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Abstract

A fundamental study is reported on the initiation of crack growth from

a pre-existing delamination; growth is due to the diffusion of a corrosive

species from the side face of a sandwich layer. The corrodent diffuses along

the delamination and simultaneously through the sandwich layer. It is

envisaged that a chemical reaction occurs on the intact interface ahead of

the delamination tip, at a rate that scales with the local concentration of

corrodent. Debonding initiates at the tip of the pre-existing delamination

when a critical quantity of corrodent per unit area has reacted at the interface

immediately ahead of the tip. Diffusion theory is used to predict the duration

of the initial transient prior to the establishment of a steady-state value of

reaction rate at the interface, directly ahead of the delamination. Once steady

state has been attained, the Laplace equation is solved for the corrodent

concentration within the sandwich layer and delamination zone. The reaction

rate at the delamination tip and the time to initiate debonding of the interface
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are determined. Maps are constructed to show regimes of behaviour, with

axes that make use of the sandwich layer geometry and the relative diffusivity

of corrodent within the delamination crack and within the sandwich layer. A

number of asymptotic solutions shed light on the general numerical case. The

analysis is motivated by the practical problem of delamination of adhesive

joints employed in ship construction, but has much wider applicability.

Keywords:

adhesion and adhesives, corrosion and embrittlement, delamination, diffusion,

fracture

1. Introduction

Progressive interfacial delamination by the chemical attack of a diffusing

species is a ubiquitous failure mechanism across a wide range of engineering

fields. For example, steel reinforcement bars in reinforced concrete structures

rust and debond (Poursaee, 2016), glass fibre reinforced epoxy composites5

degrade when immersed in oxygenated sea-water (Merah et al., 2010) and

adhesive joints delaminate in an aggressive environment (Gettings et al., 1977;

Kinloch, 1979; Bordes et al., 2009).

Consider the debonding of a pre-cracked adhesive/steel joint immersed in

oxygenated water by free corrosion. The prototypical problem is sketched in10

Fig. 1(a). Oxygen and water diffuse through the adhesive from a side face to

the adhesive/steel interface. Suppose that the pre-existing delamination is

water-filled by capillarity and acts as an additional path for oxygen diffusion

(Leng et al., 1998a; Bordes et al., 2009; Fleck and Willis, 2021). Iron (Fe) of

the steel substrate reacts with water (H2O) and oxygen (O2) dissolved within15
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(a)

adhesive
O2 in H2O Ja

Jd

passive or impermeable substrate

steel substrate, Fe

Fe(OH)2
delamination Fe(OH)2

Fe2+OH−

Fe
e−

reaction:

(b)

adhesiveO2 in H2O

OH−

Ja

Jd

passive or impermeable substrate

steel substrate, Fe
FeFe2+

e−

delamination

Figure 1: (a) Free corrosion and (b) cathodic delamination. Ja and Jd denote the flux

of O2 within the adhesive and delamination, respectively.
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the adhesive to produce rust in the form of ferrous hydroxide (Fe(OH)2) such

that

2Fe + 2H2O + O2 → 2Fe(OH)2 (1)

The full reaction (1) comprises two half-reactions as sketched in Fig. 1(a).

Small regions of the steel surface undergo an anodic half-reaction

2Fe→ 2Fe2+ + 4e− (2)

The Fe2+ ions are liberated from the surface of the steel, while the electrons20

flow through the steel to adjacent surface regions that behave in a cathodic

manner such that

2H2O + O2 + 4e− → 4OH− (3)

The Fe2+ and OH− react to form rust Fe(OH)2 and this leads to delamination

of the interface. Typically, oxygen diffusion through the adhesive and along

the pre-existing delamination is rate-limiting for the reaction (1). Therefore,25

it suffices to consider the diffusion of oxygen alone.

An alternative corrosion mechanism is cathodic delamination (Leidheiser,

1987; Stratmann et al., 1994; Leng et al., 1998b), see Fig. 1(b). The same

half-reactions (2) and (3) occur as in free corrosion, but now the anodic region

of Fe2+ production is remote from the cathodic region of OH− production.30

Consequently, the Fe(OH)2 forms in the remote reservoir where the Fe2+ is

produced. Assume that interfacial debonding is by OH− attack of the interface

at the tip of the pre-existing delamination; the rate of production of OH−

scales with the flux of oxygen to the interface. To maintain electroneutrality

within the electrolyte-filled delamination it is necessary for cations, such35

as Na+ in the case of sea-water, to electro-diffuse along the delamination.
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However, if the concentration and mobility of cations are sufficiently high,

the kinetics of OH− production at the delamination tip are again dictated by

oxygen supply.

There exist other possible corrosion mechanisms that simply involve the40

transport of water alone to the adhesive/steel interface. For example, the

interfacial bond between adhesive and steel substrate can be weakened by

hydration. Or, a reverse condensation reaction (hydrolysis) can occur in the

adhesive, such that water leads to chain breakage and is thereby consumed

(Gledhill and Kinloch, 1974; Schmidt and Bell, 1986).45

Regardless of the specific mechanism, it is assumed in the present study

that the onset of delamination growth is dictated by the flux of a single

corrosive species, hereafter termed corrodent, to the intact adhesive/steel

interface. Henceforth, refer to the time for the initiation of delamination

growth as the delamination time. If the delamination time much exceeds the50

time required to establish a steady-state flux of corrodent to the delamination

tip, then it is only necessary to consider the steady-state diffusion of corrodent

in the adhesive and in the delamination zone. The rigorous mathematical

treatment of this problem is presented in the following, and builds upon

the recent study of Fleck and Willis (2021); they addressed the steady-state55

advance of a delamination rather than its initiation. Specifically, Fleck and

Willis (2021) obtained the delamination velocity of a semi-infinite interfacial

crack, with the concentration of corrodent prescribed along the delamination.
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2. Problem statement

With reference to Fig. 2, idealise a pre-cracked adhesive joint by an60

adhesive sandwich layer of height ha containing a delamination of length

a and uniform height hd, with hd � ha. The pre-crack may represent a

manufacturing defect, such as poor adhesion. The adhesive layer is semi-

infinite in length and its left-hand face is in contact with an infinite reservoir of

a corrodent that can diffuse through the adhesive and along the delamination.65

Upon reaching the adhesive/metal interface, the corrodent reacts with the

interface and ultimately debonds it.

