar methodology has been developed by Hutchinson and Fleck 

(2006) for a Kagome lattice and for a fully triangular lattice1.  The methods of matrix analysis 

draw heavily upon the underlying theory of vector spaces, see for example the very readable 

monograph by Strang (1980).   

 

2.1 Matrix analysis of pin-jointed hexagonal lattice 

 A matrix analysis is now performed on the kinematics of an unfilled pin-jointed hexagonal 

lattice.  Assume that each bar i extends by ei and the joints j displace by j
u .  Our aim is to explore 

whether collapse mechanisms exist and whether any of these collapse mechanisms generate 

macroscopic strain.  It suffices to consider bars 1, 2 and 3 of the unit cell as shown in Fig. 2(a).  

Remove rigid body translation but prescribe a macroscopic material rotation by assuming that both 

components of the displacement of joint A vanish, and that the vertical displacement of joint D 

equals that of joint B: 

  1 2 0A Au u= =   and   2 2 0D Bu u− =     (2.1) 

Here, and elsewhere, a superscript denotes the joint under consideration and the subscript denotes 

the co-ordinate direction (1 or 2).  The constraint (2.1ii) is consistent with simple shear along the 

1-direction.   

 
1 Hutchinson and Fleck (2006) also considered long wavelength periodic collapse modes by Bloch-wave 

analysis.  These additional modes do not generate macroscopic strain.  Macroscopic strain corresponds to the 

Cauchy-Born limit. 
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 Now introduce a 5-dimensional joint displacement vector in vector space as  

    ( )
T

1 2 1 2 1, , , ,B B C C D

jd u u u u u=      (2.2) 

where the superscript T denotes transpose.  Then, following Pellegrino and Calladine (1986) and 

Guest and Hutchinson (2003), the bar extensions ie  of the 3 bars are related to the joint 

displacements 
jd  via a kinematic matrix 

ijB  such that  

     
ij j iB d e=       (2.3) 

Note that 
ijB  is of dimensions m x n where the number of bars is 3m =  and the number of 

unconstrained joints is 5n = , as already noted in (2.2).  The repeated subscript j in (2.3) denotes 

summation over j = 1, 2.. n .  The rectangular matrix 
ijB  , of rank r, is a linear operator between 

the domain of joint displacements in 5R , and the range of bar extensions in 3R  space.  Direct 

evaluation of 
ijB  gives 

   

cos sin cos sin 0

0 sin cos sin cos

0 1 0 0 0

ijB

   

   

− − 
 

= − − 
 
 

   (2.4) 

The row space of 
ijB  gives r extensional mechanisms while the null space of 

ijB  gives the subset 

of inextensional mechanisms.  We identify the rank r, the row space and the null space by 

attempting to reduce 
ijB  to echelon form with zeros in the lower-left triangle.  In doing so, we 

reduce 
ijB  to  

   

cos sin cos sin 0

0 sin cos sin cos

0 0 cot 1 cot

ijB

   

   

 

− − 
 

= − − 
 − 

   (2.5) 

The first 3 columns contain pivots, and we conclude that the rank r of matrix 
ijB  (and of 

ijB ) 

equals 3.  The column space of 
ijB  is spanned by its first 3 columns and the row space of 

ijB  is 

spanned by its 3 rows.  The null space of 
ijB  has dimension 5 3 2n r− = − = , and a basis for this 

subspace is found by following the prescription in Pellegrino and Calladine (1986).  Consider 

0ij jB d =   with 4 1d =  and 5 0d = , and solve for the 3 unknowns ( )1 2 3, ,d d d .  The resulting solution 
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(1)

jd  (j = 1-5) gives a vector in the null space.  Second, consider 0ij jB d =  with 4 0d =  and 5 1d = , 

and solve for the 3 unknowns ( )1 2 3, ,d d d .  Then, the resulting solution (2)

jd  (j = 1-5) gives a second 

vector in the null space.  Taken together, these define a basis for the null space.  Upon making use 

of (2.5) we obtain 

 ( )
T(1) 2tan ,0, tan ,1,0jd  =   and   ( )

T(2) 1,0,1,0,1jd =   (2.6) 

Note that these base vectors are not orthogonal:  (1) (2) 0j jd d   (sum over j =1 to 5).  Now replace 

(1)

jd  by a vector ( )
T(3) 1,0,0, cot ,1jd = − −  which sits within the same plane of the null space but 

is now orthogonal to (2)

jd .  Thereby, we identify one choice of orthogonal base vectors (3)

jd  and 

(2)

jd  for the 2-dimensional subspace of inextensional mechanisms of 
ijB .  Any inextensional 

mechanism can be written as 

     
(2) (3)

2 3j j jd d d = +      (2.7) 

in terms of scalar components ( )2 3,  .  

 It remains to determine whether (2.7) generates macroscopic strain of the unfilled, periodic 

lattice for any choice ( )2 3,  .  To proceed, express the macroscopic strain in terms of joint 

displacements.  Assume that the unfilled compressible honeycomb is subjected to the macroscopic 

strain state ( )11 22 12, ,E E E , and assume without loss of generality that the macroscopic rotation rate 

of the honeycomb is such that direct straining ( )11 22,E E  is accompanied by a simple shear strain 

of magnitude 122E .  The relative displacement of joint C with respect to the stationary joint A of 

Fig. 2(a) is compatible with macroscopic strain such that 

   ( )1 1 1 12 112 1 sin cosC A Cu u u E E − = = + +     (2.8) 

and 

   ( )2 2 2 22 1 sinC A Cu u u E − = = +      (2.9) 

Similarly, the horizontal displacement of joint D with respect to joint B of Fig. 2(a) is compatible 

with macroscopic strain such that 

   
1 1 112 cosD Bu u E − =        (2.10) 
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Now eliminate 11E  from (2.8) by making use of (2.10) to obtain 

   ( )1 1 1 122 4 1 sinC B Du u u E + − = +      (2.11) 

Each component ( )11 22 12, ,E E E  can now be expressed in terms of joint displacement via (2.9), 

(2.10) and (2.11), or in terms of ( )2 3,  , by making use of (2.7) to give 

 3
11

cos
E




= ,  

( )
3

22

cot

1 sin
E

 



−
=

+
 and 

( )

( )
2 3

12
2 1 sin

E
 



−
=

+
  (2.12) 

along with the volumetric strain  

   
( )

( )
11 22 3

2 sin cos 2

sin 2 1 sin
E E

 


 

−
+ =

+
     (2.13) 

A number of conclusions can be drawn immediately from (2.12) and (2.13): 

(i)  Each of the inextensional collapse mechanisms (2)

2 jd  and (3)

3 jd  generates macroscopic strain.  

(ii)  The mechanism (2)

2 jd  generates a macroscopic shear strain 12E  but vanishing direct strain 

( )11 22,E E , as seen by inspection of (2.12).  Consequently, this mechanism is isochoric (volume-

conserving) and persists for the case of an incompressible, filled honeycomb.   

(iii)  In general (that is for   30o), the mechanism (3)

3 jd  generates volumetric strain and so this 

mechanism is locked-up by enforcing incompressibility of the filled honeycomb.   

(iv)  For the specific choice  = 30o, the pre-multiplier for 3  in (2.13) vanishes and this 

mechanism becomes isochoric.  Consequently, for  = 30o, this mechanism may also be active in 

an incompressible, filled honeycomb.  The activation of this additional mechanism when the 

hexagon has a maximum volume per unit cell (Fig. 1(b)) is analogous to the fact that a pin-jointed 

truss can acquire additional infinitesimal mechanisms (and additional states of self-stress) when 

the length of one member is a maximum.  Calladine (1974) considered such ‘extremal’ geometries 

in explaining a number of properties of the Buckminster Fuller Tensegrity structure.   

 The above considerations steer our analysis of the elastic and plastic responses of an 

incompressible hexagonal honeycomb.  In general (that is for   30o), macroscopic elastic and 

plastic straining in an arbitrary in-plane direction requires bar stretching.  In contrast, macroscopic 
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shear straining can be accommodated by inextensional bar bending in the elastic case, and by 

inextensional hinge rotation in the plastic case.  For the special choice of  = 30o, two 

inextensional deformation modes now exist:  the shear mode, and an additional mode.   

