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Abstract 

We analyse the initiation of void growth in the Li electrode during the stripping phase of an 

Li-ion cell with a solid electrolyte. We first show that standard Butler-Volmer kinetics fails to 

predict the observed void formation. This motivated us to recognise that void initiation/growth 

involves power-law creep of the Li electrode that is linked to the motion of dislocations. We 

show, via thermodynamic considerations, that dislocations significantly affect the interface 

kinetics and use variational principles to develop a modified form of Butler-Volmer kinetics 

for the interface flux that is associated with a deforming Li electrode. Numerical solutions are 

presented for the coupled flux of Li+ in a single-ion conductor solid electrolyte and the 

associated creep deformation of the Li electrode for an imposed stripping current. This involves 

solution of a Laplace equation for flux in the electrolyte and the nonlinear Stokes equations for 

a power-law creeping solid in the electrode. These two domains are coupled together via the 

modified Butler-Volmer relation. The calculations predict that an increasing stack pressure 

needs to be exerted with increasing cell current to avoid the initiation of void growth and are 

in excellent quantitative agreement with measurements for an Li/LLZO/Li cell. 
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1. Introduction 

Solid-state cells composed of a ceramic electrolyte and Li metal anode have the potential to 

deliver enhanced safety along with higher specific energies [1, 2] compared to liquid electrolyte 

Li-ion batteries. However, ceramic electrolytes can suffer short circuits resulting from the 

penetration of Li filaments through the ceramic at charging currents above the critical current 

density [3, 4]. This critical current density of a battery is commonly defined as the current 

density above which the battery will short-circuit due to Li filaments penetrating through the 

ceramic electrolyte, but below which the battery can cycle with long-term stability. Increasing 

the critical current density of a solid-state battery (SSB) will aid overcoming the challenges of 

modern battery applications, such as fast charging for electric vehicles.  

Recent work by Bruce and co-workers [5, 6] has revealed that there are two distinct 

critical current densities: the critical current on stripping (CCS), and the critical current on 

plating (CCP). Li filaments are observed to initiate and grow from the Li electrode when Li 

metal is being plated on the electrode above a certain imposed current density. The CCP is then 

defined as the current density above which the growth of Li filaments is observed [3]. 

Conversely, stripping Li metal from the electrode during discharge can lead to the formation 

of voids in the anode, resulting in a concentration of current at the remaining areas of contact. 

Typically, CCS < CCP and it has been shown both experimentally [5] and via recent theoretical 

predictions [7, 8] that Li filaments preferentially grow from near the voids at the 

electrode/electrolyte interfaces. Thus, understanding the mechanics of void initiation/growth 

at the electrode/electrolyte interface is crucial. 

Measurements of void growth in Li electrodes have been reported at interfaces with 

both LLZO (Li stuffed garnet Li7La3Zr2O12) [9, 10] and Argyrodite (Li6PS5Cl) electrolytes 

[5]. For the Li/LLZO system, void growth or rather formation of instabilities at the interface 

was observed at currents as low as 0.1 mA cm−2 when no stack pressure was applied [9, 10]. 

Application of a stack pressure increased the CCS for both the Li/Argyrodite [5] and Li/LLZO 

[10] systems. Typically, voids of size > 100 μm form after cycling to an areal capacity 

1 mAh cm−2 at 1.0 mA cm−2 (see Figs. 3 and S5b in [5]) although the presence of pristine 

contact surfaces between the electrode and electrolyte (Fig. 2a in [5]) suggests the presence of 

imperfections less than the resolution of the images, i.e. typically less than 1 μm based on 

images of the interfaces in [5, 9]. Changes in the composition of the electrode by for example 

alloying the Li electrode with 10 at% Mg [11] or by using a Na/Na-𝛽′′-alumina/Na cell [6] 

reduces the propensity of void formation. These observations suggest that the mechanics 

governing the formation and growth of voids in the Li electrode is a complex combination of 

plastic/creep deformation and vacancy diffusion within the metal electrode coupled to the 

electrochemical kinetics of the electrode/electrolyte interface. While some simplistic models 

[9] suggesting the role of vacancy diffusion and instability analysis of the electrode surface 

[12] have been reported, there exists no detailed analysis of this problem especially accounting 

for the creep deformation of the electrode and the effect of the imposed stack pressure. 

Our aim here is to develop a fundamental understanding of the initiation of void growth 

in metal electrodes. Experimental data is most extensive for Li electrodes with LLZO 

electrolytes and this study therefore uses the Li/LLZO/Li cell to exemplify the model 

development and the associated predictions. However, given the generality of the mechanism 
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that we propose, we anticipate it to be more widely applicable including to cells with Na 

electrodes. 

 

1.1 Predictions using standard Butler-Volmer kinetics 

Butler-Volmer kinetics are commonly used to describe the flux of Li+ across the Li 

electrode/electrolyte interface; here we present some preliminary results (with details given in 

Section 3) to suggest that these kinetics might be inappropriate for a deforming Li electrode. 

Consider the axi-symmetric problem sketched in Fig. 1a where Li+ is being stripped from the 

electrode across the Li electrode/LLZO electrolyte interface. We envision a small imperfection 

in terms of a hemispherical impurity particle of radius 𝑎 on the interface that prevents flux 

across the interface over a circular region of radius 𝑎. Flux across the interface then necessarily 

requires the deformation of electrode which is assumed to behave as a power-law creeping 

solid [13, 14] with power-law exponent 𝑛, a reference stress and strain-rate 𝜎0 and 𝜀0̇, 

respectively, and transitioning to linear viscous creep below a critical strain-rate 𝜀ċ.  The LLZO 

electrolyte is a single ion conductor linear dielectric (with conductivity 𝜅) that is assumed to 

remain electroneutral, i.e. the electric potential 𝜙 within the electrolyte is governed by 

Laplace’s equation. The current 𝑗 across the interface (defined as positive from the electrode 

to electrolyte) for 𝑟 ≥ 𝑎 is given by Butler-Volmer kinetics in terms of the molar volume ΩLi 

of Li, the Faraday constant 𝐹 and the interfacial resistance 𝑍0 as 𝑗 = (𝜂 + 𝑇𝑧ΩLi/𝐹)/𝑍0   where 

𝑇𝑧 is the traction on the Li electrode surface along the interface and 𝜂 is the overpotential. We 

emphasize here that the interfacial resistance 𝑍0 is the value inferred as the low frequency limit 

from EIS experiments carried out with voltage amplitude ≈ 100 mV and frequencies over the 

range 1 Hz − 7 MHz. The Li electrode material velocity 𝑣𝑧 normal to the interface is related to 

𝑗 via 𝑣𝑧 = −𝑗ΩLi/𝐹 while 𝑗 = 0 is imposed on the electrolyte surface over 𝑟 < 𝑎 and the 

normal Li electrode velocity 𝑣n = 0 over the hemispherical surface of the impurity particle. 

Predictions of the average normal tractions 𝑇̅n on the electrode surface in contact with 

the hemispherical surface of the impurity are plotted in Fig. 1b as a function of the impurity 

size 𝑎 for selected values of imposed areal current densities 𝑗∞. Here, 𝑇̅n < 0 corresponds to a 

compressive average traction on the hemispherical interface and the calculations use well-

established values of Li and LLZO material parameters which are listed in Table 1. Over the 

practical range of 𝑗∞ values shown in Fig. 1b, compressive average tractions 𝑇̅n develop over 

the electrode/impurity particle interface for 𝑎 < 100 μm. The calculations thus predict that 

over this range of impurity sizes, voids cannot initiate within the electrode. For impurities of 

size 𝑎 > 100 μm voids can initiate as tensile tractions on the interface will debond the Li 

electrode from the impurity particle. However, such large impurities are unrealistic as voids on 

the order of 1 μm or smaller have been observed to form in the Li electrode [9]. We infer that 

the deformation of the electrode resulting from a non-uniform Butler-Volmer surface flux 

associated with an interfacial impurity is insufficient to explain the observed formation of 

voids. This deduction motivates this study: we shall develop a modified Butler-Volmer kinetics 

for a deforming metal (Li) electrode from considerations of thermodynamics and the fact that 

deformation of the Li electrode is mediated by dislocation motion. 
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Figure 1: (a) Sketch of the axi-symmetric problem with an isolated hemispherical impurity 

particle at the electrode/electrolyte interface with Li+ being stripped from the electrode. The 

inset shows the small region of the cell analysed here. (b) Predictions (using standard Butler-

Volmer kinetics with the effect of dislocations in the electrode neglected) of the variation of 

the average traction 𝑇̅n over the electrode/impurity particle interface with the impurity size 𝑎 

for selected values of the cell current density 𝑗∞. (c) The spatial distribution of the normalised 

interfacial flux 𝑗/𝑗∞ for 𝑗∞ = 0.5 mA cm−2 and selected impurity particle sizes 𝑎. The inset in 

(c) shows the corresponding flux concentration factor 𝐾𝐽 ≡ max (𝑗)/𝑗∞ as a function of the 

impurity particle size 𝑎. 

 

 

2. Thermodynamics of a deforming Li electrode 

Butler-Volmer kinetics, which is extensively used to quantify the flux across the Li 

electrode/electrolyte interfaces, has been developed in the context of a non-deforming electrode 

where Li is either plated on or stripped from the electrode without any resulting deformation 

of the metal electrode. Assuming that the Li electrode maintains contact with a rigid solid 
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electrolyte, the absence of deformation within the electrode implies uniform plating/stripping 

of Li+. Initiation and growth of voids in the Li electrode is accompanied by spatially non-

uniform stripping and consequent deformation of the electrode. Under these conditions, some 

of the key assumptions in standard Butler-Volmer kinetics are violated. Here, we present a 

modification of Butler-Volmer kinetics which accounts for the effect of dislocations 

(associated with the creep deformation of Li) on the interface kinetics. The detailed derivation 

of the kinetics is provided in the Supplementary Material and here we summarize some salient 

features. Throughout the manuscript, we employ Cartesian tensor notation. 

The power-law creep deformation of the Li electrode is driven by shear (deviatoric) 

stresses and is mediated by the motion of dislocations within the electrode [13, 15]. The density 

of these dislocations increases with increasing deviatoric stress or strain-rates of the Li. Since 

dislocation densities are negligible in the absence of shear stresses (i.e. a non-deforming 

electrode), standard Butler-Volmer kinetics for Li electrodes neglects their effect on the 

interface kinetics. Dislocations affect the kinetics in two ways:  

(i) Atoms within the dislocation cores are not closely packed and this results in a small 

expansion of the metal lattice due to the presence of the dislocations [16]. This expansion 

increases the effective fraction of vacant lattice sites within the Li electrode. This effective 

fraction 𝜃v  of vacant sites at temperature 𝑇 is given in terms of the dislocation density 𝜌d of 

dislocations of Burgers vector magnitude 𝑏 as 

𝜃v = exp (−
ℎv
𝑅𝑇
) + 𝛼

ΩLi(𝜌d𝑏
2)

Ωv
, (2.1) 

where ℎv is the enthalpy of vacancy formation in Li, 𝑅 the gas constant, Ωv the molar volume 

of vacancies and 𝛼 is a constant that depends on the metal (e.g. 𝛼 ≈ 0.25 for fcc Cu and ≈ 2.7 

for bcc Fe [16]). The first term in (2.1) is the fraction of vacancies in the Li while the second 

term accounts for the extra space created by the expansion of the lattice by dislocations with 𝛼 

a proportionality constant setting the magnitude of the expansion.  

(ii) The distortion of the Li lattice both within the dislocation cores and by the long-range 

elastic fields of the dislocations enhances the enthalpy or equivalently the standard chemical 

potential 𝜒Li+  of the Li ions (Fig. 2a). 