Write C as the molar concentration of corrodent and J as its flux. In-

troduce a Cartesian reference frame (x, y) with origin at the pre-existing

adhesive, Da
ha

metallic substrate

corrodent
reservoir

passive or impermeable substrate

delamination, Dd

a

hd

x

y

C = C0

C = C0

Jn = 0n Jn = kC n

Jn = 0

n

Figure 2: Delamination of an adhesive/metal joint by diffusion of a corrosive species:

geometry, material parameters and boundary conditions.

6



delamination tip, as shown in Fig. 2. Mass conservation requires70

∂C

∂t
+ ∇ · J = 0 (4)

where t denotes time and ∇· is the divergence operator. Assume that Fick’s

law holds and write Da and Dd as the diffusion coefficients of the corrodent

in the adhesive and delamination, respectively. Then,

J = −Di∇C (5)

with i = a in the adhesive and i = d in the delamination; ∇ is the usual

gradient operator. Substitution of (5) into (4) gives75

∂C

∂t
= Di∇2C (6)

in terms of the usual Laplacian ∇2.

The outward flux of corrodent from the adhesive or delamination into the

interface with the metal substrate is Jn = J · n, where n is the unit outward

normal, as defined in Fig. 2. Assume that the chemical reaction of corrodent

is quantified by the flux Jn of corrodent into the adhesive/metal interface,80

such that

Jn = kC , x > 0 , y = 0 (7)

where the mass transfer coefficient k is the relevant rate constant of the

reaction, and is taken to be independent of C. The delamination/metal

interface is insulating such that

Jn = 0 , x < 0 , y = 0 (8)

consistent with the notion of a passivated state behind the delamination85

tip. The left-hand side of the joint is in contact with an infinite reservoir of
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corrodent; hence

C = C0 , x = −a , 0 < y < ha (9)

where C0 takes, as an upper limit, the saturation concentration in the ad-

hesive. The flux Jn vanishes along the top face of the adhesive when the

uppermost layer is impermeable, such as a composite of negligible permeabil-90

ity. Alternatively, the top face can be regarded as a symmetry plane for a

metal/adhesive/metal sandwich structure with an adhesive layer of height 2ha.

Both C and Jn are continuous across the ideal interface between delamination

and adhesive. Initially, the concentration C within the adhesive layer and

delamination vanishes, C(x, y, t = 0) = 0.95

An initial transient of duration tI exists over which the governing partial

differential equation (6) holds. During this transient, the tip flux Jn(x =

0+, y = 0, t) gradually increases from zero to the steady-state value Jtip. After

steady state has been attained, (6) reduces to the much simpler Laplace

equation100

∇2C = 0 (10)

The relation Jtip = kCtip holds on the basis of (7). For definiteness, assume

that the initial transient phase ends at a time tI such that

Jn(x = 0+, y = 0, t = tI) = 0.9 Jtip (11)

where the factor of 0.9 is arbitrary. Over the initial transient, the total amount

of reacted corrodent per unit area along the adhesive/metal interface is

QI =

∫ tI

0

Jn(t′) dt′ = k

∫ tI

0

C(t′) dt′ , x > 0 , y = 0 (12)
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upon recalling (7). The total amount of reacted corrodent per unit area at105

the delamination tip at time t > tI can be written as

Q(t) = QI + Jtip(t− tI) , t > tI and x = 0+ , y = 0 (13)

Now assume that debonding initiates when the value of Q at the pre-existing

delamination tip reaches a critical value Q∗, where Q∗ can be interpreted as a

measure of the resistance of the adhesive/metal interface to debonding. The

delamination time t∗ is such that110

Q(x = 0+, y = 0, t = t∗) = Q∗ (14)

For the case where Q∗ > QI, t
∗ can be written as

t∗ =
Q∗ −QI

Jtip
+ tI (15)

via (13) and (14). Further, if t∗ � tI, (15) reduces to

t∗ ≈ Q∗

Jtip
(16)

Equation (15) reveals that, if t∗ � tI, the problem of obtaining t∗ reduces to

that of finding Jtip, requiring only the solution of the Laplace equation (10).

This is the main focus of the present investigation; the steady-state numerical115

solution is presented and a number of asymptotic solutions are derived to show

the regimes of behaviour. For completeness, the time-dependent diffusion

equation (6) is also solved numerically, and the relevance of the steady-state

solution is thereby assessed.

3. Nondimensionalisation120

The diffusion equation (6) along with the boundary and initial conditions

suggest that the concentration C(x, y, t) can be written in terms of the
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following non-dimensional independent groups:

C

C0

= f

(
x

ha
,
y

ha
,
Dat

h2a
,
a

ha
,
l

ha
,
hd
ha
,
Dd

Da

)
(17)

where, for later convenience, a material length scale

l ≡ Da

k
(18)

has been introduced. The Biot number125

Bi ≡ kha
Da

=
ha
l

(19)

follows immediately.

Given that hd � ha and Dd � Da, it is expected that the combined

non-dimensional group (hdDd)/(haDa) plays a major role instead of the two

groups hd/ha and Dd/Da. The case where the individual values of hd/ha and

Dd/Da each play a role is analysed subsequently in Sec. 5. The combined130

group (hdDd)/(haDa) expresses the ratio of a “current” diffusing per unit time

across the delamination cross-section hd relative to that across the adhesive

cross-section ha. When this idealisation is valid, (17) can be slightly simplified

to
C

C0

= f

(
x

ha
,
y

ha
,
Dat

h2a
,
a

ha
,
l

ha
,
hdDd

haDa

)
(20)

The steady-state corrodent flux into the adhesive/metal interface, directly135

ahead of the delamination tip, can be expressed in similar non-dimensional

fashion as
Jtipha
DaC0

= f

(
a

ha
,
l

ha
,
hdDd

haDa

)
. (21)

The nature of the functional relationship (21) is explored below, and the

overall behaviour is summarised in the form of diffusion maps.
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4. Regimes of behaviour140

Contours of tip flux Jtipha/(DaC0) are plotted on a map with axes (a/ha,

l/ha) for selected values of (hdDd)/(haDa) = 0, 0.1, 1, 10, see Fig. 3. The

contours are derived by solving Laplace’s equation (10) in both the adhesive

and delamination regions, for the case of hd much smaller than all other

length scales entering the problem.1145

Geometric transition values (a = ha, l = ha, l = a) are displayed on the

maps and identify the boundaries between four distinct regimes of behaviour.