 

3.  Elastic response 

 The small-strain elastic responses of a compressible unfilled honeycomb and of an 

incompressible filled honeycomb are derived as follows.  We emphasise that incompressibility is 

enforced by filling of the voids within the honeycomb by an incompressible medium that supports 

vanishing deviatoric stress: either a solid of vanishing shear modulus and strength, or an inviscid 

liquid.  The honeycomb of Fig. 2 is subjected to the macroscopic stress state ( )11 22 12, ,   , and 

deforms such that the work-conjugate macroscopic strain is ( )11 22 12, ,2E E E .   

 First, consider a regular compressible honeycomb, such that 
o30 = :  symmetry dictates 

that it is isotropic with a shear modulus G12.  Since its Poisson’s ratio equals unity, it deforms in 

an incompressible manner under all macroscopic stress states.  Consequently, for this geometry, 

the compressible and incompressible honeycombs behave in an identical, incompressible manner. 

 Second, consider the compressible honeycomb such that 
o30  .  It is an orthotropic solid 

with 4 independent elastic constants:  two in-plane Young’s moduli 1E  and 2E  in the 1x  and 2x  

directions, respectively, a Poisson ratio 12  (or, equivalently, 21  since 1 12 2 21E E =  by 

reciprocity), and an in-plane shear modulus G12.  In contrast, for the case of an incompressible, 

filled honeycomb with 
o30   we have immediately that 12 21 1 = = , and consequently 1E  

equals 2E .  Thus, there are two independent elastic moduli 1E  and G12 in addition to the 

incompressibility statement 12 21 1 = = .   

 Now focus attention on the incompressible filled honeycomb, subjected to general in-plane 

loading ( )11 22 12, ,   .  As explained above, for 
o30  , there exist 2 independent moduli:  a 

shear modulus G12 and an extensional modulus 1 / 2E  , such that  

    12 12 122G E =        (3.1) 

and 
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    ( )22 11 22 11E E  − = −      (3.2) 

 Analytical expressions for G12 and   can be stated in terms of the Young’s modulus ES of 

the struts and the relative density   of the lattice, where 

    ( )
13

1 sin cos
2

t
  

−

= +        (3.3) 

For the compressible, unfilled honeycomb, a macroscopic shear stress 12  generates a 

macroscopic shear strain 122E  with no change in volume;  consequently, the shear response of the 

incompressible, filled honeycomb is identical to that of the compressible, unfilled honeycomb.  

The requisite formula for the shear modulus G12 is given by (4.17) of Gibson and Ashby (1997), 

and upon making use of (3.3) it reads  

    ( )
4 212

3

8
1 sin cos

81S

G

E
 


= +      (3.4) 

The cube power-law dependence of G12 upon   indicates that this deformation mode is by bar 

bending.  Additional analysis is needed to determine whether the second deviatoric modulus   is 

dictated by the bending or stretching of struts.  We shall show below that the macroscopic modulus 

  is associated with strut stretching and is of magnitude  

    
( )

( )

2

2

sin cos2

3 1 2sinSE

 

 

−
=

+
     (3.5) 

to leading order in  . 

 The macroscopic modulus   of the incompressible hexagonal lattice is obtained, to leading 

order in  , by considering the pin-jointed version of the incompressible, filled honeycomb as 

follows.  Subject the honeycomb of Fig. 2(b) of unit depth to the macroscopic stress state 

( )11 22 12, , 0   = ; additionally, the incompressible infill is subjected to an internal pressure p.  

The method of sections is used to relate the bar tension 3T  in the vertical struts and the bar tensions 

1 2T T=  in the inclined struts to the stress state ( )11 22 12, , 0   =  and p, see Fig. 2(b).  Force 

equilibrium across the horizontal cut X-X dictates that 

    ( )( )3 222 cosT p = +      (3.6) 
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Similarly, force equilibrium across a vertical cut Y-Y implies that 

    ( )( )1 1 11cos 1 sinT p  = + +     (3.7) 

Nodal force equilibrium is satisfied, and consequently 

   1 2T T=   and   3 12 sinT T =     (3.8) 

Upon substituting (3.6) and (3.7) into (3.8) we obtain 

   
( )

( )

( )

2

22 11

1 sin sincos

sin cos 2 sin cos 2
p

 
 

   

+
= −

− −
   (3.9) 

 It is instructive to rephrase 
ij  in terms of hydrostatic and deviatoric macroscopic stress 

measures, defined as follows.  Introduce a hydrostatic component 

    ( )11 22 / 2h  = +       (3.10) 

and a deviatoric component  

    ( )22 11 / 2d  = −       (3.11) 

such that  

  11 h d  = −   and  22 h d  = +     (3.12) 

Write h h p  +  as the jump in hydrostatic tensile stress from its value p−  of the infill to its 

value h  of the macroscopic stress.  Then, upon making use of (3.9) and (3.10), h  can be 

related directly to ( )22 11 −  such that 

   
( )

( )
( )22 11

1 sin

2 sin cos 2
h h p


   

 

+
 + = −

−
   (3.13) 

 We proceed to analyse the elastic response of the struts, along with compatibility between 

axial straining of the struts and macroscopic strain.  The axial strain 3  in the vertical struts, and 

the axial strain 1  in the inclined struts are related to the bar tensions by the usual Hooke’s law, 

  ( )3 3 / ST tE =   and   ( )1 1 / ST tE = ,    (3.14) 
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 respectively.  The macroscopic strain must be compatible with the axial stain 3  in the vertical 

struts, the axial strain 1  in the inclined struts, small rotation 1  of the inclined bar 1, and with 

a matching rotation 2 1 = −  of the opposing inclined bar 2.   

 Compatibility is enforced by writing the relative displacement of joint B with respect to 

joint A of the honeycomb of Fig. 2(a), such that in the horizontal direction we have 

   1 1 22sin cos cosE    − + = −      (3.15) 

while in the vertical direction we have 

   ( )3 1 1 22cos sin 1 sinE     + + = +     (3.16) 

(Note that we have made direct use of incompressibility 11 22E E= −  on the right-hand side (r.h.s.) 

of (3.15).)  Relations (3.8) and (3.14) taken together imply that 3 12 sin  = ; thus, (3.15) and 

(3.16) can be reduced to 

   ( ) ( )2

3 221 2sin 2 sin cos2 sinE    + = −     (3.17) 

upon elimination of 1 .  Now express 3  in (3.17) in terms of macroscopic stress by making use 

of (3.6), (3.9) and (3.14i);  the resulting expression can be rearranged to the form (3.2) along with 

our desired result (3.5).   

 We emphasise that incompressibility of the filled honeycomb reduces the number of elastic 

moduli to the two deviatoric quantities G12 and  .  The modulus   is directly related to the 

Young’s modulus 1E  in the 1x  direction, and Young’s modulus 2E  in the 2x  direction, as follows.  

First, assume that 22 0 = , and write (3.2) in the form 11 1 11E E =  for uniaxial tension in the 1x  

direction; we note immediately that 1 2E  .  Alternatively, assume that 11 0 = , and write (3.2) 

in the form 22 2 22E E =  for uniaxial tension in the 2x  direction, and 2 12E E = .  The 

expressions (3.4) and (3.5) for the shear modulus G12 and the Young’s modulus 2 2E   are 

compared graphically in Fig. 3.  Both moduli are sensitive to bar inclination   over the full range 

o o30 90−   .  The shear modulus G12 has a smooth maximum, while the Young’s modulus 2E  

is highly sensitive to the value of  , for   in the vicinity of 
o30 = .  In contrast, as   is 

increased to 
o90 = , 2E  attains a global maximum while G12 drops steeply.  The lattice is highly 
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anisotropic (G12 << 2E  at small  ) unless   is close to 
o30 .  For the special case of 

o30 = , the 

regular honeycomb is isotropic and 
3

2 124 3 / 4E G = = , upon making use of (3.4).  Recall that the 

expression (3.5) for 2 2E   contains only the linear term in   and neglects the next higher term 

of order 
3 :  a more detailed analysis than that given above is required to obtain this second in 

term 
3  associated with bar bending.  However, there is no need to include this second term as it 

provides a fractional correction to 2E  of order 
2 , that is 1% or less for 0.1  .  The coefficient 

in front of the leading term in   in (3.5) vanishes for 
o30 =  and it is only for   close to this 

value that (3.5) fails.   