We demonstrate in the Supplementary Material that dislocations in Li metal play a dual 

role. The expansion of the lattice by dislocations increases the available sites for Li atoms and 

thereby increases the (configurational) entropy of the electrode. Simultaneously, the 

dislocations also increase the electrode enthalpy by distorting the lattice. At equilibrium, this 

increase in entropy and enthalpy balances out such that the free-energy of the system is 

unaffected by the dislocation density, i.e. the chemical potential of the Li atoms is given by  

𝜇Li
eq
≈ 𝜇0 + 𝑝ΩLi where  𝑝 is the applied stack pressure (Fig. 1a) and  𝜇0 is the equilibrium 

chemical potential of Li at 𝑝 = 0. The Gibbs free-energy of the electrode is then given in terms 

of the moles 𝑁Li of Li atoms within the electrode as 𝐺eq = 𝑁Li𝜇Li
eq

 such that 𝐺eq is independent 

of the dislocation density. This is consistent with the usual assumption in the plastic flow of Li 

(and in fact for metals in general) that plasticity is a purely dissipative process with the free-

energy of the system independent of the dislocation density (or equivalently independent of 

plastic strain or plastic strain-rate). A knowledge of the enthalpy and entropy of the electrode 

as a function of the dislocation density allows us to evaluate the interfacial barrier for the 
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crossing of Li+ ions across the interface using the Butler-Volmer assumption that the barrier is 

set by the weighted mean of the standard chemical potentials of the two end-states. This then 

implies that the increase in the standard chemical potential 𝜒Li+  of the electrode Li ions due to 

the presence of dislocations reduces the barrier for the crossing of Li+ ions from the electrode 

to the electrolyte (Fig. 2b). Details of the analysis including derivations are provided in the 

Supplementary Material where we show that interface resistance 𝑍 is related to the resistance 

𝑍0 in the absence of dislocations via 

𝑍 = 𝑍0𝜃v 
𝛽−1

exp [−
(1 − 𝛽)ℎv

𝑅𝑇
], (2.2) 

where 0 ≤ 𝛽 ≤ 1 is the Butler-Volmer symmetry factor. Typically, 𝛽 = 0.5 and we observe 

by combining (2.1) and (2.2) that for this choice of 𝛽, the resistance 𝑍 decreases with increasing 

dislocation density 𝜌d. Thus, (2.2) gives the rather surprising finding that dislocations 

(imperfections) in the bcc crystal lattice of Li reduces interfacial resistance rather than 

increasing the interfacial resistance as one might naively assume will be the effect of 

imperfections. A detailed derivation of (2.2) from an understanding of creep in the electrode 

and thermodynamics is provided in the Supplementary Material where we demonstrate that 

coupled change in the interfacial barriers and the configurational entropy of the Li combine to 

reduce 𝑍 as parameterised in (2.2). 

 

 
Figure 2: Schematic to illustrate the effect of dislocations on the interface flux. (a) Variation 

of the standard chemical potential (i.e. chemical potential absent contribution from 

configurational entropy) of the Li+ ions in electrode with dislocation density in electrode and 

(b) energy diagram for an elementary Li+ ion transfer step. The blue (solid) curve is for the 

case when the electrode is dislocation-free while the dashed (red) curve illustrates the change 

in the energy landscape when dislocations are present in the electrode. See Supplementary 

Material for detailed definitions and derivations. 

 

For an electrode that is not deforming, the deviatoric stresses vanish. Then defining the 

flux from the electrode to electroneutral electrolyte as 𝑗 = 𝑗𝑖𝑛𝑖, where 𝑗𝑖 is the interfacial flux 

and 𝑛𝑖 the outward normal to the electrode along the electrode/electrolyte interface, the flux 𝑗 

is related to 𝑍 via 
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𝑗 =
𝜂 + (𝑝ΩLi/𝐹)

𝑍
, (2.3) 

where 𝜂 ≡ (𝜙p − 𝜙) −𝒰 is the overpotential in terms of the electrode potential 𝜙p, the 

potential 𝜙 on the surface of the electrolyte and the open circuit (or equilibrium) potential 𝒰 

for the Li electrode/electrolyte pair. On the other hand, when deviatoric stresses are non-zero 

the electrode undergoes creep deformation and we show in the Supplementary Material, using 

variational principles, that the flux relation modifies to  

𝑗 =
𝜂 − (𝑇𝑖𝑛𝑖ΩLi/𝐹)

𝑍
 , (2.4) 

where 𝑇𝑖 is the traction on the electrode surface. 

 

2.1 A constitutive model for the deformation of Li and the associated dislocation density 

The relations (2.1), (2.2) and (2.4) together provide the interface flux in terms of the tractions 

and dislocation densities. A mechanical constitutive law is required to complete the 

specification of the electrode and enable the calculation of 𝑇𝑖 and 𝜌d.  

In line with an extensive literature [13, 14] on the mechanical properties of Li at room 

temperature, we model Li as an incompressible creeping solid. At relatively high applied 

stresses (or equivalently high applied strain-rates), dislocation creep dominates with the stress 

and strain-rate related by a power-law relationship while at lower levels of stress diffusional 

creep (i.e. Coble creep or Nabarro-Herring creep at small and large grain sizes, respectively 

[13, 15]) dominates with the stress and strain-rate linearly related. Then in terms of a reference 

stress and strain-rate 𝜎0 and 𝜀0̇, respectively, we define a dissipation potential for the Li as 

Φm ≡

{
 
 

 
 
𝜎0𝜀0̇
𝑛 + 1

(
𝜀̇

𝜀0̇
)
𝑛+1

       for 𝜀̇ ≥ 𝜀ċ 

𝜎0𝜀ċ
2
(
𝜀ċ
𝜀0̇
)
𝑛

(
𝜀̇

𝜀ċ
)
2

  otherwise,

 (2.5) 

where 𝑛 is the power-law exponent. Here, 𝜀̇ ≡ √(2/3)𝜀𝑖̇𝑗𝜀𝑖̇𝑗 is the von-Mises effective strain-

rate in terms of the incompressible strain-rate 𝜀𝑖̇𝑗 (i.e. 𝜀𝑘̇𝑘 = 0) and 𝜀ċ is the critical value of 𝜀̇ 

at which creep response transitions from linear viscous (diffusion creep) to power-law creep. 

For this incompressible material, the incompressible strain-rate 𝜀𝑖̇𝑗 is related to the deviatoric 

stress 𝑆𝑖𝑗 = 𝜎𝑖𝑗 − (𝜎𝑘𝑘/3)𝛿𝑖𝑗, written in terms of the stress 𝜎𝑖𝑗 and the Kronecker delta 𝛿𝑖𝑗, via 

𝑆𝑖𝑗 ≡
𝜕Φm

𝜕𝜀𝑖̇𝑗
. (2.6) 

Thus, the hydrostatic stress 𝜎𝑘𝑘 is not specified by the constitutive relation and needs to be 

treated as a Lagrange multiplier that enforces incompressibility. We note that while Φm in (2.5) 

is discontinuous at 𝜀̇ = 𝜀ċ, the associated deviatoric stress 𝑆𝑖𝑗 and dissipation rate are 

continuous. 

The choice of the deformation constitutive model also motivates a phenomenological 

relation for the dislocation density. Recall that in the linear viscous diffusion creep regime, 

deformation is solely a result of vacancy diffusion with no associated dislocations. By contrast, 

power-law creep behaviour arises from climb-assisted dislocation glide (dislocation creep). 

There is a large literature [17] on measurements of dislocation densities in the power-law creep 
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regime for a range of metals. However, to-date no measurements have been reported for the 

relationship between dislocation density and stress for Li. Hence, we shall use well-established 

empirical models that have been validated for metals ranging from steels to Al. One such model 

is that developed by Weertman [18] which specifies that the dislocation density scales with the 

von-Mises effective stress 𝜎 ≡ √(3/2)𝑆𝑖𝑗𝑆𝑖𝑗 and the shear modulus 𝒢 as  

𝜌d =

{
 

 𝑘 (
𝜎 − 𝜎c
𝒢𝑏

)
2

       for 𝜎 ≥ 𝜎c 

0                           otherwise,

 (2.7) 

with 𝑘 being a non-dimensional constant ≈ 1. In (2.7), 𝜎c ≡ 𝜎0(𝜀ċ/𝜀0̇)
𝑛 is the value of 𝜎 at 

which creep behaviour transitions from linear viscous to power-law so that (2.7) assumes that 

the dislocation density 𝜌d vanishes in the diffusion creep regime.  

 

 

3. Analysis of the initiation of void growth in the Li electrode 

We now proceed to use the above presented understanding to investigate the conditions under 

which a void can initiate to grow in the electrode when Li+ is being stripped from the electrode.  

 

3.1 The governing equations, boundary conditions and material parameters 

The overall problem analysed is sketched in Fig. 1a with the cell subjected to a stack pressure 

𝑝. The origin of the co-ordinate system (𝑟, 𝑧) is located on the interface with a hemispherical 

impurity of radius 𝑎 located at the origin: this impurity prevents the flux of Li+ across the 

interface such that the Li+ flux vanishes over 0 ≤ 𝑟 ≤ 𝑎. Thus, the impurity will induce creep 

of the electrode with the possibility to initiate void growth in the electrode. We are interested 

in analysing an isolated imperfection of size 𝑎 and thus consider a region of radius 𝑅 ≫ 𝑎 as 

shown in the inset of Fig. 1a with both the Li electrode and electrolyte sufficiently large such 

that on the exterior boundaries of the region analysed the influence of the impurity is negligible. 

 

The electrolyte: Following [7], the electroneutral electrolyte is treated as a linear dielectric with 

an Li+ conductivity 𝜅 such that the Li+ flux is 𝑗𝑖 = −𝜅𝜙,𝑖 where 𝜙 is the electric potential. 

Then, both the electrical and Li+ flux balance laws reduce to a single Laplace’s equation 

𝜙,𝑖𝑖 = 0. (3.1) 

In the following, it is convenient to define an electric potential 𝜙̂ ≡ 𝜙 + 𝒰 with the governing 

equation in the electrolyte being 𝜙̂,𝑖𝑖 = 0: this allows us to specify all boundary conditions for 

the electrolyte in terms of 𝜙̂ with the solution for 𝜙 then known to within 𝒰. 

We analyse a cylindrical region of the electrolyte of radius 𝑅 and height 𝐿 with the 

electrode/electrolyte interface located at 𝑧 = 0 and the bottom surface of the electrolyte at 𝑧 =

−𝐿 (see inset of Fig. 1a). With 𝐿 ≫ 𝑎, this rear surface of the electrolyte is far from the 

imperfection and the electric field at 𝑧 = −𝐿 is one-dimensional. Thus, without loss of 

generality we can set 𝜙̂ = 0 on 𝑧 = −𝐿. Similarly, the side surface at 𝑟 = 𝑅 is also far from 

the imperfection and there is no flux across this surface. The boundary conditions (in 
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cylindrical co-ordinates) for the Laplace equation 𝜙̂,𝑖𝑖 = 0 governing the electric potential 

within the electrolyte are:  

𝜙̂ = 0         over     𝑧 = −𝐿,

𝜙̂,𝑖𝑛𝑖 = 0          over     𝑟 = 𝑅,

𝜙̂,𝑖𝑛𝑖 = 0   over    0 ≤ 𝑟 < 𝑎  on 𝑧 = 0,

𝜙̂,𝑖𝑛𝑖 = −𝑗/𝜅   over    𝑟 ≥ 𝑎  on 𝑧 = 0.

 (3.2) 

Here, 𝑛𝑖 is the outward normal to the respective surface of the electrolyte and the current 𝑗 is 

given by rewriting Eq. (2.4) as 

𝑗 =
(𝜙p − 𝜙̂) − 𝑇𝑖𝑛𝑖ΩLi/𝐹

𝑍
 , (3.3) 

where 𝜙p is the imposed value of the electrode potential 𝜙m and 𝑇𝑖 the traction on the 

electrolyte surface (which is equal and opposite to the traction on the electrode surface). Of 

course, both the traction 𝑇𝑖 on the electrolyte surface and the interface resistance 𝑍 are not 

known without a solution of the creep deformation within the electrode, i.e. electrical fields 

within the electrolyte are fully coupled with the mechanical deformation of the electrode. 

 

The stripping electrode: Similar to the electrolyte, we analyse a central portion of the electrode 

of radius 𝑅 (see Fig. 1a). Consistent with the formulation detailed in Supplementary Material, 

the portion of the electrode analysed is bounded by spatially fixed surfaces with flow of Li 

permitted across these surfaces. These bounding surfaces are the top surface located at 𝑧 = 𝐻, 

the side surface at 𝑟 = 𝑅 and the bottom surface that is divided into two portions: (i) for 𝑟 > 𝑎 

the bottom surface is along 𝑧 = 0 and in contact with the electrolyte while (ii) for 𝑟 ≤ 𝑎 the 

bottom surface of the electrode has a hemispherical shape of radius 𝑎 centred at the origin as 

shown in the inset of Fig. 1a. This hemispherical surface represents the surface of an impurity 

particle (e.g. a dust particle) on the electrode/electrolyte interface that prevents the flux of Li+ 

from the electrode to the electrolyte over 0 ≤ 𝑟 ≤ 𝑎 along the interface 𝑧 = 0.  While the shape 

of the impurity is not precisely known, here we employ a hemispherical shape. This shape 

ensures the absence of singularities in the creep deformation field within the electrode; for 

example, assuming a flake-like impurity particle of radius 𝑟 = 𝑎 and vanishing thickness in the 

𝑧 −direction gives rise to a singular stress in the electrode at (𝑟, 𝑧) = (𝑎, 0).  