The dominant diffusion mechanisms and associated distribution of flux along

the adhesive/metal interface are sketched in Fig. 4 for each regime. Each

regime is now introduced, with a full analysis given later.150

(a) Negligible delamination (ND) regime, a � (ha, l). The presence of the

delamination layer has a negligible effect upon the tip flux, which simply

reads Jtip ≈ kC0. The data point (1) in Fig. 3(b) lies within this regime and

the full numerical solution for this case is given in Fig. 4(a).

(b) Adhesive strip (AS) regime, ha � (a, l). The adhesive layer behaves as a155

thin strip, and the corrodent migrates into the interface over a length λ ahead

of the delamination tip, where ha � λ� l. Diffusion in the adhesive strip

is treated as one-dimensional, depending only upon the co-ordinate x. The

data point (2) in Fig. 3(b) is representative of this regime, and the numerical

solution for this point (2) is given in Fig. 4(b).160

1The finite element software COMSOL Multiphysics, version 5.6, is used to solve for a

large number of cases and then MATLAB, version R2020A, is used to interpolate the data

and construct the contours.
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Figure 3: Contour plots of Jtipha/(DaC0) on a map with axes (a/ha, l/ha), for

(hdDd)/(haDa) equal to (a) 0, (b) 0.1, (c) 1 and (d) 10. The dominant regimes of

behaviour are indicated: ND (negligible delamination), AS (adhesive strip), DD (dominant

delamination) and OS (outer singularity). The four data points × shown in Figs. 3(b) and

(d) denote representative solutions that are detailed in Fig. 4.
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y

Negligible delamination (ND)(a)

x/λ

Jn
kC0

(1)

∼ exp
(
−x
λ

)

ha
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Jn = kCJn = 0

Jn = 0

a

hd Da

x

Adhesive strip (AS)(b)

x/λ

Jn
kC0

(2)

∼ exp
(
−x
λ

)
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a
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Dominant delamination (DD)(c)
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Figure 4: Regimes of behaviour: (a) Negligible delamination (ND), (b) adhesive strip

(AS), (c) dominant delamination (DD), and (d) outer singularity (OS). For each regime, a

sketch of the diffusion mechanism and the plot of Jn/(kC0) versus x for the data points

(1) to (4) indicated in Figs. 3(b) and (d) are given.
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(c) Dominant delamination (DD) regime, hdDd � haDa and l � (a, ha).

The current of corrodent flowing in the delamination zone dominates that in

the adhesive layer, and corrodent reacts at the interface over a length on the

order of l from the delamination tip. Point (3) on Fig. 3(d) is representative

of the DD regime, with numerical solution given in Fig. 4(c).165

(d) Outer singularity (OS) regime, hdDd � haDa and l � (a, ha). In a

finite annular zone surrounding the delamination tip there exists an outer

singular field in the adhesive such that the flux scales as r−1/2, where r is the

radius from the delamination tip (in polar co-ordinates). The intensity of flux

singularity is labelled as K, by analogy with the stress intensity factor K for170

a Mode III crack in linear elastic fracture mechanics (Anderson, 2017).

4.1. The “negligible delamination” regime

For the case a = 0, see Fig. 4(a), an analytical solution exists for the

steady-state diffusion problem under investigation, given by the following

infinite series:175

C(x, y)

C0

= 2Bi
∞∑

n=1

cos[αn(ha − y)] exp(−αnx)

(Bi2 + Bi + α2
nh

2
a) cos(αnha)

(22)

where αn are the positive roots of

αnha tan(αnha) = Bi (23)

and the Biot number Bi has already been defined in (19). This solution is

obtained by particularising the solution for heat flow in a finite rectangle as

reported in Carslaw and Jaeger (1959) to the case of a semi-infinite rectangle.

The interfacial flux is180

Jn(x) = kC(x, 0) = 2kC0Bi
∞∑

n=1

exp(−αnx)

Bi2 + Bi + α2
nh

2
a

(24)
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If Bi � 1, then α1ha � 1, tan(α1ha) ≈ α1ha and α1ha ≈
√

Bi, see (23).

Upon considering only the leading term in the series, (24) simplifies to

Jn(x) ≈ kC0 exp
(
−x
λ

)
(25)

with λ ≡ ha/
√

Bi =
√
hal.

4.2. The “adhesive strip” regime

Now consider the case ha � (a, l), as sketched in Fig. 4(b). A simple185

1D solution for C(x) in both the adhesive and delamination is adequate, as

follows. Define the “current” Ia(x) in the adhesive as

Ia = −haDa
∂C

∂x
(26)

Then, mass conservation in the adhesive implies, for x > 0:

∂Ia
∂x

= −kC (27)

and substitution of (26) into (27) gives

λ2
∂2C

∂x2
− C = 0 (28)

where λ =
√
hal as before. The solution is190

C(x) = Ctip exp
(
−x
λ

)
, x > 0 (29)

where Ctip remains to be determined. The current Ia at x = 0+ follows

immediately from substitution of (29) into (26), to give

Ia(x = 0+) =
haDaCtip

λ
(30)
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For x < 0, homogenise the adhesive and delamination into a single 1D

strip of equivalent diffusivity De, such that

haDe = hdDd + haDa (31)

upon making the usual assumption hd � ha. Then, since there is no corrodent195

leakage from the delamination into the substrate along x < 0, the current Ie

in the effective medium is uniform for x < 0 and is of magnitude

Ie = haDe(C0 − Ctip)/a , x < 0 (32)

By imposing continuity of current at x = 0, the relations (30) to (32)

imply that

C0

Ctip

= 1 +

(
1 +

hdDd

haDa

)−1
a

ha

(
ha
l

)1/2

(33)

and Jtip = kCtip is given by200

Jtipha
DaC0

=
ha
l

[
1 +

(
1 +

hdDd

haDa

)−1
a

ha

(
ha
l

)1/2
]−1

(34)

The full numerical solutions of Figs. 3(b) and (d) for (hdDd)/(haDa) = 0.1

and 10, respectively, are compared with the asymptotic solution (34). The

comparison is done for l/ha equal to 100 and 1000, by varying a/ha between

1 and 100, for which the AS regime is operative. Fig. 5 shows that the simple

estimate (34) adequately reproduces the full numerical solution.205

4.3. The “dominant delamination” regime

Now consider the regime where the current of corrodent over the height

hd of the delamination, Id, dominates the current over the height ha of

the adhesive. This occurs when hdDd � haDa. Additionally, assume that

16



a/ha

hdDd = 0.1haDa(a)

Jtipha

DaC0

l/ha = 100

l/ha = 1000

× full soln.
asympt. soln.

a/ha

hdDd = 10haDa(b)

l/ha = 100

l/ha = 1000

× full soln.
asympt. soln.