 

4.  Yield locus of rigid, ideally plastic filled lattice 

 An exact solution is developed for the yield locus of a rigid, ideally plastic hexagonal 

honeycomb within the context of Euler beam theory for the struts.  Since the lattice contains an 

incompressible infill of zero deviatoric strength the yield surface can be presented in deviatoric 

stress space ( )12 22 11,  −  for any assumed values of   and  .  The exact solution satisfies 

equilibrium between macroscopic stress and bar forces (and moments), compatibility between 

macroscopic strain and bar deformation (stretching and rotation), and a plastic collapse law 

whereby the bars behave as Euler beams with isolated plastic hinges that are either extensional or 

inextensional in behaviour.  We shall show that the yield surface comprises a finite set of flat and 

curved facets, with a vertex existing between some but not all facets.  Each facet is associated with 

particular bars of the unit cell behaving in a rigid manner, and the remaining bars containing 

extensional or inextensional hinges.  The details are made precise below. 

 For the incompressible honeycomb (excluding the special case  = 30o), much of the yield 

surface is characterised by one bar of the triad shown in Fig. 2(c) behaving in a rigid manner while 

the other 2 bars are at yield with extensional hinges.  A small vertical facet of the yield surface is 

also present just above the 12  axis.  It is associated with macroscopic shear straining such that 

the vertical bar 3 has inextensional hinges while the inclined bars 1 and 2 are rigid.  For the special 

case of  = 30o, the yield surface has 2 flat facets; each is associated with the rotation of bars about 

inextensional hinges. 
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4.1  Yield response of each bar 

 Assume that the incompressible, filled hexagonal honeycomb of Fig. 2(a) comprises 

slender beams made from a rigid, ideally plastic solid of yield strength YS .  Write T as the axial 

tension and M as the moment on any beam cross-section.  Then, the structural collapse locus for 

the Euler-Bernoulli beam cross-section is given by the usual yield function ( ), 0M T   where 

(Hodge (1959), and equation (4.84) in Gibson and Ashby (1997)) 

    ( )
2

0 0

, 1 0
M T

M T
M T


 

= + −  
 

    (4.1) 

Here, 0 YST t=  is the axial strength (per unit depth into page), and 
2

0 / 4YSM t =  is the bending 

strength of the cross-section.  The yield surface (4.1) displays a vertex at (M =0, 0T T= ). 

 We emphasise that the Euler-Bernoulli assumption of rigid behaviour in shear implies that 

the shear force S on the beam cross-section does not enter the yield function (4.1).  Elementary 

considerations support this for the case of a slender beam, / 1t  .  Consider, for example, a 

beam of thickness t and length  subjected to T=0, with 0M M=  at one end and 0M M= −  at the 

other end.  Then, the transverse shear force S attains its maximum value ( )0 02 / / 2 .S M T t= =   

Thus, ( )0/ / 2 1S T t   for a slender beam.   

 The presence of a small shear force S leads to the formation of an isolated plastic hinge 

(that bends and extends) at each end of the beam rather than a state of uniform curvature and 

uniform stretch over the length of the beam;  write   as the hinge rotation and e as the hinge 

extension, and note that they are work-conjugate to ( ),M T , respectively.  Normality of plastic 

flow on the smooth part of the collapse surface (4.1) dictates that 

     
02

e t T
s

T
=       (4.2) 

upon introducing the indicator function 1s =  for 0   and 1s = −  for 0  .   The moment M 

is of the same sign as  , and T is of the same sign as e .  At the vertex, we have ( 0M = , 0),T T=  

and the forward cone of normals is restricted to 

     / 2 /e t        (4.3) 
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 The challenge is to obtain the yield surface ( )12 22 11,  −  for the incompressible 

honeycomb in macroscopic stress space 
ij .  Place a potentially active plastic hinge at each end 

of the bars 1, 2 and 3 of Fig. 2(a). When the inequality of (4.1) is satisfied, the hinge is inactive 

and behaves in a rigid manner.  The 3 hinges are adjacent to the central joint B, as sketched in 

Fig. 2(c).  Assume that, at any instant, bar i rotates at the rate i  (i =1, 2 or 3) with respect to the 

fixed x1-x2 reference frame, while the joint B rotates at the rate B .  Consequently, the hinge at 

each end of bar i has a rotate rate of 

     i i B  = −       (4.4) 

along with an extension rate / 2i ie = .  (When the hinge in bar i is in a rigid state we have 

0i ie = = .)  It is clear from elementary considerations that the plastic dissipation of the 

honeycomb is minimised by taking B  to equal the rotation rate i  of one of the 3 bars.  However, 

the algebraic presentation below is unified and simplified by initially assuming that the joint B has 

an independent value B  from that of the 3 bars;  it is assumed that B  equals the value i  of 

one of the 3 bars only later in the analysis.   

 

4.2  Kinematics for rigid, ideally plastic collapse of incompressible, filled honeycomb 

 Write the kinematics of the rigid, ideally plastic honeycomb in terms of rate quantities, as 

follows.  Assume that the filled honeycomb is subjected to the macroscopic strain rate 

( )11 22 22 12, ,E E E E= − , and that the macroscopic rotation rate of the honeycomb is consistent with 

that of simple shear straining, in addition to direct straining.  Consequently, the relative velocity 

of joint C with respect to joint A of Fig. 2(a), written in terms of bar rotation rates i  and bar 

extension rates 
i
, is compatible with the macroscopic strain rate such that 

  ( )12 22 3 1 12 1 sin cos cos sinE E     + − = − + −    (4.5) 

and 

   ( )22 3 1 11 sin cos sinE    + = + +     (4.6) 
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Similarly, the relative velocity of joint D with respect to joint B of Fig. 2(a), written in terms of 

bar rotation rates i  and bar extension rates 
i
, is compatible with the macroscopic strain rate 

such that 

    ( ) ( )1 2 1 2cos sin 0   + + − =     (4.7) 

(assuming that joints D and B share the same vertical velocity, as demanded by simple shear) and 

   ( ) ( )22 2 1 1 22 cos sin cosE     − = − + +    (4.8) 

For later use, elimination of 22E  from (4.6) and (4.8) provides: 

 ( ) ( ) ( )( ) ( )1 2 3 1 21 3sin 1 sin 2 tan 1 sin 2cos tan 1 sin        + + + + = + − − +   (4.9) 

 We pay due attention to kinematics, equilibrium and the yield condition (4.1) in order to 

determine the macroscopic yield surface in stress space ( )12 22 11,  − .  Assume, a priori, that all 

active collapse modes entail a non-vanishing value for 3 .  Unless otherwise stated, we shall take 

3 1 = −  as the driving term, and note that (4.5)-(4.8) provide 4 relations to help solve for the 7 

kinematic unknowns ( )1 2 1 2 3 22 12, , , , , ,E E  .  The remaining 3 required equations are obtained 

by considering equilibrium and normality (4.2).  Before proceeding, it is worth noting that if 

( )1 2 1 2 3, , , ,   are known, then (4.8) gives 22E , and back-substitution of 22E  into (4.5) gives 

12E .   

 The two compatibility relations (4.7) and (4.9) give similar insight to that in section 2 where 

the algebraic vector space of the kinematic matrix was addressed.  Assume that inextensional 

collapse mechanisms exist, such that 1 2 3 0= = =  for the incompressible, periodic honeycomb.  