The Li electrode is modelled as an incompressible fluid with dissipation potential 

detailed in Section 2.1. The deformation within the domain is required to satisfy static stress 

equilibrium 𝜎𝑖𝑗,𝑗 = 0 while the velocity field is divergence-free, i.e. 𝑣𝑖,𝑖 = 0. The strain-rate 

𝜀𝑖̇𝑗 ≡ 0.5(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) and the deviatoric stress are related via (2.6) with incompressibility 

implying that the hydrostatic stress 𝜎𝑘𝑘 is solved as a Lagrange multiplier to ensure 𝜀𝑘̇𝑘 = 0. 

These governing equations together are referred to as the nonlinear Stokes equations. The 

boundary conditions imposed on the electrode are designed with the idea that the central 

portion of the electrode that is being modelled is under an overall state of hydrostatic pressure 

𝑝. This pressure is built by the imposed stack pressure on the electrode as shown in Fig. 1a: 

friction between the electrode and electrolyte as well as between the electrode and the 

compression platen results in the development of shear lag which induces a state of hydrostatic 

pressure in the central region of the electrode being analysed. We emphasize that this friction 

can be relatively small (i.e. not sticking friction) but for large aspect ratio electrodes, friction 
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over larger lengths is sufficient to build a state of hydrostatic pressure in the central region. 

Thus, for simplicity we model free-slip on the contacting surfaces in this central region and the 

imposed boundary conditions, which also ensure an overall state of hydrostatic pressure, are 

summarised as 
 𝑇𝑖𝑠𝑖 = 0  and 𝑇𝑖𝑛𝑖 = −𝑝         over 𝑟 = 𝑅 and 𝑧 = 𝐻,

 𝑇𝑖𝑠𝑖 = 0 and 𝑣𝑖𝑛𝑖 = 𝑗ΩLi/𝐹          over 𝑟 > 𝑎 on 𝑧 = 0,
 𝑇𝑖𝑠𝑖 = 0 and 𝑣𝑖𝑛𝑖 = 0   over the hemispherical impurity.

 (3.4) 

Here, 𝑠𝑖 and 𝑛𝑖 are unit tangential and outward normal vectors to the respective electrode 

surfaces with 𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗. Of course, 𝑗 over the electrode/electrolyte interface (cf. Eq. (3.3)) is 

not known a-priori  and requires the coupled solution with the governing equations of the 

electrolyte.  

 

A criterion for the initiation of void growth: The main aim here is to develop an understanding 

for the conditions under which void growth will initiate. In order to propose a criterion for the 

initiation of void growth, we assume that void growth initiates self-similarly from the 

hemispherical impurity (i.e. a hemispherical void grows at a rate 𝑎̇ by the debonding of the Li 

from the hemispherical impurity). The work conjugate force to 𝑎̇ is denoted by 𝐹n and we 

define an average traction 

𝑇̅n ≡
𝐹n
2𝜋𝑎2

= ∫ 𝑇𝑖𝑛𝑖 sin 𝜃𝑑𝜃
𝜋/2

0
 , (3.5) 

where 𝑇𝑖 is the traction on the Li electrode surface in contact with the hemispherical impurity, 

𝑛𝑖 the outward normal to that surface and 𝜃 the polar angle as defined in the inset of Fig. 1a. It 

is reasonable to assume that the interface cannot sustain tensile tractions and thus it follows 

that self-similar void growth will initiate when 𝑇̅n ≥ 0. 

 

Table 1: Summary of material parameters for an Li/LLZO/Li cell. 

Material parameter Symbol Value Ref. 

Conductivity of LLZO 𝜅  0.46 mS cm−1 [20] 

Shear modulus of Li metal 𝒢  3 GPa [13] 

Magnitude of Burgers vector 𝑏  0.25 nm [13] 

Molar volume of Li ΩLi  13.1 × 10−6 m3 mol−1 standard 

Enthalpy of vacancy formation in Li ℎv  50 kJ mol−1 [21] 

Molar volume of vacancies in Li metal Ωv  ~6 × 10−6 m3 mol−1 [22] 

Reference stress for Li metal 𝜎0  1 MPa [14] 

Reference strain-rate for Li metal 𝜀0̇  0.01 s−1 [14] 

Critical strain-rate for Li metal* 𝜀ċ 10−5 s−1 [13] 

Power-law exponent for Li metal 𝑛  6.6 [14] 

Reference interfacial resistance  𝑍0  5 Ωcm2 [20] 

Butler-Volmer symmetry factor 𝛽 0.5 standard 
* Li metal in [13] has a grain size of 100 μm. 

 

The imposed loading: We envisage an external power source (Fig. 1a) connected to the cell. 

The loading due to this power source is specified in terms of the areal current density 𝑗∞ in the 
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cell in the absence of impurity. In this case, the electric field within the electrolyte is one-

dimensional with 𝑗∞ related to the electrode potential 𝜙p via 

𝑗∞ =
𝜙p

(𝐿/𝜅 + 𝑍0)
. (3.6) 

We emphasize that the size of the region we analyse 𝑅 ≫ 𝑎 and thus for all the calculations 

presented here, the relation 

𝐼 = 2𝜋∫ 𝑗 𝑟𝑑𝑟
𝑅

0

≈ 𝑗∞𝜋𝑅
2, (3.7) 

holds to within 0.003%, i.e. to a very high degree of accuracy the total current is not affected 

by the presence of the impurity. 

 

Material parameters: All results are presented for Li/LLZO interface that has been well-

conditioned to have a relatively low resistance which typically implies 2 Ωcm2 ≤ 𝑍0 ≤

10 Ωcm2 [19, 20]: here we choose a representative value of 𝑍0 = 5 Ωcm2 for all calculations 

presented in this study. The material parameters for the LLZO and Li are well-established in 

the literature and listed in Table 1. Of course, the size 𝑎 of the impurity particle is not precisely 

known and we shall vary 𝑎 in order to investigate the imperfection sizes required to initiate 

void growth. To include the effect of dislocations on the interfacial current requires some 

additional material parameters and these will be prescribed in Section 3.3 when details of those 

calculations are discussed. 

In all calculations presented subsequently, we use a domain of size 𝑅 = 𝐿 = 𝐻 = 400𝑎 

which is sufficiently large so as to approximate an isolated impurity in an infinitely large cell. 

The coupled solutions of the Laplace equation in the electrolyte and nonlinear Stokes flow 

equations (within the Eulerian setting) in the electrode were obtained using the Multiphysics 

software Comsol®. To capture the large gradients that occur near the impurity particle, the 

numerical solution involved approximately 1 million degrees of freedom in the electrode and 

electrolyte combined. 

 

3.2 Predictions neglecting the effect of dislocations 

In Section 1.1, we have presented summary results for the average traction on the 

electrolyte/impurity particle interface where the effect of dislocation density in the electrode 

on the interface resistance 𝑍 has been neglected. We refer to this as standard Butler-Volmer 

kinetics wherein the interface flux is given by (3.3) with 𝑍 held fixed at 𝑍0. These results 

demonstrated that unrealistically large impurity particle sizes are required to cause the build-

up of tensile tractions and motivated the development of the model (2.2) for the interface 

resistance and the corresponding flux law (2.4). Prior to discussing the predictions of the full 

model by accounting for the effect of dislocations on 𝑍, it is instructive to discuss details of the 

predictions presented in Section 1.1. To emphasize, by neglecting the effect of the dislocation 

density within the electrode on the interfacial resistance we keep 𝑍 fixed at 𝑍 = 𝑍0, i.e. equal 

to the interfacial resistance of Li electrode that is not deforming. 

Predictions of the spatial distribution of the normalised interfacial current 𝑗/𝑗∞ are 

included in Fig. 1c as a function of the normalised position 𝑟̅ ≡ 𝑟/𝑎 for a nominal current 

density 𝑗∞ = 0.5 mA cm−2. Results are presented for impurity sizes ranging from 𝑎 =
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0.25 μm to 𝑎 = 100 μm corresponding to 𝑎̅ ≡ 𝑎/(𝜅𝑍0) in the range 0.011 ≤ 𝑎̅ ≤ 4.35. The 

enhancement to the flux near the impurity (at 𝑟̅ ≈ 1) is minimal for 𝑎 ≤ 10 μm (𝑎̅ ≤ 0.43) but 

the flux concentration factor, defined as 𝐾𝐽 = max (𝑗)/𝑗∞, rises to  𝐾𝐽 ≈ 1.85 for 𝑎̅ = 4.35 

(𝑎 = 100 μm) as summarised in the inset of Fig. 1c. We emphasize that the applied stack 

pressure has a negligible effect on 𝑍 and that the deformation field within the incompressible 

electrode is unaffected by pressure. Thus, applying a stack pressure 𝑝 on the electrode has no 

effect on the strain-rate within the electrode and the interfacial currents, i.e. the results of 

Fig. 1c are unaffected but rather this pressure only changes the stress state within the electrode 

by the applied hydrostatic pressure. Moreover, the results in Fig. 1c are reasonably independent 

of the current 𝑗∞. This can be understood as follows. If the 𝑇𝑖𝑛𝑖ΩLi/𝐹 term in (3.3) is neglected 

the field within the electrolyte can be determined independent of the deformation of electrode. 

Then, linearity of the governing Laplace equation for the electrolyte implies that the flux within 

the electrolyte scales linearly with 𝑗∞. For the practical range of 𝑗∞ ≥ 0.1 mAcm−2, the stresses 

within the electrode are small in relation to the overpotential 𝜂, i.e. |𝑇𝑖𝑛𝑖|ΩLi ≪ 𝐹|𝜂| and hence 

the results of Fig. 1c are relatively independent of 𝑗∞. 

Predictions of the average traction 𝑇̅n on the electrode/impurity interface are presented 

in Fig. 1b for 𝑝 = 0. A key consequence of the low flux concentration factors is that the average 

traction 𝑇̅n remains compressive over the impurity particle for 𝑎 ≤ 100 μm over the practical 

range of current densities 0.1 mA cm−2 ≤ 𝑗∞ ≤ 1 mA cm−2 considered in Fig. 1b. Thus, even 

with no stack pressure void growth is precluded except for unrealistically large impurity sizes 

as eluded to in the Introduction1. Experiments [9] suggest that in the absence of a stack pressure 

voids of size on the order of a few microns or less form in the electrodes of Li/LLZO/Li 

symmetric cells at currents as low as 𝑗∞ = 0.1 mA cm−2. Thus, neglecting the effect of 

dislocations in the deforming electrode misses crucial physics and we now proceed with the 

complete analysis. 

 

3.3 Spatial distribution of 𝑍 accounting for the effect of dislocations 

The presence of dislocations within the electrode affects the interfacial resistance 𝑍; see 

Eqs. (2.1) and (2.2). These dislocations are linked to the creep of Li around the impurity particle 

that gives rise to deformation of the electrode and an associated spatially non-uniform 

dislocation density. In order to illustrate this, consider the case analysed in Section 3.2 where 

the effect of dislocations on 𝑍 is neglected. Corresponding to the results in Fig. 1c, we include 

predictions of the normalised von-Mises stress 𝜎/𝜎0 and dislocation density 𝜌d in Figs. 3a and 

3b, respectively, as a function of 𝑟̅ along the interface 𝑧 = 0. These results are for a current 

density 𝑗∞ = 0.5 mA cm−2 and selected values of impurity size in the range 0.25 μm ≤ 𝑎 ≤

100 μm. Both the von-Mises stress and dislocation density increase with decreasing 𝑎: the 

strain-rate around the impurity particle scales as 𝑗∞ΩLi/(𝐹𝑎) and thus for a given 𝑗∞ the von-

Mises stress 𝜎 and consequently also dislocation density given by (2.7) increase with 

decreasing 𝑎. In order to motivate a prescription to set the spatial distribution of 𝑍, we focus 

 
1 Results with the coupling traction term in (3.3) neglected are also presented in Fig. 1b (labelled decoupled and 

shown as dashed lines). Consistent with the results of Fig. 1c being independent of 𝑗∞, the coupled (solid lines 

with the traction term included in (3.3)) and decoupled analyses are nearly equal suggesting that it is acceptable 

to approximate Eq. (3.3) as 𝑗 ≈ (𝜙p − 𝜙̂)/𝑍. 
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our attention on the 𝑎 = 0.25 μm case as we anticipate this to be an appropriate size for an 

impurity that might exist on the interface in practise.  