Figure 5: Adhesive strip (AS) regime. Comparison between full solution and asymptotic

solution (34) for (hdDd)/(haDa) equal to (a) 0.1 and (b) 10, with l/ha equal to 100 and

1000.

(hd, l) � (ha, a). The DD regime is sketched in Fig. 4(c). Some side210

leakage from the delamination into the adhesive occurs in the vicinity of

the delamination tip, −(hd, l) < x < 0, but the high diffusivity within the

delamination implies that the concentration is close to Ctip in this region.

Sufficiently far behind the delamination tip, that is, for x � −(hd, l), the

current Id can be regarded as uniform along the delamination with negligible215

side leakage into the adhesive and consequently

Id ≈ hdDd(C0 − Ctip)/a (35)

where Ctip remains to be determined.

The corrodent is extracted at a rate Jn = kC along the adhesive/metal

interface ahead of the delamination tip, and at a tip rate Jtip = kCtip. The

length scale l = Da/k can be interpreted as the length over which the interface220
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reaction dominates diffusion within the adhesive, and consequently

Jtip = βId/l (36)

where the parameter β(hd/l) is on the order of unity. Full numerical simula-

tions reveal that Jtipl/Id ≈ 0.503− 0.187hd/l for hd/l < 0.1, with the details

omitted for the sake of brevity. Hence, for hd � l, (36) becomes

Jtip ≈ 0.503 Id/l (37)

Now eliminate Id and Ctip from (35) and (37) and use the relation Jtip =225

kCtip to obtain

Jtipha
DaC0

=
ha
l

(
1 + 1.988

a

ha

haDa

hdDd

)−1
(38)

a/ha

Jtipha

DaC0

l/ha = 0.001

full soln.
asympt. soln.

l/ha = 0.01

Figure 6: Dominant delamination (DD) regime. Comparison between full solution and

asymptotic solution (38) for hdDd = 10haDa, with l/ha equal to 0.001 and 0.01.
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Excellent agreement exists between the approximate solution (38) and the

full numerical solution, see Fig. 6, for the choice hdDd = 10haDa, and l/ha

equal to 0.001 and 0.01.

4.4. The “outer singularity” regime230

Finally, consider the case where (hd, l) � (ha, a), and also hdDd �
haDa. The steady-state distribution of non-dimensional flux along the intact

adhesive/metal interface, Jnha/(DaC0), is plotted as a function of x/hd in Fig.

7, for selected values of hd/l and Dd/Da. Note that all responses converge to

the same asymptotic solution over (hd, l)� x� (ha, a).235

x/hd

Jnha

DaC0

1

−1/2

hd/l

0.1
0.1
0.1
10
10
10

Dd/Da

0.1
1
10
0.1
1
10

Figure 7: Distribution of interfacial flux ahead of delamination tip, for selected values of

hd/l and Dd/Da, such that (hd, l) � (ha, a) and hdDd � haDa. All curves converge to

the same asymptotic solution, of slope −1/2 on a log-log plot, for (hd, l)� x� (ha, a). In

all cases, ha = a = 1000hd.
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It is straightforward to obtain the leading order term of this asymptotic

solution by considering the case l = 0 and neglecting the presence of the

thin delamination zone. Introduce polar co-ordinates (r, θ) centred on the

delamination tip. The boundary condition along the adhesive/metal interface,

equation (7), is replaced by C(r, θ = 0) = 0, as sketched in Fig. 8. Assume240

that a separation-of-variables solution exists for C(r, θ) of the form

C(r, θ) = rαf(θ) (39)

where the exponent α and the function f(θ) remain to be determined. Substi-

tution of (39) into the governing Laplace equation ∇2C = 0 gives an ordinary

differential equation for f(θ), with solution

f(θ) = A cosαθ +B sinαθ (40)

in terms of the unknowns α, A and B. Now impose the boundary conditions245

C(r, θ = 0) = 0 and Jθ(r, θ = π) = 0 to obtain A = 0 and cosπα = 0. Of the

infinity of eigenvalues for α that satisfy cosπα = 0, the choice α = 1/2 gives

adhesive, Da

r

θ

Jθ = 0 C = 0O

Figure 8: Singularity analysis at the delamination tip leading to the K-field.
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the least singular solution in Ji, along with C(r, θ = π)→ 0 as r → 0, and

implies finite dissipation in a small circular disc encircling the delamination

tip. Now re-write B in the form K = (π/2)1/2DaB, such that (39) can be250

rewritten as

C(r, θ) =

√
2r

π

K

Da

sin
θ

2
(41)

along with

Jr(r, θ) = − K√
2πr

sin
θ

2
(42a)

Jθ(r, θ) = − K√
2πr

cos
θ

2
(42b)

The scalar parameter K is the intensity of the singularity and, analogous

to a crack tip in an elastic solid under out-of-plane Mode III loading, K is255

termed the stress intensity factor (Anderson, 2017). Recall that, in Mode

III fracture, analogous expressions to the present diffusion problem hold for

the out-of-plane displacement uz (corresponding to the concentration C), the

out-of-plane shear stress τzi (corresponding to the flux −Ji) and the shear

modulus µ (corresponding to the diffusion coefficient Da). Thus, the K-field260

in the present diffusion problem relates to an inverse square root singularity

of flux, Ji ∼ 1/
√
r. In particular

Jn(r) = −Jθ(r, θ = 0) =
K√
2πr

(43)

In the case where (hd, l) � (ha, a) and hdDd � haDa, an outer K-

field given by (41) exists over an annular domain (hd, l) � r � (ha, a).

Consequently, all curves in the log-log plot of Fig. 7 converge to a single line265

of slope −1/2, as demanded by (43).

The existence of an outer K-field motivates the following boundary layer

problem whereby the remote K-field is applied to a delamination crack of
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infinite length, a → ∞, in a sandwich layer of infinite height, ha → ∞.

Accordingly, consider the problem of Fig. 9(a), where an outer K-field is270

applied via (41). The non-dimensional tip flux, Jtip
√
l/K, is determined as

a function of hd/l and Dd/Da, and the numerical results are given in the

form of a contour plot in Fig. 9(b). As anticipated, when the delaminated

zone has the same diffusivity as that of the adhesive layer, Dd = Da, the tip

flux Jtip
√
l/K is independent of hd/l. If Dd < Da, Jtip

√
l/K decreases with275

increasing hd/l, whereas, for the practical case Dd > Da, Jtip
√
l/K increases

with increasing hd/l.

