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Abstract

An analytical model is developed to deduce the elastic and plastic properties of a hemispherical

inclusion embedded in the surface of a semi-infinite solid from its indentation response. The

model di↵ers from the approaches presented in the literature by starting from the analytical

expressions for the elastic and elasto-plastic indentation responses of homogeneous solids,

and adapting them by replacing the homogeneous modulus by an e↵ective modulus for the

embedded inclusion. The accuracy of the indentation model is established by comparing the

analytical results with detailed finite element simulations for various bi-material configurations

of inclusion and substrate. The elastic indentation response is substantially influenced by the

elastic modulus of the substrate, whereas the plastic response is dictated by the yield strength

of the inclusion. The practical applicability of the indentation model is demonstrated by

making use of the measured indentation response of an embedded paint sample, as reported

in the literature, to deduce the elastic modulus of the paint.
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1. Introduction

The indentation test is a widely used experimental technique for measuring material prop-

erties, such as elastic modulus [1, 2], yield strength and hardness [3, 4] and fracture toughness

[5], over a wide range of length scales. The test entails the measurement of the force to press

a shaped indenter tip into the surface of a sample; in principle, it is a simple test to perform

but is notoriously di�cult to interpret [6]. The application of this technique at the micro and

nano scales makes it possible to estimate the properties of small-scale material systems, such

as thin coatings on a substrate [7, 8], individual crystalline grains of a metallic microstructure
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[9, 10, 11], and small particles embedded in a supporting matrix [12, 13], thereby measuring

potential size e↵ects [14, 15, 16, 17, 18]. Due to the local character of an indentation measure-

ment, indentation testing is suitable for determining the properties of a material for which a

limited number of (small) samples are available, e.g., the paints used in valuable and historical

paintings [19, 20, 21, 22, 23, 24].

Paint samples subjected to indentation are typically embedded in a relatively sti↵, support-

ing resin. Several methods have been proposed for obtaining the elastic modulus of embedded

samples from experimental indentation data. One method aims at finding the maximum inden-

tation depth such that the measured unloading modulus can be accurately computed without

due influence by the embedding material [9, 25, 26, 27]. Nevertheless, it is not always possible

to limit the indentation depth to the small value required by this method, and consequently it

is necessary to take the contribution to macroscopic compliance from the embedding material

into account [28, 29, 12, 30, 21].

Accurate analytical and numerical solutions have been obtained for the elastic indentation

of diverse heterogeneous material systems, such as coatings supported by a semi-infinite sub-

strate [31, 32, 33] and bi-materials that contain a vertical material interface [34]. In [35] the

elastic indentation of a hemispherical particle embedded at the free surface of a half space was

studied, adopting the assumption that the indenter contact area remains relatively small with

respect to the particle size. A first-order asymptotic solution of the Boussinesq-type prob-

lem was established, and the e↵ect of the mismatch in elastic parameters on the indentation

response was shown. However, much less is known about the relationship between Young’s

modulus and the macroscopic compliance of an embedded surface inclusion under relatively

large indentations, as exhibited by indentation tests on embedded paint samples.

In the present study, an analytical model is derived to relate the elastic and plastic prop-

erties of an embedded hemispherical inclusion to its indentation response. The model di↵ers

from the approaches outlined above by starting from the analytical expressions for the elas-

tic and elasto-plastic indentation responses of homogeneous materials, and adapting them by

replacing the homogeneous modulus by an e↵ective modulus for the embedded sample. The

e↵ective modulus is derived from the analytical solution for the elastic response of a spherical

cavity in a spherical particle, embedded in an infinite medium of di↵erent elastic properties.

The cavity is subjected to a uniform, internal pressure. The accuracy of the analytical model

is established by comparing the analytical indentation results for various bi-material config-
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urations with those from detailed finite element simulations. The practical applicability of

the indentation model is demonstrated by determining the elastic modulus of a paint from

indentation measurements on an embedded paint sample as reported in the literature [21].