First, limit attention to the regular hexagonal honeycomb such that 
o30 = ;  then, both (4.7) and 

(4.9) reduce to 1 2 0 + =  for any value of 3 .  Consequently, two collapse mechanisms exist:  

(i) 1 2 0 + =  along with 3 0 = , and (ii) 1 2 0 = =  along with 3 0  .  We shall determine 

the precise nature of these two modes below.  Second, consider the general case 
o30  .  Then, 

the only solution to (4.7) and (4.9) is 1 2 0 = =  along with 3 0  .  Thus, a single mode of 

inextensional plastic hinges exists.  We shall show below that this mode gives rise to a macroscopic 

strain rate of simple shear.   
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4.3  Equilibrium 

 The method of sections is now used to relate the axial forces iT  and shear forces iS  in the 

3 bars of Fig. 2(c) to the macroscopic stress state ( )11 22 12, ,    and infill pressure p.  Make cuts 

at mid-length of the struts on sections X-X and Y-Y as shown in Fig. 2(b).  Symmetry dictates that 

the bending moment on the cross-section of each bars vanishes at their mid-length.  Upon 

introducing the notation  

 ( )11 11 p  + , ( )22 22 p  +  and  12 12     (4.10) 

and performing routine algebraic manipulation, the method of sections for force equilbrium 

provides 

  

( )

( ) ( )

( )

( ) ( )

2

1

1

112

2

22

2

12

3

3

1 sin sin cos cos

1 sin cos cos sin 2 sin

1 sin sin cos cos

1 sin cos cos sin 2 sin

0 0 2cos

0 2cos 0

S

T

S

T

S

T

   

    


   


    






 − +  
   

+ +    
   + −  

=    + − +    
    −

     
  

  (4.11) 

Note that, for the filled incompressible lattice, we can only solve for ( )12 22 11,  −  and for the 

jump in value of hydrostatic stress from that of the infill -p to that of the remote hydrostatic stress, 

( )11 22 / 2 + .  This jump in hydrostatic stress is again written as ( )( )11 22 / 2h p  = + + .  

Also, note from (4.10) that ( )22 11 22 11   − = −  and ( )11 22 / 2h  = + ;  thus, the solution 

of ( )11 22,   provides us immediately with the values of ( )22 11 −  and of h .  The plastic 

work rate per unit volume is 

   ( )22 11 22 12 122pW E E  = − +      (4.12) 

and it follows immediately that the plastic strain rate vector ( )12 222 ,E E  is normal to the yield 

surface in ( )12 22 11,  −  stress space.   

 

5.  Collapse mechanisms for which one bar is in the rigid state 
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 The yield surface in macroscopic stress space comprises a series of flat and curved facets.  

In order to determine each facet we need to assume which bars contain active plastic hinges and 

which bars are rigid.  In general, for   30o, we assume in turn that a single bar 1, 2 or 3 is rigid 

and the remaining bars are actively yielding with plastic hinges at their ends; we then consider the 

case where 2 bars are rigid, and only the remaining bar is actively plastic.  Our choice of 1is =   

must be consistent with the fact that the plastic work rate is non-negative for each hinge i, along 

with the value of is  that is consistent with equilibrium and kinematics.  Also, satisfaction, or not, 

of the yield criterion (4.1) must be consistent with the loading on each bar. 

 We proceed to obtain the facets of the yield surface in the first quadrant of stress space 

( )12 22 11,  − , for the general case   30o.  We find that 3 distinct collapse modes exist as 

illustrated in Fig. 4(a), with the following features: 

(i) mechanism A: the vertical bar 3 is rigid, and the other 2 bars have extensional plastic hinges.   

(ii) mechanism B: the inclined bar 2 is rigid, and the other 2 bars have extensional plastic hinges.  

(iii) mechanism C: both inclined bars 1 and 2 are rigid, and the vertical bar 3 has inextensional 

plastic hinges.  

 We find that mechanisms A, B and C define the first quadrant of the yield surface for the 

geometries 
o o0 30  , whereas only mechanisms B and C are active for 

o o30 90  .  For 

completeness, we include in Fig. 4 the active yield mechanisms for the special case 
o30 = .  

Mechanism C is again active, along with a closely related mechanism D for which the inclined bar 

2 and vertical bar 3 are rigid, while the inclined bar 1 has inextensional plastic hinges.  Mechanism 

D is the same as mechanism C but relates to a different plane of symmetry of the hexagonal lattice 

(in axes rotated clockwise at 
o60  to that of the x1-x2 reference frame).  Mechanism D replaces 

mechanism C upon rotating the direction of simple shear by 
o60  clockwise. 

 Elementary considerations of reflective symmetry allow us to plot immediately the yield 

surface in quadrants 2 to 4 from that of quadrant 1.  Consequently, there is no need to analyse 

explicitly the case where the inclined bar 1 is rigid while the other 2 bars have extensional plastic 

hinges.  This mechanism is the mirror image of mechanism B above, and is active in quadrants 2 

and 4 of macroscopic stress space. 

 



21 

 

5.1  Mechanism A:  vertical bar 3 is rigid 

 Assume that the vertical bar 3 is rigid such that 3 3 3 0B  =  − =  and bar 3 rotates at 

a prescribed rate, say 3 1 = − ;  the other 2 bars are at yield, with plastic hinges that satisfy (4.1) 

and (4.2), recall Fig. 4(a).  The objective is to solve for the remaining kinematic quantities 

( )1 2 1 2 22 12, , , , ,E E  , the bar forces iT  and iS  (in bars i =1-3), the stress state ( )11 22 12, ,    and 

thereby the remote stress measure ( )22 11 −  and jump in hydrostatic stress h .  The trajectory 

of the yield locus in stress space ( )12 22 11,  −  is parameterised by assuming values for the 

tracking variable 1 0/ 0T T  .  The detailed derivation of the solution is given in Appendix A.  

 As an example of the solution, we plot ( )12 22 11, , h   −  as a function of 1 0/T T  in Fig. 

5(a) for 
o20 = .  For the choice 1 0/ 1T T = − , we have 12 0 =  and 22 11 −  attains its maximum 

value of the yield locus.  Then, as 1 0/T T  is increased from -1 to 1 0/ 0.79T T = − , 12  increases from 

zero and 22 11 −  decreases.  Mechanism A terminates when the vertical bar 3 yields at 

1 0/ 0.79T T = − , and for 1 0/ 0.79T T  −  it is replaced by mechanism B.  The (curved) facet of the 

yield locus in ( )12 22 11,  −  space for mechanism A and 
o20 =  is shown in Fig. 6(a), upon 

recalling that ( )22 11 22 11   − = −  and 12 12 = .  Each end of this facet comprises a vertex 

on the yield surface.  One vertex is on the 22 11 −  ordinate axis at 1 0/ 1T T = − , and the vertex 

links mechanism A in the first quadrant of stress space to the reflection of mechanism A in the 

fourth quadrant.  The other vertex is located at the point 1 0/ 0.79T T = −  where mechanism B meets 

mechanism A.  The yield surface has also been explored in detail for 
o40 = .  It is found that 

mechanism A is inactive for this choice of  , and mechanism B replaces mechanism A for stress 

states close to the 12 0 =  axis.   

 

5.2  Mechanism B:  inclined bar 2 is rigid 

 Second, consider the case where bar 2 is rigid, such that ( )2 2,T M  lies within the yield 

surface (4.1), with 2 2 2 0B  = = − = .  We proceed to solve for ( )1 2 1 3 22 12, , , , ,E E  , the bar 

forces iT  and iS  (in bars i=1-3), the stress state ( )11 22 12, ,    and thereby the remote stress 
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measure ( )22 11 −  and jump in hydrostatic stress h  by again taking 3 1 = −  as the driving 

term, and by again treating 1 0/T T  as the tracking parameter.  The full details of the solution are 

recorded in Appendix B. 

 We proceed to plot ( )12 22 11, , h   −  as a function of 1 0/T T  in Fig. 5(a) for 
o20 = , 

and in Fig. 5(c) for 
o40 = .  We observe that mechanism B is operative over the majority of the 

1 0/T T  range for both values of  .  The (curved) facet of the yield locus in ( )12 22 11,  −  space 

follows immediately, upon making use of ( )22 11 22 11   − = −  and 12 12 = , see Fig. 6.   

 Consider first the facet of the yield surface for which mechanism B is active, for the choice 

o20 = .  As 1 0/T T  increases from -0.79 to -0.002, 12  increases monotonically while 22 11 −  

drops to almost zero, see Fig. 5(a).  Mechanisms A and B occupy most of the yield surface in Fig. 