Additional insight is obtained by re-plotting contours of Jtip
√
l/K on a

map with axes of hd/l and the combined non-dimensional group (hdDd)/(lDa),

see Fig. 9(c). Notably, in the practical case Dd > Da, the contour lines of280

Jtip
√
l/K have vertical asymptotes for hd/l → 0, implying that Jtip

√
l/K

becomes a function of (hdDd)/(lDa) only. Asymptotic values of Jtip
√
l/K are

included in the figure from an additional analysis (given below) of the limit

hd/l→ 0. The limit of Dd/Da → 0 and finite hd/l is of less practical interest;

in this limit Jtip
√
l/K is finite and has a value that depends upon hd/l, see285

Figs. 9(b) and (c).

Now consider the limit hd → 0, with hdDd remaining finite. Regard the

delamination as a strip of infinitesimal height carrying a current Id(x), where

Id = −hdDd
∂C

∂x
(44)

Conservation of mass of the corrodent in the delamination requires

∂Id
∂x

= Jn (45)

where Jn is the flux from the adhesive into the delamination. Upon recalling290
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Figure 9: Applied outer K-field: (a) boundary layer problem, (b) contour plot of

Jtip
√
l/K on a map with axes (Dd/Da, hd/l), (c) contour plot of Jtip

√
l/K on a map with

axes ((hdDd)/(lDa), hd/l), and (d) Jtip
√
l/K versus (hdDd)/(lDa) for selected values of

hd/l. As hd/l → 0, Jtip
√
l/K converges to a limit which is a function of (hdDd)/(lDa)

only.
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that Jn = Da(∂C/∂y), and making use of (44) and (45), the boundary

condition for the diffusion equation ∇2C = 0 within the adhesive becomes

hdDd
∂2C

∂x2
+Da

∂C

∂y
= 0 , x < 0 , y = 0+ (46)

In order to obtain a unique solution with vanishing current at the delamination

tip, Id(x = 0−) = 0, (46) is augmented by the additional condition

∂C

∂x

∣∣∣∣
x=0−

= 0 (47)

The boundary layer problem shown in Fig. 9(a) is solved numerically295

for hd = 0 and by imposing the boundary condition (46) instead of (8).

The resulting dependence of Jtip
√
l/K upon (hdDd)/(lDa) is plotted in Fig.

9(d) along with predictions for finite values of hd/l, as taken from Fig. 9(c).

The limiting value of Jtip
√
l/K at hd/l = 0 is very close to the numerical

results for hd/l ≤ 0.1. An analytical expression for a curve fit of Jtip
√
l/K to300

h̄ ≡ log [(hdDd)/(lDa)] from Fig. 9(d) is:

Jtip
√
l

K
≈ 0.991 + 0.349 h̄+ 0.212 h̄2 + 0.106 h̄3 + 0.0269 h̄4 (48)

valid over the range −2 < h̄ < 2.

4.4.1. Calibration of the singularity intensity K

The value of K depends upon geometry and remote boundary conditions.

An approximate solution is derived in Appendix A for the asymptotic limit305

of a � ha, by making use of the analogy between the field equations for a

Mode III crack in an isotropic linear elastic solid and those for the diffusion

problem in steady state. The result (A.6) is repeated here for convenience:

K =

√
2haDaC0

a
, a� ha (49)
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Likewise, an analytic expression forK can be obtained for the other asymptotic

limit a� ha. A conformal mapping solution exists for unbounded ha and is310

given in Appendix A. The result (A.17) is repeated here:

K =
2DaC0√
πa

, a� ha (50)

In Fig. 10, a comparison is given of the asymptotic solutions (49) and (50),

along with (48), and the full numerical solution for Jtip. The comparison is

given for (hdDd)/(haDa) = 0 and 0.1, and for l/ha = 0.001 and 0.01, with the

numerical solution making use of the same results as shown in Figs. 3(a) and315

(b) for the OS regime. As expected, the asymptotic solutions are increasingly

accurate as a/ha departs from 1. Additionally, the asymptotic solution for

a� ha becomes inaccurate as the limit of the ND zone is approached, that

a/ha

hdDd = 0(a)

Jtipha

DaC0

l/ha = 0.001

l/ha = 0.01

full soln.
asympt. soln.

1
−1/2

1

−1

a/ha

hdDd = 0.1haDa(b)

l/ha = 0.001

l/ha = 0.01

full soln.
asympt. soln.

1

−1/2

1

−1

Figure 10: Regime where a unique outer solution (OS) exists. Comparison between full

solution and asymptotic solution for (hdDd)/(haDa) equal to (a) 0 and (b) 0.1, with l/ha

equal to 0.001 and 0.01. The asymptotic solution is given by (48) and (49) for a� ha, and

by (48) and (50) for a� ha.
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is, when the value of a approaches the value of l.

5. Singularity analysis at the delamination tip320

A singularity analysis for r → 0 is now performed for the case of a finite

height hd of delamination. First, consider the case of l = 0, and then the case

of l/hd � 1.

5.1. Singularity analysis at the delamination tip for l = 0

Proceed to take the limit of an infinitely fast adhesive/metal interface325

reaction, k →∞. Then, l = 0 and the boundary condition (7) is replaced by

C(r, θ = 0) = 0, as shown in Fig. 11. Assume that a separation-of-variables

solution again exists for C(r, θ) in the vicinity of the delamination tip as given

by (39). Substitution of (39) into ∇2C = 0 in both domains of adhesive and

delamination leads to an ordinary differential equation in f(θ), with solution330

f(θ) = Ai cosαθ +Bi sinαθ (51)

where Ai and Bi are unknown integration constants, with different values in

the adhesive (Aa and Ba) and delamination (Ad and Bd).

The boundary condition C(r, θ = 0) = 0 implies that Aa = 0. The other

three integration constants are found by imposing continuity of C and Jθ at

the adhesive/delamination interface (θ = π/2) and the boundary condition335

Jθ(r, θ = π) = 0. This results in a homogeneous linear system of three

equations that can be written in matrix-vector form as A · X = 0, where

X = [Ad, Bd, Ba]
T and A is the pre-multiplying 3× 3 matrix. A non-trivial

solution for X is obtained by setting detA = 0, giving rise to the characteristic
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Figure 11: Singularity analysis at the delamination tip.

equation340

cos πα =
Dd −Da

Dd +Da

(52)

Notice that α decreases from 1 to 0 as Dd/Da increases from 0 to infinity. For

each value of α, the constants Ad and Bd can be expressed in terms of Ba.