The maximum dislocation density in the 𝑎 = 0.25 μm case is  𝜌d
max ≈ 0.3 μm−2 (see 

Fig. 3b) with the creep deformation of the electrode resulting in a non-zero dislocation density 

up to 𝑟̅ ≈ 5 (for 𝑟̅ > 5 deformation is in the diffusion creep regime and occurs without 

corresponding motion of dislocations). The maximum dislocation density of  𝜌d
max ≈

0.3 μm−2 implies a dislocation spacing on the order of 1/√ 𝜌d
max ≈  1.8 μm, while Fig. 3a 

illustrates that large gradients in the stress 𝜎 occur over approximately 2.5 μm. However, recall 

that the empirical dislocation density relation (2.7), inferred from uniaxial tensile experiments, 

assumes that the spatial variations in 𝜎 are small over length scales on the order of the 

dislocation spacing, i.e. 1/(𝜎√𝜌d)𝜕𝜎/𝜕𝑟 ≪ 1  . Clearly, this is not valid for the flow field 

within the electrode around the 𝑎 = 0.25 μm impurity and thus it is not appropriate to use (2.7) 

along with (2.1) and (2.2) to estimate 𝑍 in a pointwise manner along the interface. Rather, it is 

more apt to use a dislocation density averaged over a regularising length scale 𝜆. Here, we 

propose an approximation, based on this notion, to capture the essential feature that 

dislocations generated by stresses within the electrode can lower the interfacial resistance. 

 

        
Figure 3: The spatial distribution of the (a) normalised von-Mises stress 𝜎 and (b) dislocation 

density 𝜌d along the electrode/electrolyte interface. The results are for the case of standard 

Butler-Volmer kinetics with the effect of dislocations on the interfacial resistance neglected 

(𝛼𝑘 = 0) and a cell current density 𝑗∞ = 0.5 mA cm−2. 

 

The dislocation densities are maximum at 𝑟̅ = 1 and thus we anticipate the reduction 

in the resistance to be maximum at edge of the impurity. We calculate the resistance at 𝑟̅ = 1, 

labelled 𝑍tip, by assuming that the resistance is set by an average dislocation density in the 

vicinity of 𝑟̅ = 1 . Then, 𝑍tip is given by modifying (2.2) as 

𝑍tip = 𝑍0〈𝜃v 〉
𝛽−1 exp(−

(1 − 𝛽)ℎv
𝑅𝑇

), (3.8) 

where 〈𝜃v 〉 is a volume-averaged fraction of effective vacant sites, viz. 
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〈𝜃v 〉 = exp (−
ℎv
𝑅𝑇
) + 𝛼

ΩLi𝑏
2

Ωv𝑉𝜆
∫ 𝜌d 𝑑𝑉.
𝑉𝜆

 

 

(3.9) 

Here, 𝑉𝜆 is the averaging volume with leading length scale 𝜆 over which we average 𝜌d around 

𝑟̅ = 1 with 𝜆 treated as a regularising length-scale. In this axi-symmetric setting, 𝑉𝜆 is defined 

as (see inset of Fig. 1a) 

𝑉𝜆 = ∫ ∫ 𝑟 𝑑𝑟 𝑑𝑧,
𝑎+𝜆/2

𝑎−𝜁

𝜆

0

 

 

(3.10) 

i.e. 𝑉𝜆 ≡ 𝑎
3𝑔(𝜆/𝑎) and 

𝜁 = {
min (√𝑎2 − 𝑧2, 𝜆/2)             for 𝑧 ≤ 𝑎 

min(𝑎, 𝜆/2)                             otherwise.

 (3.11) 

Thus, the volume-averaged dislocation density is 

〈𝜌d〉 ≡
1

𝑉𝜆
∫ 𝜌d 𝑑𝑉
𝑉𝜆

=
1

𝑉𝜆
∫ ∫ 𝜌d 𝑟 𝑑𝑟 𝑑𝑧,

𝑎+𝜆/2

𝑎−𝜁

𝜆

0

 

 

(3.12) 

and 𝑍tip calculated by combining (3.8), (3.9) and (3.12). Recall that we cannot calculate 𝑍 in a 

pointwise manner as the dislocation spacings are on the order of the length scales over which 

the electrode is deforming. Thus, we propose a phenomenological form for the spatial 

distribution of 𝑍  based on the understanding that the reduction in resistance is a maximum at 

𝑟̅ = 1 and that 𝑍 will be affected by dislocations over the regularising length scale 𝜆, viz. we 

specify 𝑍 to vary as 

𝑍(𝑟) = 𝑍tip + (𝑍0 − 𝑍tip) [1 − exp (−
𝑟 − 𝑎

𝜆
)]. (3.13) 

Bringing in the effect of dislocations within the electrode adds two new material 

parameters to the formulation, viz. 𝛼𝑘 and 𝜆 (while 𝛼 and 𝑘 are independent material constants 

they appear in the governing equations together as 𝛼𝑘 and hence we do not need to know 𝛼 

and 𝑘 independently). Neither of these parameters have been directly measured for Li so we 

will use data available for other metals as best estimates for these parameters. A host of data 

for metals like Al and stainless steel suggests that scaling constant in (2.7) 𝑘 ≈ 1 and thus we 

use 𝑘 = 1 throughout this analysis. On the other hand, the constant 𝛼 that parameterises the 

expansion of the metal due to the presence of dislocations is less certain with calculations and 

subsequent measurements [16] suggesting that 𝛼 ≈ 0.25 for fcc metals like Cu but rising to 

𝛼 ≈ 2.7 for bcc Fe. Given that Li is a bcc metal, we expect that 𝛼 = 2.7 is more appropriate 

and we shall use this as a reference value. Nevertheless, we shall present results to demonstrate 

the sensitivity to the choice of 𝛼𝑘. Similarly, the regularising length scale 𝜆 which is thought 

of as an intrinsic material parameter related to dislocation spacings is also not precisely known 

via independent measurements. We shall set 𝜆 = 0.5 μm as a reference value and demonstrate 

that the predictions are insensitive to the choice of 𝜆 over a range of values associated with 

realistic dislocation densities. Unless otherwise specified, all results use these reference values 

of 𝛼𝑘 and 𝜆. In the following, this formulation where the interfacial resistance 𝑍 is influenced 
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by the dislocation density within the electrode will be referred to as the modified Butler-Volmer 

kinetics in contrast to the standard Butler-Volmer kinetics that neglects the effect of 

dislocations and used in Sections 1.1 and 3.2. 

The dislocation density dependence of 𝑍 adds an additional level of coupling between 

the electrode and electrolyte fields as now in addition to 𝑇𝑖 along the electrode/electrolyte 

interface, 𝑍 in (3.3) is also dependent on the stress state in the electrode and hence not known 

a-priori. Moreover, calculation of 𝑍 requires a non-local averaging adding additional 

complexity to the solution method. Similar to the reference case with 𝑍 = 𝑍0, we obtained the 

coupled solutions of the Laplace equation for the electrolyte and the nonlinear Stokes flow 

equations for the electrode using the Multiphysics software Comsol®. However, the non-local 

averaging for calculation of 𝑍tip cannot be done directly within the Comsol® coupled solver. 

Thus, an additional iterative loop to converge on the value of 𝑍tip was implemented in Matlab® 

and coupled to Comsol® using the Comsol® LiveLinkTM for Matlab®. 

 

3.4 Predictions using the modified Butler-Volmer kinetics 

Predictions of the average traction 𝑇̅n as a function of 𝑎 are presented in Fig. 4a for selected 

values of 𝑗∞ and stack pressure 𝑝 = 0. These results which use 𝛼𝑘 = 2.7 are in stark contrast 

to those discussed in Section 3.2 (Fig. 1b) where the effect of dislocations within the electrode 

was neglected (i.e. 𝛼𝑘 = 0). Before proceeding to discuss the physical phenomena that cause 

these differences (cf. Section 3.4.1), we shall first put these predictions into the context of 

known experimental observations. Nearly over the entire range of impurity particle sizes and 

cell currents, the tractions 𝑇̅n in Fig. 4a are tensile indicating that there is a tendency for voids 

to grow even from these small impurities and low values of 𝑗∞ in the absence of a stack pressure 

(𝑝 = 0). This finding is consistent with observations [9] where voids on the order of 1 μm were 

observed with 𝑗∞ = 0.1 mA cm−2 at  𝑝 = 0. 

A critical measurement of practical interest is the critical stack pressure 𝑝crit that is 

required to be applied to inhibit formation of voids at a given 𝑗∞ [5, 10]. The results in Fig. 4a 

can be readily used to estimate this 𝑝crit versus 𝑗∞ relation. Recall that the applied stack 

pressure has a negligible effect on 𝑍, the strain-rate with the electrode or interfacial current. 

Rather the stack pressure only changes the stress state in the electrode by the applied 

hydrostatic pressure. Thus, for each value of (𝑎, 𝑗∞) in Fig. 4a, the application of a hydrostatic 

pressure 𝑝crit = 𝑇̅n will mean that the stress within the electrode changes from 𝜎𝑖𝑗 to 𝜎𝑖𝑗 −

𝑇̅n𝛿𝑖𝑗. Substituting the new traction 𝑇𝑖 = (𝜎𝑖𝑗 − 𝑇̅n𝛿𝑖𝑗)𝑛𝑗  into (3.5), we see that the application 

of 𝑝crit = 𝑇̅n leads to the average traction on the electrode/impurity interface reducing to zero. 

The results in Fig. 4a can therefore be viewed as providing the critical stack pressure 𝑝crit to 

suppress the initiation of void growth for a given 𝑗∞. For example, the calculations suggest that 

initiation of void growth from a 𝑎 = 0.25 μm impurity is suppressed by applying a pressure 

𝑝crit ≈ 0.4 MPa and 2.1 MPa for cell currents 𝑗∞ = 0.1 mA cm−2 and 0.5 mA cm−2, 

respectively. These results are remarkably consistent with the reported measurements for 

Li/LLZO/Li cells [10]. 
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Figure 4: (a) The average traction 𝑇̅n on the electrode/impurity particle interface (or 

equivalently critical stack pressure 𝑝crit) as a function of the impurity size 𝑎 for selected values 

of the cell current density 𝑗∞ and material length scale 𝜆 = 0.5 μm. (b) Corresponding 

predictions of 𝑇̅n as a function of 𝑗∞ for an impurity size 𝑎 = 0.25 μm and selected values of 

𝜆. All results here are for the case where the effect of dislocations on the interfacial resistance 

is accounted for with 𝛼𝑘 = 2.7. 

 

The results in Fig. 4a while strongly dependent on the value of 𝛼𝑘 are nearly 

independent of 𝜆. Recall that 𝜆 is a material length scale that is expected to be set by the 

dislocation spacings. Thus, reasonable values of 𝜆 are in the range 0.25 μm ≤ 𝜆 ≤ 1 μm. 

Predictions of 𝑇̅n as a function of 𝑗∞ for an impurity of size 𝑎 = 0.25 μm are included in Fig. 4b 

for three selected values of 𝜆. The dependence of 𝑇̅n on 𝜆 is mild and we proceed to develop 

an understanding of how dislocations within the Li electrode fundamentally change the 

deformation fields within electrode using the reference value of 𝜆 = 0.5 μm. 

It is instructive to first summarise the crucial differences between predictions when the 

effect of dislocations on the interface kinetics is accounted for by setting 𝛼𝑘 = 2.7 (i.e. 

modified Butler-Volmer kinetics) versus the case with 𝛼𝑘 = 0 when the effect of dislocations 

is neglected (i.e. standard Butler-Volmer kinetics). The two crucial differences between the 

𝛼𝑘 = 2.7 and 0 cases are: 

(i) As seen in Fig. 4a, 𝑇̅n > 0 for realistic impurity sizes (i.e. 𝑎 ≤ 1 μm) with 𝛼𝑘 = 2.7 

while in the case of 𝛼𝑘 = 0 (Fig. 1b) the tractions on the electrode/impurity interface are tensile 

only for unrealistically large impurity particles of size 𝑎 ≥ 100 μm. 

(ii) With 𝛼𝑘 = 2.7, the traction 𝑇̅n decreases with increasing 𝑎 unlike the 𝛼𝑘 = 0 case 

where 𝑇̅n increases with increasing 𝑎 (Fig. 1b). 