6(a), with only a very small portion of the yield surface occupied by mechanism C (macroscopic 

shear straining, with details given below), see the magnified portion of the yield surface at 

22 11 −  small and positive in Fig. 6(b).  Mechanism B switches in a smooth continuous manner 

(with no vertex) to mechanism C at the point where the yield surface for mechanism B becomes 

vertical, that is 
22 0E → .  

 Second, consider the yield surface for 
o40 = , as plotted in Fig. 6(c).  The yield surface 

is dominated by mechanism B, and is generated by increasing 1 0/T T  from 0.024 to 0.78, see 

Fig. 5(c).  Mechanism C replaces mechanism B at a location very close to the axis of 22 11 0 − =

, see the magnified view of Fig. 5 (d).  The active mechanism of the yield surface switches from 

mechanism B to C at 1 0/ 0.024T T = , see Fig. 6 (d);  the transition is smooth and vertex-free, as 

was the case for 
o20 = .   

 

5.3  Collapse mechanism C for macroscopic shear straining 

 Macroscopic shear straining excites a particularly simple collapse mechanism:  the vertical 

bar 3 rotates at a rate 3 1 = −  deforms in an inextensional manner ( )3 0= , with rotational plastic 

hinges ( )3 0  .  The inclined bars 1 and 2 are rigid, such that 
1 2 1 2 0 = = = = , recall 

Fig. 4(a).  It is shown in Appendix C that the yield surface comprises a vertical straight line in 
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( )12 22 11,  −  stress space, emanating from the point ( )22 11 0 − =  and 12  given by (C3), and 

repeated here as  

   ( )
2

2 2

12 12

1
cos 1 sin

4cos 9

Y YS
YS

t 
     



 
 = = + 

 
  

 (5.1) 

in agreement with the expression (4.29a) of Gibson and Ashby (1997) for the shear strength of an 

unfilled honeycomb.   

 The flat, vertical facet of the yield surface for mechanism C is shown in Fig. 5 for the 2 

examples, 
o20 =  and 

o40 = .  The tension 1T  is known immediately in terms of 
11  (or 

equivalently in terms of ( )22 11 − − ) from the second line of the equilibrium statement (4.11).  

This dependence is included in Fig. 5(b) for 
o20 =  and in Fig. 5(d) 

o40 = .  For the choice 

o20 = , ( )22 11 −  increases from 0 to 0.019 but 12  remains fixed at 
12

Y  when 1 0/T T  is 

decreased from 0.026 to -0.002.  In similar fashion, for 
o40 = , ( )22 11 −  increases from 0 to 

0.0084 when 1 0/T T  is decreased from 0.036 to 0.024.  However, the slope of the ( )22 11 −  versus 

1 0/T T  relation switches sign at the transition from mechanism C to B for 
o40 = , but not for 

o20 = , compare Figs. 5(b) and (d).   

 The shear mechanism C prevails over a finite range of values of ( )22 11 −  up to the 

transition value ( )22 11 BC
 −  such that the yield mechanism switches from C to B on the yield 

surface.  It is shown in Appendix C that the transition value ( )22 11 BC
 −  is adequately given by 

(C.5), restated here as 

    
( ) 2

22 11

2

1 sin cos

9sinYS BC

  

  

+ −
 

 

    (5.2) 

The formula (5.2) is compared with the exact solution in Fig. 7: it is highly accurate and reveals 

that the active domain of mechanism C drops sharply with increasing  .  The accuracy of the 

scaling ( )2

12 / YS    and ( ) ( )22 11 / YS  −  to account for the effect of relative density   upon 

yield surface shape is explored in Fig. 8(a) for 
o20 =  and in Fig. 8(b) for 

o40 = .  The scaling 

is excellent, except for a mild sensitivity to the value of   for mechanism B. 
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 In summary, the yield surfaces for 
o20 =  and 

o40 =  are compared in Fig. 6, and 

indicate that only 3 collapse mechanism are active.  However, for both values of  , mechanism 

C is active only for macroscopic shear straining, and no vertex is present on the 12  axis.  For 

o40 = , mechanism B dominates the yield surface and a pronounced vertex exists on the 

( )22 11 −  axis.  In contrast, the yield surface for 
o20 =  is dominated by mechanisms A and B, 

with a vertex between them, and also on the ( )22 11 −  axis.  We now turn attention to the special 

case of 
o30 = . 

 

6.  Yield surface for the special case 
o30 =   

 The regular hexagonal honeycomb of bar inclination 
o30 =  is a special case whereby 

the macroscopic yield surface is due to collapse mechanisms that involve only bar rotation about 

inextensional plastic hinges.  Two such inextensional collapse modes exist for 
o30 = , as noted 

in section 2 and as sketched in Fig. 4(b).  We shall show below that the collapse locus in 

( )12 22 11,  −  stress space has two flat facets:   

(i)  mechanism C:  a vertical facet associated with macroscopic shear staining.  This segment of 

the yield surface is given by (5.1) as detailed in section 5 above, and for the case 
o30 = , (5.1) 

reduces to 

     ( ) 2

12 3 / 8 YS  =      (6.1) 

(ii) mechanism D:  an inclined straight facet associated with a fixed strain rate direction of 

22 12/ 3E E = .  This facet satisfies 

    ( ) 2

22 11 12

2 1

23
YS    − + =     (6.2) 

and is associated with the formation of inextensional plastic hinges in the inclined bar 1; the other 

inclined bar 2 and the vertical bar 3 both behave in a rigid manner.  This solution is identical to 

the preceding case (i) of macroscopic shear straining, but the mechanism gives rise to shear 

straining in a direction that is rotated clockwise by 60o with respect to the x1 – x2 reference frame.   
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 We proceed to derive (6.2) for mechanism D.  Although it can be derived simply by a 

rotation of axes by -60o, we choose to outline the few steps required to write this mechanism in 

our existing reference frame x1–x2.  The bar extensions vanish, 
1 2 3 0= = = , while 

2 3 1B  = = = − .  The compatibility relations (4.7) and (4.9) both reduce to 1 2 = − , and 

relation (4.6) then gives 
22 1 / 3E =  while (4.5) implies 

12 1 / 3E = .  Consequently, the 

macroscopic strain rate direction is ( )22 12/ 2 3 / 2E E = .  The hinges in the inclined bar 1 are 

purely rotational, hence 1 0T =  and ( )2

1 02 / / 2YSS M t= = .  Consequently, the equilibrium 

statement as given by row 1 of (4.11) can be re-phrased to 

    ( )
2

22 11 12 1

3 3

4 2 2

YStS


  − + = = .    (6.3) 

Now recall that ( ) ( )22 11 22 11   − = − , and express /t  in terms of the relative density   

via (3.3);  the desired result (6.2) follows immediately.  The resulting yield surface is plotted on 

Fig. 9.  A pronounced vertex exists at the intersection of the two facets at 

( ) ( )( )2 2

12 22 11, 3 / 8 , / 4YS YS      − = , with an additional vertex located at 

( ) ( )2

12 22 11, 0, / 2YS    − = .   

 

7.  Closed form expressions for collapse strength 

 So far, we have focussed on the yield surface for the selected bar inclinations 

( )o o o20 ,30 ,40 = .  The yield surface is plotted on Fig. 10(a) for a much wider range of values 

of  , for the choice 0.05 = .  Recall from Fig. 8 that the normalisation used for the axes of the 

yield surface is sufficient to make the yield surface shape almost insensitive to the value of  .  

The deviatoric biaxial strength ( )22 11 −  at 12 0 =  drops steeply but in a continuous manner 

with increasing   to a minimum value at 
o30 =  whereas the shear strength 

12

Y  has a much 

milder sensitivity to  .  Upon noting that the normalisation of the ordinate is by   whereas that 

of the abscissa is 
2 , it is clear that the yield surfaces in stress space are highly elongated along 

the ( )22 11 −  axis, except for   close to 
o30 = , see Fig. 10(b).  The yield surfaces in Fig. 10 
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confirm that mechanisms A, B and C are present for 
o30  , while mechanisms B and C exist for 

o30 .   