Upon re-writing Ba in the form H = (π/2)1/2DaBa, the solution for C

reads

C(r, θ) =

√
2

π

H

Da

rα sinαθ (53)

in the adhesive domain (0 < θ < π/2), and345

C(r, θ) =

√
2

π

H

Da

rα [cosπα tan(πα/2) cosαθ + (1− cos πα) sinαθ] (54)

in the delamination domain (π/2 < θ < π). It is emphasised that the value

of α is given by (52), for any assumed value of Dd/Da. The radial and

circumferential fluxes follow immediately from Ji = −Di∇C as

Jr(r, θ) = −
√

2

π
αHrα−1 sinαθ (55a)
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Jθ(r, θ) = −
√

2

π
αHrα−1 cosαθ (55b)

in the adhesive domain, and350

Jr(r, θ) = −
√

2

π

Dd

Da

αHrα−1 [cosπα tan(πα/2) cosαθ + (1− cos πα) sinαθ]

(56a)

Jθ(r, θ) = −
√

2

π

Dd

Da

αHrα−1 [− cosπα tan(πα/2) sinαθ + (1− cosπα) cosαθ]

(56b)

in the delamination domain. Equations (53)-(56) define the so-called H-field,

which is valid as r → 0. In particular, the normal flux at the adhesive/metal

interface (θ = 0) reads

Jn(r) = −Jθ(r, θ = 0) =

√
2

π
αHrα−1 (57)

For illustrative purposes, now consider the three choices Dd/Da = 0, 1 and355

∞.

Case (i): Dd/Da = 0. Zero corrodent is transported along the delam-

ination, and α = 1 from (52). The asymptotic solution in the adhesive is

C(r, θ) =

√
2

π

H

Da

r sin θ =

√
2

π

H

Da

y (58a)

360

Jr(r, θ) = −
√

2

π
H sin θ (58b)

Jθ(r, θ) = −
√

2

π
H cos θ (58c)

and consequently

Jn(r) = −Jθ(r, θ = 0) =

√
2

π
H (59)
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This solution has a straightforward interpretation in Cartesian co-ordinates

(x, y): the flux directly ahead of the delamination tip is uniform, independent

of r, such that Jx = 0 and Jy = −
√

2H/
√
π.365

Case (ii): Dd/Da = 1. The diffusion domain comprises the adhesive only,

as sketched in Fig. 8, and α = 1/2 from (52). Upon rephrasing H as the

“stress intensity factor” K, the so-called K-field given by (41) and (42) is

recovered. The flux ahead of the delamination tip is given by (43) and is

characterised by an inverse square root singularity, Jn ∼ Kr−1/2.370

Case (iii): Dd/Da →∞. Transport along the delamination is so fast that

C = C0 therein, and α→ 0 via (52). The asymptotic solution in the adhesive

is

C(θ) =
2

π
C0θ (60a)

Jr = 0 , (60b)
375

Jθ(r) = −Da

r

2

π
C0 (60c)

implying that

Jn(r) = −Jθ(r) =
Da

r

2

π
C0 (61)

Thus, the flux ahead of the delamination tip is characterised by an inverse

singularity, Jn ∼ DaC0r
−1. This solution resembles a dislocation field, in

view of the close analogy to the out-of-plane displacement field for a screw

dislocation in an elastic solid (Hull and Bacon, 2011).380

5.2. Embedded singularity

The H-field as given by (53) and (54) exists in the limit r → 0, for every

value of Dd/Da, with α given by (52). Additionally, if hdDd is much less

than haDa, then a so-called “outer K-field” of the form (41) exists over an
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outer domain, hd � r � (ha, a); the inner H-field is embedded within the385

outer K-field, as sketched in Fig. 12. A transition zone exists between the

inner zone (H-field) and the outer zone (K-field). This is an example of an

embedded singularity, and is reminiscent of the small-scale yielding problem

in elastic-plastic fracture mechanics, whereby an asymptotic near tip HRR

plastic field (Hutchinson, 1968; Rice and Rosengren, 1968) is embedded within390

an outer K-dominated zone. In contrast, when hdDd is not much less than

haDa, the outer K-field vanishes, but an inner H-field still exists as r → 0.

This is analogous to the elastic-plastic case in standard fracture mechanics,

where the presence of a large plastic zone ahead of the crack tip eliminates

adhesive, Da

delamination, Dd

hd

Jθ = 0 C = 0

K-field

H-field

r

θ

a

ha

Figure 12: H-field embedded in K-field.
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the outer K-field, but the near tip J-field still exists (Anderson, 2017).2395

Embedded singularities are pervasive in fracture mechanics; for example, they

also arise in the fracture of a sandwich layer (Fleck et al., 1991; Akisanya

and Fleck, 1997) and in the detachment of an adhered micropillar from a

dissimilar substrate (Khaderi et al., 2015).

Now focus on the case of an embedded singularity, such that an outer400

K-field (41) exists in the current diffusion problem. Recall that, for the case

l = 0,

(i) Concentrations and fluxes scale linearly with the value of K, see (41) and

(42);

(ii) The only geometrical length scale entering the problem is hd; and405

(iii) The solution depends upon the value of the ratio Dd/Da.

Dimensional analysis and linearity require that H and K are related through

H = Kh
1−2α

2
d g1 (62)

where the calibration function g1 depends only upon Dd/Da, and can be

determined as follows.

For each assumed value of Dd/Da, the corresponding value of α is given410

by (52). Next, solve the boundary layer problem for Laplace’s equation (10),

by imposing the outer K-field (41) on the outermost boundary of the mesh,

and by choosing a convenient value of K, see Fig. 13(a). Substitution of (62)

2It is emphasised that here J denotes a path-independent line integral in fracture

mechanics and not diffusion flux.
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Figure 13: (a) Boundary layer problem for the case l = 0, where the outer K-field is

applied to the periphery of the idealised specimen; (b) interfacial flux distribution Jn

directly ahead of the delamination tip; (c) calibration function g1(Dd/Da).
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into (57) reveals that, as r → 0,

Jn
√
hd

K
=

√
2

π

(
r

hd

)α−1
αg1 (63)

A series of numerical simulations has been performed for selected values of415

Dd/Da, see Fig. 13(b), and each displays the asymptotic response (63) as

r → 0. A best fit to the plot of log (Jn
√
hd/K) versus log (r/hd) over the

range −2 < log (r/hd) < −0.5 is used to determine the value of g1, and the

resulting dependence of g1 upon Dd/Da is plotted in Fig. 13(c). For the

special case Dd/Da = 1, it follows that α = 1/2, g1 = 1 and (63) reduces to420

(43).