These differences emerge due to different physical phenomena setting interfacial fluxes near 

the impurity in the 𝛼𝑘 = 2.7 and 0 cases and we now proceed to discuss these phenomena 

while highlighting the contrast between the predictions of standard and modified Butler-

Volmer kinetics. 
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3.4.1 Complex feedback between interfacial resistance and flux 

Predictions (with 𝛼𝑘 = 2.7) of the distributions of the normalised interfacial current 𝑗/𝑗∞ as a 

function of 𝑟̅ are included in Fig. 5a for 𝑎 = 0.25 μm and selected values of 𝑗∞ (corresponding 

distributions of normal tractions along both the electrode/electrolyte interface and on the 

impurity surface are included in Fig. S2 of the Supplementary Material). Unlike the results 

with 𝛼𝑘 = 0 in Fig. 1c, 𝑗/𝑗∞ is now no longer independent of 𝑗∞ for a given value of 𝑎. In 

order to understand these differences, we consider the relevant non-dimensional groups for the 

case of an Li electrode with fixed mechanical properties. The functional form of the non-

dimensional interfacial current 𝑗/𝑗∞ in the absence of a stack pressure (𝑝 = 0) can be written 

as 

𝑗

𝑗∞
= 𝑓 [𝑟̅, 𝜎0 ≡ (

ΩLi
𝐹𝑍0

)
2 𝜎0
𝜀0̇𝜅

, 𝑗∞̅ ≡
𝑗∞ΩLi
𝐹𝜀0̇𝜅𝑍0

, 𝑎̅ ≡
𝑎

𝜅𝑍0
, 𝜆̅ ≡

𝜆

𝜅𝑍0
]. (3.14) 

First consider the case with 𝛼𝑘 = 0. The group 𝜆/(𝜅𝑍0) is not present as the 2nd term in (3.9) 

vanishes. Moreover, we have seen that the 𝑇𝑖𝑛𝑖ΩLi/𝐹 term in (3.3) has a negligible influence 

as the contribution to the chemical potential from the stresses in the electrode is small compared 

to contribution from the electric potential. We can thus neglect the effect of stresses within the 

electrode, i.e. set 𝜀0̇ → ∞ in (2.5) so that the Li stresses tend to zero. This implies that the terms 

𝜎0 and 𝑗∞̅ in (3.14) vanish and the functional form (3.14) in the 𝛼𝑘 = 0 case reduces to 𝑗/𝑗∞ =
 𝑓[𝑟̅, 𝑎̅]. Therefore, with the effect of dislocations neglected, the flux concentration factor 𝐾𝐽 =

max (𝑗)/𝑗∞ is only a function of 𝑎̅ as discussed in the context of Fig. 1c. However, with 𝛼𝑘 =

2.7 dislocations influence 𝑍 and the density of these dislocations is in turn set by the deviatoric 

stresses within the electrode via (2.7). Thus, we can no longer neglect the role of stresses within 

the electrode with 𝜎0 and  𝑗∞̅ now influencing the interfacial current distribution. This is the 

source of the 𝑗∞ dependence on 𝑗/𝑗∞ seen in Fig. 5a. 

 

      
Figure 5: (a) Spatial variation of the normalised interfacial flux 𝑗/𝑗∞ for an impurity of size 

𝑎 = 0.25 μm and selected values of 𝑗∞ with 𝛼𝑘 = 2.7. (b) Corresponding variation of the flux 

concentration factor 𝐾𝐽 with 𝑗∞ for selected values of 𝛼𝑘 in the range 0 ≤ 𝛼𝑘 ≤ 2.7. All results 

employ a material length scale 𝜆 = 0.5 μm. 
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To understand this influence of 𝑗∞̅ better, we include in Fig. 5b predictions of the flux 

concentration factor 𝐾𝐽 as a function of 𝑗∞ for 𝛼𝑘 in the range 0 ≤ 𝛼𝑘 ≤ 2.7 and an impurity 

of size 𝑎 = 0.25 μm. While 𝐾𝐽 ≈ 1 for 𝛼𝑘 = 0 and independent of 𝑗∞, 𝐾𝐽 increases with 

increasing 𝑗∞ for 𝛼𝑘 > 0. Moreover, 𝐾𝐽 increases with increasing 𝛼𝑘 for a given 𝑗∞ which is 

understood as follows. Recall that concentration in the flow field created around the impurity 

results in an increase in the strain-rate and thereby 𝜎 around the impurity. This increase in the 

stress in turn causes a reduction in 𝑍 near the impurity resulting in further increases in 𝑗 around 

𝑟̅ = 1 and thereby an increase in 𝐾𝐽 via a positive feedback loop. 

 

      

 
Figure 6: Variation of (a) 〈𝜌d〉/𝑘, (b) 𝑍tip and (c) 𝑇̅n (or equivalently critical stack pressure 

𝑝crit) with current density 𝑗∞ for an impurity of size 𝑎 = 0.25 μm and selected values of 𝛼𝑘 in 

the range 0 ≤ 𝛼𝑘 ≤ 2.7. All results employ a material length scale 𝜆 = 0.5 μm. 

 

To illustrate this positive feedback, we focus on 𝛼𝑘 which sets the level by which 

dislocations affect the interfacial resistance and consider the case with 𝑝 = 0 and an impurity 

of size 𝑎 = 0.25 μm. We include in Figs. 6a and 6b predictions of the variations of 〈𝜌d〉/𝑘 and 
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𝑍tip, respectively, with 𝑗∞ for 𝛼𝑘 in the range 0 ≤ 𝛼𝑘 ≤ 2.7. For 𝛼𝑘 = 0, while 〈𝜌d〉/𝑘 

increases with increasing 𝑗∞ due to the higher strain-rates around the impurity (these strain-

rates scale with 𝑗∞ΩLi/(𝐹𝑎)), 𝑍tip remains unaffected. With increasing 𝛼𝑘, the positive 

feedback involves an increase in dislocation density with increasing 𝑗∞ (Fig. 6a) which is 

accompanied by a decrease in 𝑍tip (Fig. 6b) and a consequent increase in flux around the 

impurity and the increase in 𝐾𝐽 seen in Fig. 5b. The direct consequence of this positive feedback 

is that the higher flux rates occur near the impurity and the consequent changes to the flow 

field in the Li result in an increase in the tensile traction 𝑇̅n with both increasing 𝛼𝑘 and 𝑗∞ as 

summarised in Fig. 6c. Of course, since 𝑇̅n equals the critical stack pressure 𝑝crit to suppress 

void growth, 𝑝crit increases with increasing 𝛼𝑘 and 𝑗∞ (for 𝛼𝑘 > 0). 

The trend of 𝑇̅n becoming increasingly tensile with increasing 𝑗∞ is reversed for the 

𝛼𝑘 = 0 case, where 𝑇̅n becomes increasingly compressive with increasing 𝑗∞; see Fig. 6c. 

Related features are also seen comparing Figs. 4a and 1b: while over 0.25 μm ≤ 𝑎 ≤ 3 μm 𝑇̅n 

becomes more compressive with increasing 𝑎 in Fig. 4a (𝛼𝑘 = 2.7) over this same range of 𝑎, 

𝑇̅n becomes more tensile with increasing 𝑎 in Fig. 1b (𝛼𝑘 = 0). These differences are 

understood by first noting that the sign of 𝑇̅n is primarily set by the flux concentration factor 

(for low values of 𝐾𝐽 ≈ 1 the tractions 𝑇̅n are compressive while they are tensile for 𝐾𝐽 >

~1.8), i.e.  𝑇̅n is tensile and compressive for 𝛼𝑘 = 2.7 and 0, respectively. Thus, while the sign 

of 𝑇̅n is set by the value of 𝐾𝐽, the magnitude |𝑇̅n| is governed primarily by the local strain-rate 

around the impurity particle, i.e. by 𝐾𝐽𝑗∞ΩLi/(𝐹𝑎). The flux concentration factors over 

impurity particle size range 0.25 μm ≤ 𝑎 ≤ 3 μm are 𝐾𝐽 ≈ 1 for 𝛼𝑘 = 0 (Fig. 1c) and 𝐾𝐽 > 3 

for 𝛼𝑘 = 2.7 case with 𝐾𝐽 increasing with decreasing 𝑎 (Fig. S3). Thus, in both the 𝛼𝑘 = 0 

and 2.7 cases strain-rates around the impurity particle decrease with increasing 𝑎. This results 

in a decrease in |𝑇̅n| with increasing 𝑎 implying that 𝑇̅n becomes less compressive in the 𝛼𝑘 =

0 case and less tensile in the 𝛼𝑘 = 2.7 case with increasing 𝑎. We emphasize that this 

conclusion only holds for relatively small impurity particles as of course 𝐾𝐽 increases with 

increasing 𝑎 for 𝑎 > 50 μm (Fig. 1c). 

 

3.4.2 Flow fields with standard and modified Butler-Volmer kinetics 

Recall that the modified Butler-Volmer kinetics (𝛼𝑘 > 0) reduces to the standard form when 

𝛼𝑘 = 0 as the effect of dislocations is ignored in this limit. Here, we visualise the effect of 

dislocations, as parameterised by 𝛼𝑘, on the flow fields within the electrode and electrolyte to 

exemplify the differences between the modified and standard kinetics. These fields are shown 

in Fig. 7 via distributions of 𝜎/𝜎0 in the electrode and normalised flux −𝑗𝑧/𝑗∞ in the electrolyte. 

Here, 𝑗𝑧 denotes the Li+ current in the 𝑧 −direction in the electrolyte and the results in Fig. 7 

are for a cell loaded via a current  𝑗∞ = 0.5 mA cm−2 with an impurity particle of size 𝑎 =

0.25 μm. Consistent with the fact that accounting for the dislocations increases the flux and 

stresses around the impurity particle, we observe increased levels of 𝜎 and |𝑗𝑧| for the 𝛼𝑘 =

2.7 case (Fig. 7b) compared to the 𝛼𝑘 = 0 case (Fig. 7a). In Fig. 7, we also include contour 

surfaces of the Stokes stream function 𝜓 within the electrode. These surfaces are placed such 

that the difference in the value of the stream function Δ𝜓 between consecutive surfaces is 

constant and given by Δ𝜓̅ ≡ Δ𝜓𝐹/(𝑗∞ΩLi𝑎
2) = 0.4 so that the volumetric flow rate of the Li 

between consecutive surfaces equals 𝑄 = 2𝜋Δ𝜓 = 0.8𝜋(𝑗∞ΩLi𝑎
2)/𝐹. It is clear that the 
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spacing of the stream functions near the impurity particle is closer in Fig. 7b case indicating 

the higher Li+ flux near the impurity particle when the effect of dislocations is accounted for 

with 𝛼𝑘 = 2.7. Moreover, the stream functions in the 𝛼𝑘 = 2.7 curve towards the impurity 

particle while those with 𝛼𝑘 = 0 are deflected away from the particle.  

 

 
Figure 7: Spatial distributions of the normalised von-Mises stress 𝜎/𝜎0 in the electrode and 

normalised flux −𝑗𝑧/𝑗∞ in the electrolyte in a region around the impurity particle for the case 

of a cell loaded via a current density  𝑗∞ = 0.5 mA cm−2 and an impurity of size 𝑎 = 0.25 μm. 

Results are shown for (a) the case of standard Butler-Volmer kinetics with the effect of 

dislocations on interfacial resistance neglected (𝛼𝑘 = 0) and (b) including the effect of 

dislocations with 𝛼𝑘 = 2.7 (modified Butler-Volmer kinetics). Also included within the 

electrode are contour surfaces of the Stokes stream function 𝜓 with Δ𝜓 = 0.4(𝑗∞ΩLi𝑎
2)/𝐹 

between consecutive surfaces. In (b) the material length scale 𝜆 = 0.5 μm. Note the difference 

in the −𝑗𝑧/𝑗∞ scales in (a) and (b). 

 

3.5 Success and limitations of the analysis 

The key prediction of the model for the reference parameters is summarised in Fig. 8a where 

we plot critical stack pressure 𝑝crit as a function of the cell current 𝑗∞ for selected values of the 

impurity particle size 𝑎 in the range 0.1 μm ≤ 𝑎 ≤ 1 μm. Included in Fig. 8a are measurements 

[10] of the 𝑝crit versus 𝑗∞ relation for Li/LLZO/Li cells for three values of 𝑗∞. Excellent 

agreement is observed with the predictions of a 𝑎 = 0.25 μm impurity. 