 An analytical expression for the shear strength of the filled lattice has already been given 

by (5.1).  Analytical expressions are now obtained for the deviatoric biaxial strength ( )22 11 −  

on the axis 12 0 = .  Note that the yield surface has a vertex along the ( )22 11 −  axis, and the 

dominant collapse mechanism is mechanism A (vertical bar 3 is rigid) for 
o20 =  and mechanism 

B (inclined bar 2 is rigid) for 
o40 = .  We consider each case in turn by reconsidering the analysis 

of section 5 and taking the limit 12 0 → .   

 

7.1  Deviatoric biaxial strength ( )22 11 −  for mechanism A ( 12 0 = ) 

 Limit attention to the case where mechanism A is active for deviatoric biaxial loading: 

o30  . The analysis of mechanism A in section 5 and in Appendix A simplifies by noting that 

the yield surface has a vertex on the ordinate when 12 0 = , such that 1 2 0T T T= = − .  Consequently, 

1 2 0S S= =  and the plastic hinges of bars 1 and 2 are at a vertex in M T− , as demanded by (4.1).  

The macroscopic stress state follows from the first 2 rows of the equilibrium statement (4.11), such 

that 

   ( )( ) ( )2

11 221 sin sin cos 0    − + + =     (7.1) 

and 

   ( ) ( )11 22 1 0cos 1 sin cos sin T T     + + = = −    (7.2) 

Inversion gives 

   11 cos

1 sinYSt

 

 

−
=

+
 and  22 tan

YSt





= −   (7.3) 

and consequently  

    ( )22 22 11 2
cos 2 sin

3

Y

YS YS

  
 

 

−
 = −    (7.4) 
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upon making use of (3.3).  For later use, we introduce here the notation 
22

Y  for the uniaxial tensile 

strength.  

 Recall that (7.4) is inaccurate at 
o30 =  since (6.3) gives the macroscopic strength for 

this value of bar inclination.  At what value of   does (7.4) become inaccurate?  It is shown in 

Appendix D that (7.4) is valid for   (in radians) over the range 

     0
6 3

 


 
  − 

 
     (7.5) 

via the relation (3.3).  Consider, as a practical case  =0.05.  Then, (7.4) is valid for   in the range 

of zero to 28o.  The accuracy of (7.4) within the range of (7.5) is confirmed by plotting the uniaxial 

tensile strength in the vertical, x2 direction as a function of   in Fig. 11.  The steep and continuous 

drop in strength with increasing   is evident, as already noted above in relation to Fig. 10. 

 

7.2  Deviatoric biaxial strength ( )22 11 −  for mechanism B ( 12 0 = ) 

 Now consider the case where mechanism B is active for deviatoric biaxial loading: 

o30  .  Bar 2 is rigid, while bars 1 and 3 are at yield, with 1 3 1s s= − = .  Consider the limit 

12 0. →   The equilibrium relations, as stated in rows 5 and 6 of (4.11), give 3 3 0S M= =  and  

    3 0
22

2cos 2cos

T T


 
= =      (7.6) 

as demanded by the yield condition (B2).  Then, the vertical bar 3 is in a state of tensile yield and 

the associated plastic hinge (4.1) is at the vertex in M T−  space.  It remains to obtain 
11 .  An 

approximation for 
11  is obtained in Appendix D such that  

    
( )

11

0

cot

2 1 sinT

 




+
      (7.7) 

We can now evaluate ( ) ( )22 11 22 11 /   − = −  from (7.6) and (7.7) to obtain  

    
( )22 1122 sin cos 2

3sin

Y

YS YS

   

  

− −
      (7.8) 
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in terms of relative density  , upon making use of (3.3).  Relation (7.8) provides an excellent 

approximation for the uniaxial tensile strength 
22

Y  in the regime 
o30  , see Fig. 11.  Again, we 

note a strong sensitivity of strength to bar inclination in this regime. 

 

8.  Concluding Discussion 

 It is clear from the present study that the imposition of incompressibility by in-filling of a 

hexagonal lattice has a major effect upon its elastic and plastic responses, except for the special 

case of 
o30 . =   For 

o30  , the uniaxial elastic and plastic response of the incompressible 

honeycomb requires bar stretching and consequently the macroscopic modulus and strength scale 

with relative density  .  In contrast, the shear response requires only bar bending and so the shear 

modulus scales as 
3  while the shear strength scales as 

2 .  This weak shear mode is associated 

with non-affine deformation of the lattice;  if affine deformation were enforced then the resulting 

values of shear modulus and shear strength would scale with relative density  , and thereby 

grossly overestimate the true response.   

 The highly anisotropic elastic and plastic responses for 
o30   can be traced to the effect 

of incompressibility upon the number of independent collapse mechanisms of the equivalent, pin-

jointed lattice.  Recall that, for 
o30  , the imposition of incompressibility reduces the number 

of collapse mechanisms of the pin-jointed lattice from two to one, and this single collapse mode 

generates a macroscopic shear strain 12E .  A direct correspondence exists between this collapse 

mechanism of macroscopic shear of the pin-jointed truss, and the bending-dominated elastic and 

plastic deformation modes of the rigid-jointed lattice. 

 Analytical expressions for the shear modulus, shear strength, uniaxial modulus and 

uniaxial strength have all been obtained in the present study.  Although the exact solution has been 

derived for the yield locus under general in-plane loading, it has not been possible to derive simple 

explicit expressions for all facets of the yield surface.  A pragmatic approach is to approximate the 

yield surface by an ellipse and to make use of analytical expressions for the uniaxial and shear 

strengths in order to define the ellipse, as follows. 

 Write 
12

Y  for the shear yield strength as given by (5.1) for any  .  Then write 

2

22 / 2Y

YS  =  for the uniaxial tensile strength for the special case 
o30 = , recall (6.2).  
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Alternatively, 
22

Y  is given by (7.4) for 
o30   and by (7.8) for 

o30  .  An elliptical fit to the 

yield surface is of the form 

    

2 2

22 11 12

22 12

1 0
Y Y

  

 

   −
+ −    

   
    (8.1) 

The quality of this elliptical approximation of the yield surface can be assessed from a comparison 

with the exact yield surface for the choices ( )o o o20 ,30 ,40 = , see Fig. 12.  Despite the limited 

accuracy of the elliptical approximation, it serves as a useful practical measure of the yield surface 

over a wide range of values for   and  .  

 The present study is a first step in the development of constitutive models for filled lattices.  

It provides the basic reference solution for future studies to determine the sensitivity of 

macroscopic modulus and yield surface shape to geometric imperfection such as randomly located 

joints.  Also, it is anticipated that elastic (and plastic) buckling modes may intervene to modify the 

size and shape of the collapse locus.   
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Appendix A.  Mechanism A, such that vertical bar 3 is rigid 

Treat the vertical bar 3 as rigid such that 
3 3 3 0B  =  − =  and bar 3 rotates at a prescribed 

rate, say 3 1 = − ;  the other 2 bars are at yield, with plastic hinges that satisfy (4.1) and (4.2), 

recall Fig. 4(a).  Equation (4.4) implies that  

  
1 1 1 3B    = − = −  and  

2 2 2 3B    = − = −  .  (A1) 

  Now solve for the remaining kinematic quantities ( )1 2 1 2 22 12, , , , ,E E  , the bar forces iT  and 

iS  (in bars i =1-3), the stress state ( )11 22 12, ,    and thereby the remote stress measure ( )22 11 −  

and jump in hydrostatic stress h .  It is convenient to determine the yield locus in stress space 

( )12 22 11,  −  in terms of the tracking variable 1 0/ 0T T  . The shear force 1 12 /S M=  follows 

from the yield condition (4.1) for bar 1, to give 

    

2

1 1
1

0 0

1
1

2

S Tt
s

T T

  
 = − 
   

     (A2) 

where 1 1 1/ 1s  = =  in order to give a consistent solution with positive plastic work.  The first 

2 rows of (4.11) express ( )1 1,S T  in terms of ( )11 22 12, ,   , and these 2 relations can be rearranged 

to express ( )22 12,   in terms of 
11  and ( )1 1,S T  as:  

 ( ) ( )( ) ( ) ( )2

22 11 1 12 cos 1 sin 1 2sin 2 sin cosS T      = + + + + −   (A3) 

and 

  ( ) ( ) ( ) ( )12 11 1 12 cos 1 sin sin cosS T     = − + − +    (A4) 

Now determine 
11  in terms of 1 0/T T  by considering yield of the inclined bar 2.  The yield locus 

of bar 2 reads  

    

2

2 2
2

0 0

1
1

2

S Tt
s

T T

  
 = − 
   

     (A5) 

in analogous fashion to (A2), and a consistent solution is obtained by taking 2 1s = .  Now substitute 

for ( )2 2,S T  in terms of 
11  by making use of rows 3 and 4 of (4.11), along with (A3) and (A4).  A 



32 

 

quadratic expression for 
11  results, with an analytical solution in terms of 1 0/T T .  Back-

substitution into (A3) and (A4) gives 
22  and 

12 , respectively.  We omit explicit details here for 

the sake of brevity; the algebra is straightforward but tedious.  At this point in the analysis we have 

obtained ( )1 2 2, ,S S T  and ( )11 22 12, ,    as a function of the tracking variable 1 0/T T .   