Finally, consider the case where l � hd, but remains finite. An inner

H-field exists for l� r � hd. Recall:

(i) Concentrations and fluxes scale linearly with the value of H, see (53)-(56);

(ii) The dominant geometrical length scale entering the problem is l; and425

(iii) The solution depends upon the value of the ratio Dd/Da.

Dimensional analysis and linearity require that Jtip and H are related through

Jtip = Hlα−1g2 (64)

where g2 is a function of Dd/Da to be found. If an outermost K-field embeds

the inner H-field, then, upon substituting (62) into (64), the coupling relation

between Jtip and K is of the form430

Jtip
√
l

K
=

(
hd
l

) 1−2α
2

g1 g2 , hd � l (65)
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The predicted dependence of Jtip upon K is verified by a series of numerical

simulations for selected values of Dd/Da, see Fig. 14(a). Each curve displays

the expected asymptotic response (65), that is, log (Jtip
√
l/K) is linear with

log (hd/l) for hd � l. Note that, for the special case Dd = Da, the exponent

α equals 1/2 and Jtip is insensitive to hd/l. For Dd < Da, α exceeds 1/2435

and Jtip decreases with increasing hd/l; conversely, for Dd > Da, α is less

than 1/2 and Jtip increases with increasing hd/l. Since g1 is already known

(see Fig. 13(c)), a best fit to the plot of log (Jtip
√
l/K) versus log (hd/l) over

the range 1 < log (hd/l) < 2 is used to determine the value of g2, and the

resulting dependence of g2 upon Dd/Da is plotted in Fig. 14(b).440

(a)

hd/l

Jtip
√
l

K

1
1

2
− α

(b)

g2

Dd/Da

Figure 14: (a) Interfacial flux at delamination tip Jtip for the case of a finite value of l;

(b) calibration function g2(Dd/Da).
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6. Discussion: accuracy of the steady-state assumption

Recall that an initial transient, of duration tI, is required to establish

a steady-state flux Jtip. Contour plots of tIDa/h
2
a as a function of a/ha

and l/ha are shown in Fig. 15 for four selected values of (hdDd)/(haDa).

These plots are obtained by numerically solving the time-dependent diffusion445

equation (6), with the duration of the initial transient tI already defined in

(11). Attention is again restricted to the case where hd is much smaller than

all other length scales entering the problem. The value of tIDa/h
2
a increases

with increasing a/ha and l/ha and with decreasing (hdDd)/(haDa). The

dependence of tIDa/h
2
a upon a/ha, l/ha and (hdDd)/(haDa) contrasts with450

that of Jtipha/(DaC0), compare Figs. 3 and 15. For example, the contours

of Jtipha/(DaC0) are approximately horizontal (especially for large values of

(hdDd)/(haDa) and for small values of a/ha), whereas those of tIDa/h
2
a are

approximately vertical (especially for large values of (hdDd)/(haDa) and for

small values of l/ha). Rephrased, Jtipha/(DaC0) is mainly affected by l/ha,455

whereas tIDa/h
2
a is mainly affected by a/ha. The value of (hdDd)/(haDa) has

a significant effect upon both Jtipha/(DaC0) and tIDa/h
2
a.

During the initial transient phase, of duration tI, the interfacial flux at

the delamination tip increases progressively until it attains the steady-state

value Jtip. The quantity of corrodent per unit area of interface QI that has460

reacted at the delamination tip during the transient phase according to (12)

is a small fraction of Jtip tI. Consequently, if the amount of reacted corrodent

(per unit area) to disbond the interface Q∗ satisfies, or exceeds, the value

Q∗min = Jtip tI (66)
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Figure 15: Contour plots of tIDa/h
2
a on a map with axes (a/ha, l/ha), for (hdDd)/(haDa)

equal to (a) 0, (b) 0.1, (c) 1 and (d) 10.
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then the corresponding delamination time is dictated by the steady-state

solution according to (16). Thus, Q∗min can be taken as the critical amount of465

reacted corrodent that is required in order to neglect the transient phase.

Contour plots of Q∗min/(C0ha) as a function of a/ha and l/ha are given

in Fig. 16 for selected values of (hdDd)/(haDa). These plots are obtained

by combining the values of Jtipha/(DaC0) and tIDa/h
2
a in Figs. 3 and 15 via

(66). The value of Q∗min/(C0ha) is largely dictated by the value of a/l, with470

only mild sensitivity to (hdDd)/(haDa). At large a/l (bottom-right corner

of the maps in Fig. 16), Q∗min/(C0ha) is large and the delamination time is

likely to be dictated by the initial transient. In contrast, at small a/l (top-left

corner of the maps), Q∗min/(C0ha) is small and delamination growth is likely

to initiate long after steady state has been attained.475

7. Concluding remarks

The diffusion of a corrodent in a pre-cracked adhesive layer from an

infinite reservoir to the adhesive/substrate interface has been addressed. It

has been assumed that interfacial crack growth begins when the total amount

of corrodent that has reacted ahead of the crack tip attains a critical value.480

Four regimes of behaviour, corresponding to different asymptotic limits

of the non-dimensional groups entering the problem, have been identified

for the case where the debonding time much exceeds the duration of the

initial transient. The steady-state flux of corrodent to the adhesive/substrate

interface ahead of the crack tip, Jtip, has been quantified for all regimes, and485

the results show good agreement with the full numerical solution.

One of the four regimes is characterised by an outer singular field of flux,
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Figure 16: Contour plots of Q∗
min/(C0 ha) on a map with axes (a/ha, l/ha), for

(hdDd)/(haDa) equal to (a) 0, (b) 0.1, (c) 1 and (d) 10.
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of intensity K, that surrounds the crack tip, analogous to the Mode III K-field

of linear elastic fracture mechanics. The tip flux can be found by imposing

the K-field remotely from the crack tip, and by relating K to the geometry490

of the specimen. A singularity analysis of the inner field has been given for

the flux in the vicinity of the delamination tip in the limit of an infinitely fast

interface reaction, implying l = 0. The coupling coefficients between the inner

and outer singular fields have been obtained, and the difference in exponent

of spatial dependence of the singularities demands that the coupling relations495

involve the height hd of the delamination.