While the model is in excellent quantitative agreement with existing data for 

Li/LLZO/Li cells, there is a curious feature about the predictions, viz. the average traction 𝑇̅n 

on the electrode/impurity interface becomes increasingly tensile with decreasing 𝑎. This is due 

to the fact that the strain-rate around the impurity particle which scales with 𝐾𝐽𝑗∞ΩLi/(𝐹𝑎) 

increases with decreasing 𝑎. The model thus suggests that void growth will initiate for a 

vanishing current as 𝑎 → 0, or conversely an infinite stack pressure will be required to suppress 

the initiation of void growth from an infinitesimally small impurity. This seems unphysical and 

is a limitation of the analysis that can be rationalised as follows. The power-law creep 

constitutive relation used to describe the mechanical properties of the Li electrode breaks down 

at small sizes when the gradients of strain-rate become large. Power-law flow is associated 

with dislocation motion and it is well-established that plasticity associated with dislocation 
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motion is size-dependent at sub-micron length scales [23] and this has also recently been 

confirmed to hold true for Li [24]. Typically, the macroscopic or bulk creep laws of Li 

breakdown when the length scale over which large gradients of strain-rate occur become 

smaller than the dislocation spacings. For such loadings, the mechanisms associated with 

viscous/creep deformation and plasticity are inhibited and the Li will respond primarily in an 

elastic manner in such cases. Thus, our analysis is not valid in the limit 𝑎 → 0 and we expect 

that in reality void growth from impurities of vanishing size will be precluded as deformation 

around such impurities is restricted to be elastic. 

 

      
Figure 8: (a) The variation of 𝑇̅n (or equivalently critical stack pressure 𝑝crit) with current 𝑗∞ 

for selected impurity particle sizes in the range 0.1 μm ≤ 𝑎 ≤ 1.0 μm. Measurements from 

[10] for Li/LLZO/Li cells are also included. (b) Contours of the von-Mises effective strain 𝜀 

within the electrode around the impurity particle for a cell loaded via a current 𝑗∞ =

0.5 mA cm−2 and an impurity of size 𝑎 = 0.25 μm. All results employ 𝛼𝑘 = 2.7 and a material 

length scale 𝜆 = 0.5 μm. 

 

Another limitation of our analysis, also related to the Li mechanical constitutive 

relation, is that we have neglected any possible mechanical damage mechanisms in Li. The 

power-law creep deformation of the Li is linked with dislocation motion and thus the deforming 

Li electrode has both solid-like and fluid-like properties. While strains do not affect properties 

of a fluid, large strains are known to initiate damage mechanisms within solids. To gauge the 

level of strains within the electrode, we calculate the von-Mises effective strain 𝜀 in this 

Eulerian setting at a location (𝑟P, 𝑧P) by integrating 𝜀̇ along a streamline passing through 

(𝑟P, 𝑧P) with a boundary condition 𝜀 = 0 on 𝑧 = 𝐻. Contours of 𝜀 within the electrode in a 

region around the impurity particle are included in Fig. 8b for the case with 𝑗∞ = 0.5 mA cm−2 

and 𝑎 = 0.25 μm. Plastic strains around the impurity particle are larger than 500% — such 

large plastic strains typically induce microcracks and voids in metals [25]. It is unclear whether 

such damage mechanisms will operate in the creeping Li electrode at room temperature and 

what effects such damage mechanisms might have on the formation of voids in the electrode. 
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Finally, we have restricted our analysis to a hemispherical impurity particle. While the 

precise shape of the impurity is not known, the hemispherical assumption provides a reasonable 

first guess that avoids the development of flow singularities in the Li and other special features 

that may restrict the wider applicability of the analysis. Moreover, we recognise that (as shown 

via the observations reported in [5]) the morphology of the electrode/electrolyte interface 

changes significantly over successive plating/stripping cycles. Understanding this evolution is 

undoubtedly important but here we have restricted ourselves to the conditions required for the 

initiation of a void due to debonding of the Li at the electrode/electrolyte interface. If these 

initiation conditions are not satisfied, then of course voids cannot form and this enables us to 

estimate the critical stack pressure to suppress void formation with remarkable accuracy. 

 

4. Concluding remarks 

We have developed a framework for the coupled deformation of an Li electrode and flux of 

Li+ through a single-ion conductor solid electrolyte. Nonlinear Stokes flow governs the 

deformation of the Li electrode with the Li behaving as a power-law creeping solid while 

Laplace’s equation governs the fields within the electroneutral electrolyte. The electrode and 

electrolyte are coupled together by an interfacial flux law. Unlike standard Butler-Volmer 

kinetics where the interface resistance is only very weakly dependent on the stress state within 

the electrode, we show via thermodynamics considerations that dislocation-mediated creep 

deformation of the Li electrode leads to a significantly reduction in the interfacial resistance. 

The dislocation density in turn is set by the deviatoric stresses within the electrode and thus the 

governing equations for the fields within the electrode and electrolyte are strongly coupled. 

This framework is used to model the initiation of void growth at the Li 

electrode/electrolyte interface as Li is stripped from the electrode. The initiation of void growth 

is assumed to occur from an impurity particle on the electrode/electrolyte interface that inhibits 

flux and thereby causes creep deformation of the electrode. The calculations show that void 

growth can initiate from sub-micron scale impurity particles due to the development of tensile 

tractions on the electrode/impurity particle interface. The application of a compressive stack 

pressure can suppress the initiation of void growth but consistent with observations [5, 10] the 

required critical pressure increases with increasing stripping current densities. The model is in 

excellent quantitative agreement with measurements [10] for Li/LLZO/Li cells. 
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A. Thermodynamics of a deforming Li electrode and associated interface kinetics 

Power-law creep of the Li electrode occurs by climb-assisted glide of dislocations. The density 

of these dislocations is set by the stress level (or equivalently the strain-rate) within the 

electrode and thus in turn depends on the interfacial flux. Standard Butler-Volmer kinetics that 

is used to quantify the interfacial flux neglects the effect of dislocations and here, via 

thermodynamic considerations, we derive the dependence of the interfacial flux on the 

dislocation density within the electrode and the tractions along the electrode/electrolyte 

interface. The treatment will follow in three steps. First, we shall develop the thermodynamics 

of an Li electrode comprising vacancies and dislocations. Second, based on the understanding 

of the enthalpy and entropies of the Li+ ions in the electrode with dislocations we shall derive 

an interfacial flux law in a manner analogous to the Butler-Volmer relation, i.e. determine the 

flux by assuming that the electrode does not deform (i.e. deviatoric stresses vanish) so that the 

interfacial flux results in spatially uniform plating/stripping of the electrode. Finally, we shall 

use a variational argument to establish the interfacial flux law associated with an Li electrode 

deforming by dislocation creep. Throughout the Supplementary Material, we employ Cartesian 

tensor notation. 

 

A.1 Thermodynamics of an Li electrode containing dislocations and vacancies 

In order to develop the thermodynamics of the electrode comprising vacancies and 

dislocations, we begin by recalling that the plastic flow (including creep) of metals is typically 

assumed to be a purely dissipative process with the free-energy of the metal independent of the 

dislocation density. This is similar to vacancies wherein too at equilibrium the free-energy of 

a metal is independent of the vacancy concentration. It is thus, convenient to lump dislocations 

and vacancies into a single effective species and our treatment will follow along these lines. 
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Consider an Li electrode comprises 𝑁L moles of lattice sites that are occupied by 𝑁Li 

moles of Li atoms and is maintained at a temperature 𝑇 and pressure 𝑝. First consider the case 

of the electrode absent dislocations. The electrode is in equilibrium with a vacancy bath and 

hence a fraction 𝜃v ≡ 𝑁v/𝑁L of the lattice sites are vacant, where 𝑁v ≡ 𝑁L − 𝑁Li are the moles 

of vacancies in the electrode. At equilibrium, the Gibbs free-energy of the electrode is 

minimised, and consequently [1] 

𝜃v = exp [−
(ℎv + 𝑝Ωv)

𝑅𝑇
] ≈ exp (−

ℎv
𝑅𝑇
) , (A1) 

where ℎv is the enthalpy of vacancy formation in Li, 𝑅 the gas constant and Ωv the molar 

volume of vacancies in Li. The approximation follows from the fact that for all practical cases 

|𝑝Ωv|/(𝑅𝑇) ≪ 1 while ℎv/(𝑅𝑇) ≫ 1 since ℎv ≈ 50 kJ mol
−1 [2]. 

Next, consider the case where a total line length 𝐿d of dislocations with Burgers vector 

of magnitude 𝑏 is also present in the Li electrode. The atoms within the dislocation cores are 

not closely packed and this results in a small expansion of the metal due to the presence of the 

dislocations such that the total volume of the electrode is given by 

Ω = 𝑁LiΩLi + 𝑁vΩv + 𝛼(𝐿d𝑏
2), (A2) 

where ΩLi is the molar volume of Li and 𝛼 is a constant that depends on the metal (e.g. 𝛼 ≈

0.25 for fcc Cu and ≈ 2.7 for bcc Fe [3]). Thus, following our intention of lumping the 

dislocations and vacancies into a single species we treat the additional volume due to 

dislocations as additional vacancies. Introduce, an effective vacant site number as 𝑁̂v ≡ 𝑁v +

 𝛼(𝐿d𝑏
2)/Ωv such that Ω = 𝑁LiΩLi + 𝑁̂vΩv and write the total number of lattice sites in the 

electrode with dislocations as 𝑁L ≡ 𝑁Li + 𝑁̂v. To a very high degree of accuracy Ω ≈ 𝑁LiΩLi 

since 𝑁̂v ≪ 𝑁Li and we define 𝜃v ≡ 𝑁̂v/𝑁L as the fraction of effective vacant sites in the metal. 

The dislocations and vacancies are statistically independent which allows us to substitute 𝜃v ≡

𝑁v/𝑁L from (A1) and obtain (2.1) in the main text, i.e. 

𝜃v = exp (−
ℎv
𝑅𝑇
) + 𝛼

ΩLi(𝜌d𝑏
2)

Ωv
. (A3) 

In obtaining (A3), we have used the approximations Ω ≈ 𝑁LiΩLi and 𝑁L ≈ 𝑁Li along with the 

definition 𝜌d ≡ 𝐿d/Ω of the dislocation density in the electrode. 

While (A3) directly gives the fraction of effective vacant sites in terms of the known 

(experimentally measured) expansion of the metal due to the presence of dislocations, it is 

instructive for the purposes of deriving an interface flux law to relate this to the chemical 

potentials of the Li atoms. We thus define an internal energy of the electrode as 𝑈 ≡ 𝑁Li𝜇0 +

𝑁̂vℎ̂v, where 𝜇0 is a reference molar chemical potential of the Li atoms that shall be made more 

precise following (A9) below1 while unlike ℎv, the energy ℎ̂v of the effective vacant sites is 

not a fundamental elemental property as it is dependent on the dislocation density 𝜌d and 𝛼. 

Thus, it is not well-documented and we shall estimate it from equilibrium considerations. To 

do so, we first proceed to determine the free-energy of the electrode. The entropy of the 

electrode by accounting only for the configurational entropy (i.e. neglect vibrational and other 

 
1 In writing this expression for 𝑈 we have neglected any contribution due to the macroscopic elastic field: this 

contribution is on the order of 𝑁LiΩLi𝑝
2/𝐸Li  where 𝐸Li is the Young’s modulus of the Li. This contribution is 

negligible since 𝑝 ≪ 𝐸Li. 
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contributions to entropy) is given by the entropy of mixing of the Li atoms with the vacant sites 

as 

𝑆 = −𝑁L 𝑅[𝜃Li ln 𝜃Li + (1 − 𝜃Li) ln(1 − 𝜃Li)] , (A4) 

where 𝜃Li ≡ 𝑁Li/𝑁L is the occupancy of the lattice sites by Li atoms. The Helmholtz free-

energy of the electrode maintained at a temperature 𝑇 is then 𝐴 ≡ 𝑈 − 𝑇𝑆, while the Gibbs 

free-energy is 𝐺 ≡ 𝐴 + 𝑝Ω, i.e. 