 Normality of plastic flow to the yield surface gives the direction of the macroscopic strain 

rate vector ( )12 222 ,E E  immediately.  The macroscopic strain rate for mechanism A can also be 

determined as a function of the tracking variable 1 0/T T , with 3  set (arbitrarily) to 3 1 = − .  

Normality of plastic flow (4.2) for the 2 hinges in bar 1, and for the 2 hinges in bar 2, demands 

that 

  ( )1 1 1
1 1 3

0

2
e Tt

s
T

 = = −  and ( )2 2 2
2 2 3

0

2
e Tt

s
T

 = = − ,  (A6) 

respectively.  The 2 compatibility relations (4.7) and (4.9) provide 2 additional relations in order 

to solve for ( )1 2 1 2, , ,  .  First, substitute (A6) into (4.7) to obtain 

 

1

2 1 2 1
2 2 3 1 2 1 1

0 0 0 0

1 tan tan 1 tan
T T T Tt t t

s s s s
T T T T

     

−
      

= − − − +      
      

  (A7) 

Then, substitute (A6) and (A7) into (4.9) in order to obtain 1  as a function of 1 0/T T .  Back 

substitution into (A7) gives 2 , and into (A6) gives ( )1 2, .  The macroscopic strain rate 

( )12 22,E E  follows immediately from (4.5) and (4.6).   

 

Appendix B.   Mechanism B such that the inclined bar 2 is rigid 

 Treat bar 2 as rigid, such that ( )2 2,T M  lies within the yield surface (4.1) and

2 2 2 0B  = = − = .  Equation (4.4) implies that  

  
1 1 1 2B    = − = −  and   

3 3 3 2B    = − = −  (B1) 
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Now solve for ( )1 2 1 3 22 12, , , , ,E E  , the bar forces iT  and iS  (in bars i=1-3), the stress state 

( )11 22 12, ,    and thereby the remote stress measure ( )22 11 −  and jump in hydrostatic stress 

h  by again taking 3 1 = −  as the driving term; again, employ 1 0/T T  as the tracking parameter.  

 The development parallels that given above in (A2)-(A4) as bar 1 is again actively yielding.  

For any assumed value of 1 0/T T , the shear force 1 0/S T  is determined via (A2), with 1 1s = .  Now 

determine 
11  in terms of 1 0/T T  by considering yield of the inclined bar 3.  Yield of bar 3 implies 

from (4.1) that  

    

2

3 3
3

0 0

1
1

2

S Tt
s

T T

  
 = − 
   

     (B2) 

and a consistent solution is obtained by taking 3 1s = − .  Row 5 of (4.11) states that 

3 122 cosS  = −  while row 6 states that 
3 222 cosT  = .  Upon expressing 

22  in terms of 
11  

via (A3), and 
12  in terms of 

11  via (A4), satisfaction of yield (B2) becomes 

( ) ( ) ( ) 23
11 1 1

0

2
1 1 sin sin cos cos

s
S T

tT
    

 
−  + + −  =  

 
 

    ( ) ( )
2

2 11 1 1

0 0 0

1 3sin 2sin 2 sin cos
S T

T T T


   

 
+ + + + − 

 
 (B3) 

This quadratic expression for 
11  is solved analytically as a function of 1 0/T T .  Back-substitution 

into (A3) and (A4) gives 
22  and 

12 , respectively.  In summary, we have obtained ( )1 3 3, ,S S T  

and ( )11 22 12, ,    as a function of the tracking variable 1 0/T T .   

 Now consider the kinematics for this deformation mechanism.  Normality of plastic flow 

(4.2) for the 2 hinges in bar 1, and for the 2 hinges in bar 3, demands that 

  ( )1 1 1
1 1 2

0

2
e Tt

s
T

 = = −  and ( )3 3 3
3 3 2

0

2
e Tt

s
T

 = = − ,  (B4) 

respectively.  The 2 compatibility relations (4.7) and (4.9) provide 2 additional relations in order 

to allow us to solve for ( )1 3 1 2, , ,  .  First, substitute (B4) into (4.7) to obtain 
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1

1 1
2 1 1 1

0 0

tan 1 tan 1
T Tt t

s s
T T

   

−

   
= − +   
   

   (B5) 

Then, substitute (B5) and (B4) into (4.9) in order to obtain 1  as a function of 1 0/T T .  Back 

substitution into (B5) gives 2 , and into (B4) gives ( )1 2, .  The macroscopic strain rate 

( )12 22,E E  follows immediately from (4.5) and (4.6).   

 

Appendix C:  Collapse mechanism C for macroscopic shear straining 

 Assume that 3 1 = − .  The inclined bars 1 and 2 are rigid, such that 
1 2 1 2 0. = = = =   

Equation (4.4) then implies that  

  1 2 B  = =    and  
3 3 3 2 0B    = − = −     (C1) 

The compatibility relation (4.7) requires that 1 2 0 = = , while (4.9) implies that 
3 0= .  The 

normality statement (4.2) for plastic collapse of the 2 hinges of the vertical bar 3 is of the form 

(B4ii) and implies that 3 0/ 0T T = .  Row 6 of the equilibrium relations (4.11) gives 
22 0 =  while 

row 5 gives 

     
3 122 cosS  = −      (C2) 

Since 3 0/ 0T T = , the yield condition (A1) for the hinges of bar 3 reduces to ( )3 0 3/ / 2S T s t= ;  note 

that 3 1s = −  since 3S  is negative from (C2).  The macroscopic shear stress follows from (C2) as 

( )12 0 3 / 4 cosT s t = −  or equivalently, 

   ( )
2

2 2

12 12

1
cos 1 sin

4cos 9

Y YS
YS

t 
     



 
 = = + 

 
  (C3) 

upon making use of the expression (3.3) for relative density.  (For later use, we introduce the 

notation 
12

Y  for the macroscopic shear strength.)  Thus, the yield surface is a vertical straight line 

in ( )12 22 11,  −  stress space, emanating from the point ( )22 11 0 − =  and 12  given by (C3).  

The stress component 
11  is a free variable, with ( )22 11 11  − = −  since 

22 0   as noted 

above.  Now consider the macroscopic strain rate.  Both (4.6) and (4.8) state that 
22 0E =  while 
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(4.5) reduces to ( )12 32 / 1 sinE  = − + .  Thus, the collapse mode is simple shear, as demanded 

by normality. 

 The shear mechanism C exists over a finite range of values of ( )22 11 −  up to the 

transition value ( )22 11 BC
 −  such that the yield mechanism switches from C to B on the yield 

surface.  The transition value ( )22 11 BC
 −  is now determined.  Consider the yield mechanism C, 

with 12  stated by (C3) and 
22 0 = .  The transition from mechanism B to C occurs when bar 1 

begins to yield such that (A2) is satisfied, where ( )1 1,S T  are given by rows 1 and 2 of (4.11).  Now 

make use of (C3) for 12  in obtain to an expression for 11  in terms of ( )
2

/t  to leading order.  