This study quantifies the time for the initiation of delamination growth in

a sandwich layer by diffusion of a corrosive species, and lays the groundwork

for a future study on the rate of delamination growth.
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Appendix A. Calibration of K

Appendix A.1. The case a� ha. Solution by analogy with a Mode III crack.

An analytic solution is obtained for K in the limit a� ha by considering

the analogous Mode III elasticity problem sketched in Fig. A.17. Write uz as510
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uz = u0z uz = −u0z
x

a

crack: τyz = 0

crack: τyz = 0

a

uz = 0

uz = 0

uz = 0 2ha

x
y

Figure A.17: Evaluation of K for a� ha in an elastic solid under Mode III loading by

making use of the energy release rate. Strain energy is stored in the grey zone (x < a).

the out-of-plane displacement, γzi = ∂uz/∂xi as the shear strain, τzi as the

shear stress and µ as the shear modulus in the Mode III elasticity problem.

Recall that an analogy has already been made in Sec. 4.4 between the Mode

III elastic fracture problem and the steady-state diffusion problem such that

uz ↔ C , γzi ↔
∂C

∂xi
, τzi ↔ −Ji , µ↔ Da (A.1)

The strain energy W stored in a strip of adhesive of height 2ha and515

subjected to an imposed displacement u0z at its left-hand side is approximately

W ≈ 1

2
µ

(
u0z
a

)2

2haa (A.2)

The adhesive strip in the side-clamped region x > a provides a negligible

contribution to W . The energy release rate G associated with crack advance

reads (Rice, 1968)

G = −1

2

∂W

∂a

∣∣∣∣
u0z

=
1

2
µha

(
u0z
a

)2

(A.3)

where the factor 1/2 is due to the presence of two cracks in the geometry520

shown in Fig. A.17. Recall that, for Mode III fracture of an interfacial crack

40



between an elastic solid of shear modulus µ and a rigid substrate, G is related

to K via3

G =
K2

4µ
(A.4)

Now substitute (A.3) into (A.4), to obtain

K =

√
2ha µu

0
z

a
(A.5)

and convert this into the analogous expression for the diffusion problem,525

K =

√
2haDaC0

a
(A.6)

Appendix A.2. The case a� ha. Solution through conformal mapping.

If a � ha (and l = 0), the only length scale in the problem is the

delamination length a. Introduce a new co-ordinate X = x + a, such that

the origin shifts from the delamination tip to the left-hand free-face of the

adhesive layer. Extend the quarter-plane problem in the physical plane (x, y)530

into a full-plane problem in the complex plane z = X + iy, where i =
√
−1

denotes the imaginary number, as shown in Fig. A.18. Since C(X, y) satisfies

Laplace’s equation, a complex function Φ(z) exists, with real part equal to

C(X, y), such that

Φ(z) = C(X, y) + iΨ(X, y) (A.7)

The complementary function Ψ(X, y) also satisfies Laplace’s equation, and535

can be obtained from C(X, y) via the Cauchy-Riemann equations, if necessary.

It plays the role of a stream function.

3The value of G in (A.4) equals a half of the value of G for a Mode III crack within an

elastic solid (Anderson, 2017).

41



z-plane

X

y

a−a
AB

D

E

branch cut

r

θ

C = 0C = 0

C = C0

C = C0

w-plane

ξ

η

1

A′

B′

D′

E′

r′

θ′

C = 0C = 0

C = C0

C = C0

Figure A.18: Conformal mapping of the problem in the complex plane z = X + iy into

the complex plane w = ξ + iη by the mapping function 2z/a = w + (1/w).

In order to obtain Φ(z), it is convenient to use a conformal mapping

technique (Hildebrand, 1976) and map the z-plane into a complex plane

w = ξ + iη (see Fig. A.18), by employing the mapping function540

z

a
=

1

2

(
w +

1

w

)
(A.8)

with inverse

w =
z

a
+

√(z
a

)2
− 1 (A.9)

The line segment (|x| ≤ a, y = 0) in the z-plane contains a branch cut that

maps onto the unit circle of the w-plane. Selected points ABDE in the

z-plane have images A′B′D′E ′ in the w-plane, as shown in Fig. A.18: the

relevant branch of the mapping function w(z) is the domain exterior to the545

unit circle of the w-plane.

It is straightforward to obtain the solution for Φ in the mapped plane w.
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Assume that the solution is

Φ(w) = −i 2
π
C0 lnw (A.10)

Now introduce polar co-ordinates (r′, θ′) in the w-plane (see Fig. A.18), such

that w = r′ exp(iθ′). Equation (A.10) becomes550

Φ =
2

π
C0θ

′ − i 2
π
C0 ln r′ (A.11)

and

C = Re(Φ) =
2

π
C0θ

′ (A.12)

This solution satisfies the required boundary conditions of the physical prob-

lem: C(θ′ = 0) = 0 and C(θ′ = π/2) = C0. Upon making use of (A.9), the

solution (A.10) in the z-plane is

Φ(z) = −i 2
π
C0 ln

(
z

a
+

√(z
a

)2
− 1

)
(A.13)

Now write555

z = X + iy = a+ r exp(iθ) (A.14)

where r and θ are the polar co-ordinates with origin at z = a (see Fig. A.18).

In order to evaluate K, restrict attention to r � a; then, (A.13) has the

asymptotic form

Φ(z) ≈ −i 2
π
C0

√
2r

a
exp

(
i
θ

2

)
=

2

π
C0

√
2r

a

(
sin

θ

2
− i cos

θ

2

)
(A.15)

and consequently

C = Re[Φ(z)] ≈ 2

π
C0

√
2r

a
sin

θ

2
as r → 0 (A.16)

Upon matching the K-field (41) to (A.16), the value of K follows immediately560

as

K =
2DaC0√
πa

(A.17)
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(Ed.), Epoxy Resins and Composites II, Springer Berlin Heidelberg. pp.

33–71.

Stratmann, M., Feser, R., Leng, A., 1994. Corrosion protection by organic

films. Electrochimica Acta 39, 1207–1214.620

46


	Introduction
	Problem statement
	Nondimensionalisation
	Regimes of behaviour
	The ``negligible delamination'' regime
	The ``adhesive strip'' regime
	The ``dominant delamination'' regime
	The ``outer singularity'' regime
	Calibration of the singularity intensity K


	Singularity analysis at the delamination tip
	Singularity analysis at the delamination tip for l=0
	Embedded singularity

	Discussion: accuracy of the steady-state assumption
	Concluding remarks
	Calibration of K
	The case aha. Solution by analogy with a Mode III crack.
	The case aha. Solution through conformal mapping.