𝐺 = 𝑁Li𝜇0 + 𝑁̂vℎ̂v + 𝑁L 𝑅𝑇[𝜃Li ln 𝜃Li + (1 − 𝜃Li) ln(1 − 𝜃Li)] + 𝑝Ω. (A5) 

Then using the approximation Ω ≈ 𝑁LiΩLi, the chemical potential of the Li atoms follows as 

𝜇Li ≡
𝜕𝐺

𝜕𝑁Li
|
𝑁L,𝜌d 

= (𝜇0 − ℎ̂v) + 𝑝ΩLi + 𝑅𝑇ln (
𝜃Li

1 − 𝜃Li
). (A6) 

Equilibrium of the electrode for a fixed number of Li atoms and dislocation density requires 
𝜕𝐺

𝜕𝑁L 
|
𝑁Li,𝜌d

= 0, (A7) 

which implies that at equilibrium 

1 − 𝜃Li = 𝜃v = exp(
−ℎ̂v
𝑅𝑇

). (A8) 

Combining (A8) and (A3), it is clear that the energy ℎ̂v of the effective vacant sites decreases 

with increasing dislocation density. Substituting (A8) back into (A6), the chemical potential of 

the Li atoms in the equilibrium state is given by 

𝜇Li
eq
= 𝜇0 + 𝑝ΩLi + 𝑅𝑇ln(𝜃Li), (A9) 

and the corresponding Gibbs free-energy of the electrode is 𝐺eq = 𝑁Li𝜇Li
eq

. It is worth 

emphasizing here that typically, ℎ̂v is unknown but 𝜃v  is known via (A3) for a given dislocation 

density and hence (A8) can be inverted to estimate ℎ̂v from 𝜃v . 
Since 𝜃Li ≈ 1, it follows that 𝜇Li

eq
≈ 𝜇0 + 𝑝ΩLi and 𝜇0 is the equilibrium chemical 

potential of Li with 𝑝 = 0. Therefore, 𝐺eq is approximately independent of the dislocation 

density. We have thus recovered the usual assumption in the plastic flow of metals wherein it 

is assumed that plasticity is a purely dissipative process with the free-energy of the system 

independent of the dislocation density (or equivalently independent of plastic strain or plastic 

strain-rate). The above analysis gives some insight into the basis of this assumption. With 

increasing dislocation density, ℎ̂v decreases and therefore the enthalpy 𝑁Li(𝜇0 + 𝑝ΩLi − ℎ̂v) 

of the system increases due to the presence of more dislocations. The increased dislocation 

density also results in a small volumetric expansion of the system which in turn increases the 

configurational entropy of the system due to the availability of more lattice sites for the Li 

atoms. At equilibrium, this increase in entropy and enthalpy balance out such that the free-

energy of the system is unaffected by the dislocation density. We shall now proceed to show 

that while dislocations do not affect the free-energy of the system, the change in the relative 

enthalpic and entropic contributions to the free-energy due to the presence of dislocations 

significantly affects the kinetics of Li+ flux across the electrode/electrolyte interface. 
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A.2 Butler-Volmer kinetics in a non-deforming electrode containing dislocations 

For the sake of brevity, henceforth we drop the superscript “eq” to denote equilibrium 

quantities and all chemical potentials and free-energies refer to their equilibrium values. The 

chemical potential of the Li+ and Li in the electrode are related via 𝜇Li+ = 𝜇Li − 𝜇el− , where 

𝜇el−  is the chemical potential of electrons in the electrode (often referred to as the Fermi level). 

With 𝜇el− = −𝐹𝜙m, where 𝜙m is the electrical potential of the electrode (that is necessarily 

spatially uniform as the Li is assumed to be a perfect conductor), the chemical potential of the 

Li+ in the electrode follows from (A9) as 𝜇Li+ = 𝜇0 + 𝐹𝜙m + 𝑝ΩLi + 𝑅𝑇ln(𝜃Li). 

Next consider the chemical potential 𝜇Li+
e  of the Li+ ions within the electrolyte. We 

assume that (i) the electrolyte remains electroneutral with a uniform concentration of Li+ such 

that every Li+ cation is paired with an immobile anion within the single-ion conductor 

electrolyte and thus the occupancy of Li+ sites in the electrolyte remains fixed at 𝜃0
e and (ii) 

the molar volume Ωe of Li within the electrolyte is negligible [4], as the Li+  lies within a 

ceramic skeleton that remains rigid upon removal/addition of an Li+ ion. It follows from these 

assumptions that  

𝜇Li+
e = 𝜇0

e + 𝐹𝜙 + 𝑅𝑇ln (
𝜃0
e

1 − 𝜃0
e), (A10) 

where 𝜇0
e is the reference molar enthalpy of the Li+ ions in the electrolyte and 𝜙 is the electric 

potential of the electrolyte that can be spatially varying. The reference quantities 𝜇0
e and 𝜇0 can 

be related to the open circuit (or equilibrium) potential 𝒰. The open circuit potential is defined 

as the electrical potential that equalises the chemical potentials of Li+ in the dislocation-free 

electrode and electrolyte in the absence of an external applied stack pressure or electric 

potential to the electrode, i.e. 𝒰 is defined via 

𝜇0 + 𝑅𝑇ln(1 − 𝜃v ) + 𝐹𝒰 = 𝜇0
e + 𝑅𝑇ln(

𝜃0
e

1 − 𝜃0
e), (A11) 

with 𝜃v  given by (A1). We can now proceed to derive the interface kinetics by employing the 

usual assumptions employed in Butler-Volmer kinetics. 

In order to derive the flux of Li+ across the electrode/electrolyte interface, we first 

define the standard chemical potentials 𝜒Li+ and 𝜒Li+
e  of Li+ in the electrode and electrolyte, 

respectively. The standard chemical potentials are the chemical potentials absent the 

configurational entropy contributions and are given by 

𝜒Li+ ≡ (𝜇0 − ℎ̂v) + 𝐹𝜙m + 𝑝ΩLi , (A12) 

from (A6) and 

𝜒Li+
e ≡ 𝜇0

e + 𝐹𝜙, (A13) 

from (A10). These standard chemical potentials (A12) and (A13) can be thus viewed as the 

enthalpies of the Li+ in the electrode and electrolyte, respectively. An increase in dislocation 

density results in a decrease in ℎ̂v via (A3) and (A8) and a consequent increase in 𝜒Li+  with 

increasing dislocation density 𝜌d as shown schematically in Fig. 2a.  

First, consider the rate of flux of Li+ from electrode to electrolyte. With 𝜔 denoting the 

jump frequency of Li+ ions and 𝜒𝑎 the activation barrier for Li+ ions to cross the interface, this 
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forward reaction rate in terms of the areal densities 𝑛L and 𝑛L
e of Li+ lattice sites on the electrode 

and electrolyte interface surfaces, respectively, is 

𝑟+ = 𝜔𝑛L𝜃Li⏟    
(a)

exp [−
(𝜒𝑎 − 𝜒Li+)

𝑅𝑇
]

⏟            
(b)

𝑛L
e(1 − 𝜃0

e)

𝑛L
e + 𝑛L⏟      
(c)

. 
(A14) 

In (A14), term (a) is the number of attempts per unit time, term (b) is the probability that an 

attempt is successful in crossing the activation barrier and term (c) is the probability that an 

Li+ ion that successfully crosses the barrier finds an empty electrolyte site. Similarly, the flux 

rate of Li+ from the electrolyte to electrode (i.e. backward reaction rate) is 

𝑟− = 𝜔𝑛L
e𝜃0

e exp [−
(𝜒𝑎 − 𝜒Li+

e )

𝑅𝑇
]
𝑛L(1 − 𝜃Li)

𝑛L
e + 𝑛L

, (A15) 

so that the net current from the electrode to electrolyte is given by 𝑗 = 𝐹(𝑟+ − 𝑟−). The key 

constitutive assumption in Butler-Volmer kinetics is that the activation barrier 𝜒𝑎 is at a height 

𝜒𝑎
0 above the weighted mean of the standard chemical potentials of the two end-states, i.e.  

𝜒𝑎 = 𝜒𝑎
0 + [𝛽𝜒Li+ + (1 − 𝛽)𝜒Li+

e ], (A16) 

where 𝛽 is the Butler-Volmer symmetry factor that satisfies 0 ≤ 𝛽 ≤ 1. Substituting (A16) 

into (A14) and (A15), employing the definition for the overpotential 𝜂 ≡ (𝜙m − 𝜙) − 𝒰 along 

with the relation (A11) for the open circuit potential 𝒰 and substituting for 𝜃v and 𝜃v , from 

(A1) and (A8), respectively, we have 

𝑗 = 𝑗0 {
1 − 𝜃v 
1 − 𝜃v 

exp [
(1 − 𝛽)(𝐹𝜂 + 𝑝ΩLi)

𝑅𝑇
] − exp [

−𝛽(𝐹𝜂 + 𝑝ΩLi)

𝑅𝑇
]}, (A17) 

where the exchange current 𝑗0 is given by 

𝑗0 =
𝜔𝐹𝑛L

e𝑛L
𝑛L
e + 𝑛L

exp(−
𝜒𝑎
0

𝑅𝑇
)𝜃0

e (
𝜃0
e

1 − 𝜃0
e)

−𝛽

(1 − 𝜃v )
𝛽𝜃v 

1−𝛽
. (A18) 

Recalling that both 𝜃v  and 𝜃v ≪ 1, it follows that  

𝑗 = 𝑗0 {exp [
(1 − 𝛽)(𝐹𝜂 + 𝑝ΩLi)

𝑅𝑇
] − exp [

−𝛽(𝐹𝜂 + 𝑝ΩLi)

𝑅𝑇
]}. (A19) 

Typically, (𝐹𝜂 + 𝑝ΩLi)/(𝑅𝑇) ≪ 1 and linearizing (A19) in this limit we obtain 𝑗 =

𝑗0(𝐹𝜂 + 𝑝ΩLi)/(𝑅𝑇). In the absence of an applied stack pressure (i.e. 𝑝 = 0) and an electrode 

absent dislocations (i.e. 𝜃v = 𝜃v ), we can write the flux relation as 𝑗 = 𝜂/𝑍0, where 𝑍0 =

𝑅𝑇/(𝐹𝑗0̅) is the experimentally reported interface resistance and 𝑗0̅ follows from (A1) and 

(A18) as 

𝑗0̅ =
𝜔𝐹𝑛L

e𝑛L
𝑛L
e + 𝑛L

exp(−
𝜒𝑎
0

𝑅𝑇
)𝜃0

e (
𝜃0
e

1 − 𝜃0
e)

−𝛽

[1 − exp (−
ℎv
𝑅𝑇
)]
𝛽

exp (−
(1 − 𝛽)ℎv

𝑅𝑇
). (A20) 

The linearized form of (A19) which holds in the limit (𝐹𝜂 + 𝑝ΩLi)/(𝑅𝑇) ≪ 1 is (2.3) in the 

main text, viz. 

𝑗 =
𝜂 + (𝑝ΩLi/𝐹)

𝑍
, (A21) 

where 𝑍 is the interface resistance and related to the exchange current 𝑗0 via 𝑍 = 𝑅𝑇/(𝐹𝑗0). 

Then from (A18) and (A20), it follows that the interfacial resistance 𝑍 is related to 𝑍0 via (2.2) 

in the main text, i.e. 
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𝑍 = 𝑍0𝜃v 
𝛽−1

exp (−
(1 − 𝛽)ℎv

𝑅𝑇
). (A22) 

Recall that the Butler-Volmer symmetry factor 0 ≤ 𝛽 ≤ 1 and for 𝛽 < 1 (typically this 

symmetry factor is taken to be 0.5) 𝑍 decreases with increasing dislocation density. This 

decrease in interfacial resistance can be explained as follows. With increasing dislocation 

density, the standard chemical potential 𝜒Li+  of the Li+ in the electrode increases for a fixed 

overpotential and pressure; see Fig. 2a. This combined with the Butler-Volmer constitutive 

assumption (A16) then predicts a reduced barrier for the transfer of Li+ from the electrode to 

electrolyte (Fig. 2b) and a consequent reduction in the interfacial resistance.  

 

A.3 Interfacial flux for a deforming Li electrode 

Lithium metal deforms by power-law creep as discussed in Section 2.1 of the main text. The 

Butler-Volmer kinetics derived above includes effects of dislocations within the electrode but 

assumes that the Li electrode does not deform, i.e. strain-rate and consequently deviatoric stress 

within the electrode vanish. The flux is then purely due to the stripping/plating of Li+ ion 

on/from the surface of the electrode in contact with the electrolyte. A spatially non-uniform 

flux across the electrode/electrolyte interface (which will occur during void growth within the 

electrode) necessarily requires deformation of the electrode and the flux can no longer be 

viewed as a purely electrode surface process. Rather it us coupled to creep in the bulk of the 

electrode. Here, we extend the formulation of Section A.1 to account for such situations where 

the flux is accompanied by creep deformation of the Li electrode. We accomplish this by 

developing a variational principle following [5, 6] wherein the rate of loss of potential energy 

Π̇ of a system comprising a portion of the electrode drives the dissipation due to creep within 

the electrode and dissipation associated with the interface flux. 