Upon disregarding the higher order terms we obtain 

    
( )

2

11 1

4 1 sin sinYS

t

  

−  
  

+  
    (C4) 

Thus, the transition value ( )22 11 BC
 −  reads  

    
( ) 2

22 11

2

1 sin cos

9sinYS BC

  

  

+ −
 

 

    (C5) 

upon making use of the relation (2.3) for the relative density   and by recalling 
22 0 =  for 

mechanism C.   

 

Appendix D:  Deviatoric strength for mechanisms A and B 

Deviatoric biaxial strength ( )22 11 −  for mechanism A ( 12 0 = ) 

 We shall now show that the formula (7.4) breaks down at a value of   which is slightly 

less than 
o30 ;  the breakdown occurs when the loading point on the yield surface for bars 1 and 2 

begins to move away from the vertex 1 2 0T T T= = − .  To show this, first note that the uniaxial stress 

state ( 22 0  , 11 0 = ) is located at the vertex along the ( )22 11 −  axis of macroscopic stress 

space.  The macroscopic straining direction is 
22 0E   and 

12 0E = . Symmetry dictates that the 

vertical bar 3 remains rigid and does not rotate, such that 3 B 0 = = .  The two inclined bars 

deform in the same manner such that 
1 2=  and 1 2 = − .  The compatibility relation (4.7) is 

satisfied identically, while (4.9) demands that 
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( )

( )
1 1

sin cos 2

1 2sin cos

 


 

−
=

+
     (D1) 

 We limit attention to 
o30  , and note from (D1) that 

1 0  upon taking 1 0  .  The 

direction of plastic straining of the plastic hinges in bars 1 and 2, as specified by (D1), places the 

loading point at the vertex of (4.1), such that 1 2 0T T T= = − , and 1 2 1 2 0S S M M= = = = .  This is 

consistent with the fact that the macroscopic stress state places the loading point of the beams 1 

and 2 at a vertex of the yield surface.  The limiting value of 1 1/   such that the loading point 

only just remains at the vertex of (4.1) is given by 

     ( ) ( )1 1/ /t       (D2) 

and, upon making use of (D1), this limits the value of   (in radians) to  

     
2

6 3

t
  −       (D3) 

for small /t .  Thus, (7.4) is valid for   (in radians) over the range of (7.5). 

 

Deviatoric biaxial strength ( )22 11 −  for mechanism B ( 12 0 = ) 

 An approximation for 
11  is obtained as follows.  First, note that 

11  is related to ( )1 1,S T  

via the equilibrium statement (A4) for bar 1: 

   ( ) 11 1 11 sin cos sinT S   + = −      (D4) 

when 12 0 = .  Now obtain ( )1 1,S T .  Substitute (7.6) and (D4) into the equilibrium relation (A3) 

for bar 1 to obtain 

    1 1 0sin cos / 2T S T + =      (D5) 

and make use of the yield equation (A2) for bar 1 to obtain  

  

2

1 1
1 1

0 0

cos 2 sin 1 cos 0
T Tt t

s s
T T

  
    

− + − =    
    

    (D6) 

This quadratic equation for 1T  has the solution 
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( )

1/2
2 2

1

2 2 2 2

0

1 4sin 1
1 1 ...

sin sin 2sin 2sin 4sin

T

T

    
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−   −
= − −  − +  

  
  for small   (D7) 

where  

    ( ) 1/ cost s =       (D8) 

For the practical case ( )/ 1t  , the solution (D7) for 1T  has the asymptotic form 

   
2

1 1

2

0

1 4sin 1
cot

2sin 2 4sin

T s t

T




 

   −
 −   

  
    (D9) 

Now substitute (D9) into (D5) to obtain 

    
( )2

1 1

2

0

4sin 1

8 sin

S s t

T





− 
 

 
     (D10) 

and make use of (D4) to obtain (7.7). 
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Figure Captions 

 

Fig. 1 (a)  The filled, incompressible hexagonal honeycomb; (b) volume V of unit cell as a function 

of bar inclination   over its full range 
o o0 90  . 

 

Fig. 2.  The hexagonal honeycomb.  (a) Geometry and in-plane loading;  (b)  method of sections 

along planes X-X and Y-Y, and resolved bar forces due to macroscopic direct stress ( )11 22,  ; 

(c) forces and moments on a representative joint B, with plastic hinges formed in each of the 3 

bars 1, 2 and 3 that meet at this joint.  

 

Fig. 3.  Elastic moduli of the filled honeycomb. 

 

Fig. 4.  The collapse modes that define the yield surface for  (a) 
o30   and (b) 

o30 = . 

 

Fig. 5. Generation of the yield surface by varying 1 0/T T , for (a, b) 
o20 =  and (c, d) 

o40 = .  

Zoomed-in portions of (a) and (c) are shown in (b) and (d), respectively, to reveal the transition 

between mechanisms B and C.  The labels A, B and C indicate the regime of dominance of 

mechanisms A, B and C, respectively. 

 

Fig. 6.  The yield surface and the active mechanisms for 0.05 = . (a) 
o20 =  and (b) 

o20 =

, enlarged view near shear axis; (c) 
o40 =  and (d) 

o40 = , enlarged view near shear axis.   

 

Fig. 7.  Dependence of transition value of ( )22 11 BC
 −  for mechanisms B and C upon bar 

inclination  , for 0.05 = . 
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Fig. 8.  Sensitivity of yield surface shape to relative density   for (a) 
o20 =  and (b) 

o40 = . 

 

Fig. 9.  Collapse surface for the singular case of a regular honeycomb, with  =30o.   

 

Fig. 10.  (a) yield surface for a wide range of values of bar inclination  , for 0.05 = .  (b) yield 

surface size for   in the vicinity of  =30o, again for 0.05 = . 

 

Fig. 11.  Dependence of uniaxial tensile strength upon bar inclination  .  The relative density is 

0.05 =  for the exact solution. 

 

Fig. 12.  Approximate fit to the yield surface by an ellipse for (a) 
o20 = , (b) 

o40 =  and 

(c) 
o30 = .  The relative density is 0.05 =  in (a) and (b). 
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Fig. 1 (a)  The filled, incompressible hexagonal honeycomb; (b) volume V of unit cell as a 

function of bar inclination   over its full range 
o o0 90  . 

 

 

Fig. 2.  The hexagonal honeycomb.  (a) Geometry and in-plane loading;  (b)  method of sections 

along planes X-X and Y-Y, and resolved bar forces due to macroscopic direct stress ( )11 22,  ; 

(c) forces and moments on a representative joint B, with plastic hinges formed in each of the 3 

bars 1, 2 and 3 that meet at this joint.  
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                   Fig. 3.  Elastic moduli of the filled honeycomb. 

 

 

Fig. 4.  The collapse modes that define the yield surface for  (a) 
o30   and (b) 

o30 = . 
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Fig. 5. Generation of the yield surface by varying 1 0/T T , for (a, b) 
o20 =  and (c, d) 

o40 = .  

Zoomed-in portions of (a) and (c) are shown in (b) and (d), respectively, to reveal the transition 

between mechanisms B and C.  The labels A, B and C indicate the regime of dominance of 

mechanisms A, B and C, respectively. 
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Fig. 6.  The yield surface and the active mechanisms for 0.05 = .  (a) 
o20 =  and (b) 

o20 = , enlarged view near shear axis; (c) 
o40 =  and (d) 

o40 = , enlarged view near shear 

axis.   

 

Fig. 7.  Dependence of transition value of ( )22 11 BC
 −  for mechanisms B and C upon bar 

inclination  , for 0.05 = . 
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Fig. 8.  Sensitivity of yield surface shape to relative density   for (a) 
o20 =  and (b) 

o40 = . 

 

 

Fig. 9.  Collapse surface for the singular case of a regular honeycomb, with  =30o.   

 

 



45 

 

 

Fig. 10.  (a) yield surface for a wide range of values of bar inclination  , for 0.05 = .  (b) 

yield surface size for   in the vicinity of  =30o, again for 0.05 =  

 

Fig. 11.  Dependence of uniaxial tensile strength upon bar inclination  . The relative density is 

0.05 =  for the exact solution. 
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Fig. 12.  Approximate fit to the yield surface by an ellipse for (a) 
o20 = , (b) 

o40 =  and 

(c) 
o30 = .  The relative density is 0.05 =  in (a) and (b). 

 