Consider the case of a large electrode maintained at a potential 𝜙m = 𝜙p, subjected to 

a stack pressure 𝑝 and in contact with the electrolyte as shown in Fig. 1a. For ease of discussion 

(and without loss of generality), we assume that Li is being stripped from this electrode. The 

large electrode is deforming over a localised volume 𝑉D (e.g. around the location where void 

growth might occur) near the electrolyte/electrode interface (Fig. S1). We analyse a small 

spatially fixed portion of the cell (shown by the dashed lines in Fig. 1a and reproduced in 

Fig. S1) which is sufficiently large such that the remote electrode boundaries of this region are 

far from 𝑉D and hence non-deforming. Consider a control volume (system) 𝑉 comprising the 

electrode in the region analysed with a bottom surface 𝒮𝑏 ≡ 𝑆e ∪ 𝑆p where 𝑆e is just within the 

electrolyte and 𝑆p just within the impurity particle as shown in Fig. S1. The Li+ fluxes across 

the side boundaries of this system vanish while the Li+ flux on the top surface 𝑆m of the system 

is spatially uniform and normal to the surface. Further, the traction over 𝑆m is spatially uniform 

and equal to the stack pressure 𝑝. Along the bottom surface of this system, the chemical 

potential of Li+ exiting along 𝑆e is 𝜇Li+
e  while the flux vanishes along 𝑆p. On the other hand, 

the chemical potential of the Li+ entering the system via 𝑆m is 𝜇Li+ = 𝜇0 + 𝑝ΩLi + 𝐹𝜙p. The 

second law of thermodynamics requires that for an isothermal process the rate of change of 

potential energy Π̇ of the system satisfies the inequality 
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Π̇ ≡ 𝐴̇ +
1

𝐹
∫ (𝜇Li+)𝑗𝑖𝑛𝑖𝑑𝑆
𝑆m

+ 
1

𝐹
∫ (𝜇Li+

e )𝑗𝑖𝑛𝑖𝑑𝑆
𝑆e

≤ 0, (A23) 

where we have recognised that the boundaries of the system are fixed in space. Here, 𝜇Li+
e  is 

given by (A10) with 𝜙 the electrolyte potential along 𝑆e while 𝑗𝑖 is the Li+ flux across the 

boundaries and 𝑛𝑖 the outward normal to the respective surfaces. Under steady-state conditions 

𝑁̇Li = 0 and this implies 

∫ 𝑗𝑖𝑛𝑖𝑑𝑆
𝑆m

+ ∫ 𝑗𝑖𝑛𝑖𝑑𝑆
𝑆e

= 0. (A24) 

Using (A24) along with the requirement that at steady-state the free-energy of the system is 

constant (i.e. 𝐴̇ = 0), it follows that 

Π̇ =
1

𝐹
∫ [(𝜇0

e − 𝜇0) + 𝐹(𝜙 − 𝜙p) − 𝑝ΩLi](𝑗𝑖𝑛𝑖)𝑑𝑆
𝑆e

= −
1

𝐹
∫ [𝐹𝜂 + 𝑝ΩLi](𝑗𝑖𝑛𝑖)𝑑𝑆
𝑆e

. (A25) 

The decrease in the potential energy of the system is associated with dissipation in the 

system via two mechanisms: (i) dissipation related to the creep deformation of the bulk 

electrode and (ii) dissipation associated with the flux of  Li+ across the electrode/electrolyte 

interface. First consider dissipation in the bulk of the electrode due to incompressible creep 

flow of the electrode. Recall from Section 2.1 of the main text that the deviatoric stress 𝑆𝑖𝑗 is 

obtained from a dissipation potential via the relation (2.6), viz.  

𝑆𝑖𝑗 ≡
𝜕Φm
𝜕𝜀𝑖̇𝑗

, (A26) 

where 𝜀𝑖̇𝑗 is an incompressible strain-rate (𝜀𝑘̇𝑘 = 0). Then, the dissipation rate per unit volume 

in the bulk electrode follows as 𝑑̇m = (𝜕Φm/𝜕𝜀𝑖̇𝑗)𝜀𝑖̇𝑗.  

Next consider the dissipation associated with flux across the electrode/electrolyte 

interface. Similar to the bulk electrode, we wish to define a dissipation potential ΦI for the 

interface such that the dissipation rate per unit area of interface is 𝑑̇I = 𝑗(𝜕ΦI/𝜕𝑗). We shall 

motivate the form of ΦI from the detailed understanding of the non-deforming electrode 

developed in Section A.1, i.e. an electrode wherein the deviatoric stresses vanish. Consider an 

interfacial system of thickness ℎ as shown in the inset of Fig. S1 (the thickness ℎ is set by the 

range over which Li atoms in the electrode interact with the electrolyte). The top surface of 

this interfacial system is labelled 𝑆top while the bottom surface labelled 𝑆bot is coincident with 

𝑆e. For the case where the electrode if not deforming the fluxes across the sides of the interfacial 

system in Fig. S1 vanish and therefore the rate of change of potential energy per unit area of 

this interfacial system is given by Π̇I = −(Δ𝜇Li+)𝑗/𝐹, where Δ𝜇Li+ is the jump in chemical 

potential of Li+ from 𝑆top to 𝑆bot. The second law of thermodynamics requires that Π̇I ≤ 0 and 

we thus define the dissipation rate per unit area of the interface as 𝑑̇I ≡ −Π̇I. Since we are 

considering the case where the electrode is not deforming, the deviatoric stresses vanish and 

the hydrostatic stress along 𝑆top equals −𝑝. The chemical potential along 𝑆top is then 𝜇Li+ =

𝜇0 + 𝑝ΩLi + 𝐹𝜙p and it follows from (A9), (A10) and (A11) that Δ𝜇Li+ = 𝐹𝜂 + 𝑝ΩLi. Then 

using the relation (A21) the dissipation rate is given by 𝑑̇I = 𝑗
2𝑍. We assume that this 

expression for the interface dissipation rate remains unchanged for the case of a deforming 

electrode and therefore the interface dissipation potential is ΦI ≡ 𝑗
2𝑍/2.  

We are now in a position to derive the flux relation for the deforming electrode. 

Following [5, 6], define a functional 
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Ψ(𝜀𝑖̇𝑗, 𝑗𝑖) ≡ Π̇ + ∫ ΦI𝑑𝑆 + ∫Φm𝑑𝑉
𝑉𝑆e

 . (A27) 

The variation 𝛿Ψ with respect to arbitrary variations 𝛿𝑗𝑖 in flux is given by 

δΨ ≡ −
1

𝐹
∫ [𝐹𝜂 + 𝑝ΩLi](𝛿𝑗𝑖𝑛𝑖)𝑑𝑆
𝑆e

+∫
𝜕ΦI
𝜕𝑗
𝛿𝑗𝑖𝑛𝑖𝑑𝑆 + ∫

𝜕Φm
𝜕𝜀𝑖̇𝑗

𝛿𝜀𝑖̇𝑗𝑑𝑉
𝑉𝑆e

  

= 𝛿Π̇ + ∫ 𝛿𝑑̇I 𝑑𝑆 + ∫𝛿𝑑̇m 𝑑𝑉
𝑉𝑆e

 , 
(A28) 

where 𝛿𝑑̇m ≡ 𝑆𝑖𝑗𝛿𝜀𝑖̇𝑗 = 𝜎𝑖𝑗𝛿𝜀𝑖̇𝑗 since 𝜀𝑘̇𝑘 = 0. At a stable equilibrium, arbitrary variations in 

the potential energy are balanced by the equivalent variations in the dissipation thereby 

requiring δΨ = 0. Using the fact that along 𝑆e the flux 𝑗 = 𝑗𝑖𝑛𝑖 it follows that at stable 

equilibrium 

∫𝑇𝑖𝛿𝑣𝑖𝑑𝑆
𝒮

+∫ 𝑍𝑗𝛿𝑗𝑑𝑆
𝑆e

=
1

𝐹
∫ [𝐹𝜂 + 𝑝ΩLi]𝛿𝑗𝑑𝑆
𝑆e

 , (A29) 

where 𝒮 is the entire surface of the system over which there exist tractions 𝑇𝑖 ≡ 𝜎𝑖𝑗𝑛𝑗 and 

particle velocities 𝑣𝑖. In going from (A28) to (A29), we have used the stress equilibrium 

relation 𝜎𝑖𝑗,𝑗 = 0, the relation of particle velocity and strain-rate given by 𝜀𝑖̇𝑗 ≡ 0.5(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) 

and the divergence theorem to convert the volume to a surface integral. The particle velocities 

along 𝒮 are related to the Li+ flux via the kinematic relation 𝑣𝑖 = 𝑗𝑖ΩLi/𝐹 and recalling that 

𝑗𝑖𝑛𝑖 = 0 along the side boundaries of the system, (A29) reduces to 

ΩLi
𝐹
[∫ 𝑇𝑖𝛿𝑗𝑖𝑑𝑆
𝑆e

+∫ 𝑇𝑖𝛿𝑗𝑖𝑑𝑆
𝑆m

] + ∫ 𝑍𝑗𝛿𝑗𝑑𝑆
𝑆e

=
1

𝐹
∫ [𝐹𝜂 + 𝑝ΩLi]𝛿𝑗𝑑𝑆
𝑆e

 . (A30) 

The electrode is only deforming in localised region 𝑉D far from the surface 𝑆m (see 

Fig. S1) and thus the stress field over 𝑆m is given by 𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗. Then using (A24), we obtain 

ΩLi
𝐹
∫ 𝑇𝑖𝛿𝑗𝑖𝑑𝑆
𝑆e

+∫ 𝑍𝑗𝛿𝑗𝑑𝑆
𝑆e

= ∫ 𝜂𝛿𝑗𝑑𝑆
𝑆e

 . (A31) 

Let 𝑠𝑖 denote a unit vector along the electrode/electrolyte interface. We restrict our 

consideration to the cases where either (i) electrode can freely slip along the electrolyte 

interface such that 𝑇𝑖𝑠𝑖 = 0 along 𝑆e or (ii) the electrode is stuck to the electrolyte with no slip 

permitted so that 𝑣𝑖𝑠𝑖 = 0 along 𝑆e. Using these conditions along with the requirement that at 

equilibrium (A31) holds for any arbitrary variation 𝛿𝑗 = 𝑛𝑖𝛿𝑗𝑖, it follows that the interfacial 

flux for a deforming electrode is given by (2.4) in the main text, i.e.  

𝑗 =
𝜂 − 𝑇𝑖𝑛𝑖ΩLi/𝐹

𝑍
 , (A32) 

with 𝑛𝑖 denoting the outward normal to the electrode along 𝑆e. Thus, the interface flux 

accompanied by creep deformation of the electrode results in the 𝑝ΩLi/𝐹 term in (A21) being 

replaced by −𝑇𝑖𝑛𝑖ΩLi/𝐹. For the case of an Li electrode that is not undergoing creep 

deformation, the deviatoric stresses within the electrode vanish so that the pressure within the 

electrode is spatially uniform and equal to the applied pressure 𝑝. Then 𝑇𝑖𝑛𝑖 = −𝑝 along 𝑆e 

and (A32) reduces to the relation (A21).   
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Supplementary Figures 

 

 

 
Figure S1: Sketch of the region of the cell analysed (reproduced from Fig. 1a). We have now 

marked on this sketch the control volume (system of volume 𝑉) which comprises the electrode 

bounded on the top by surface 𝑆m and along the bottom by 𝒮𝑏 ≡ 𝑆e ∪ 𝑆p where 𝑆e is just within 

the electrolyte and 𝑆p just within the impurity particle. The Lithium ions  Li+ enter the system 

via 𝑆m and leave along 𝑆e while the normal flux vanishes along 𝑆p. The inset shows an 

interfacial system of thickness ℎ outside the region 𝑉D where deformation occurs. 

 

 

      
Figure S2: Spatial distributions of the normal tractions 𝑇𝑖𝑛𝑖 along (a) the electrode/electrolyte 

interface and (b) along the electrode/impurity particle interface. In (a) we show the distributions 

as a function of 𝑟̅ while in (b) the distributions are shown as a function of the angle 𝜃 defined 

in Fig. 1a. The distributions are shown for the case of an impurity particle of size 𝑎 = 0.25 μm 

and selected values of 𝑗∞ for the case when the effect of dislocations on the interfacial 

resistance is accounted for with 𝛼𝑘 = 2.7 and 𝜆 = 0.5 μm. 
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Figure S3: The variation of the flux concentration factor 𝐾𝐽 with 𝑗∞ for selected values of 

impurity size 𝑎. All results employ a material length scale 𝜆 = 0.5 μm with 𝛼𝑘 = 2.7. 

 

 