This paper is organized as follows. In Section 2 a review is provided of analytical elas-

tic and elasto-plastic indentation models for homogeneous materials, and the accuracy of the

analytical elasto-plastic indentation model is assessed by comparing its response to that ob-

tained from finite element simulations. In Section 3 an analytical expression is derived for the

e↵ective modulus of a bi-material. In Section 4 this analytical expression is combined with

the analytical indentation models for homogeneous materials reviewed in Section 2 to simulate

the indentation response of elastic and elastic, ideally plastic bi-materials. The accuracy of

the analytical models is assessed by comparison with detailed finite element simulations. In

Section 5 the practical applicability of the analytical indentation model is demonstrated by

determining the elastic modulus of an embedded paint sample from experimental indentation

data. Finally, the main conclusions of the study are presented in Section 6 .

2. Review of indentation models for homogeneous materials

Similarity solutions have been developed for the indentation of a half space made from a

power-law solid by a headshape of power-law form (such as a paraboloid or cone) [36, 37]. The

force F applied to the indenter is related to the indentation depth h and alternatively to the

indentation contact radius a by [2, 38, 39, 40, 41]

F = Chh
m and F = Caa

n
, (1)

where m, n, Ch and Ca depend upon the properties of the non-linear, deformation theory solid

and upon the geometry of the headshape.

In general, the values of m, n, Ch and Ca di↵er for loading and unloading, as unloading

is usually associated with an elastic material response. For example, for conical indentation

of an elastic, ideally plastic solid, m = 2 for loading and 1 < m < 2 for elastic unloading1

(with m = 2 and m = 1 respectively representing the purely elastic and rigid-plastic limits),

whereby the specific value during unloading depends on the geometry of the residual, plastic

1During elastic unloading of an elasto-plastic material, the indentation depth used in Eq.(1)1 refers to the
recoverable, elastic part, see also Eq.(10).
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indent generated during loading, which is determined by the ratio between the elastic modulus

and the yield strength of the material [42]. The specific case of indentation of a linear elastic

solid is treated in Section 2.1, elastic unloading of an indented elasto-plastic solid is discussed

in Section 2.2, and indentation of an elastic, ideally plastic solid is considered in Section 2.3.

2.1. Indentation of an elastic solid

Consider a homogeneous, elastic solid indented by a frictionless, rigid conical punch. Hard-

ing [43] and Sneddon [1, 2] showed that the force-displacement relations given by Eq. (1) are

of the specific form

F =
2 tan↵

⇡

E

1� ⌫2
h
2 and F =

⇡

2 tan↵

E

1� ⌫2
a
2
, (2)

where ↵ is the semi-apex angle of the indenter and E and ⌫ are the Young’s modulus and

Poisson’s ratio of the half space, respectively. The elastic compliance of the indenter can

be accounted for by replacing the plane-strain elastic modulus E/(1 � ⌫
2) in the above two

expressions by a reduced modulus Er defined as [3, 38]

1

Er
=

1� ⌫
2

E
+

1� ⌫
2
in

Ein
, (3)

where Ein and ⌫in are the Young’s modulus and Poisson’s ratio of the indenter, respectively.

Note from Eq.(2) that the exponents m and n in Eq.(1) have the value m = n = 2, Ch and

Ca are given by

Ch =
2 tan↵

⇡

E

1� ⌫2
and Ca =

⇡

2 tan↵

E

1� ⌫2
, (4)

and h and a are related by

h =
⇡a

2 tan↵
. (5)

As sketched in Figure 1, sink-in occurs at the edge of the indenter to a depth hs, as a result

of which the contact depth associated with no sink-in (or pile-up), hc = a/ tan↵, is less than

the true indentation depth h, such that

hc

h
=

2

⇡
. (6)
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via Eq.(4). The sink-in displacement hs follows immediately from the identity

h = hs + hc . (7)

a

z

Įh hc
hs

r

Elastic

Figure 1: Indentation of a homogeneous, elastic material over a depth h, using an indenter with semi-apex angle
↵. The contact radius, contact depth and sink-in displacement are given by a, hc, and hs, respectively.

The incremental contact sti↵ness S = Ŝ(h) is the derivative of Eq.(2)1 with respect to the

indentation depth h:

S =
@F

@h
=

4 tan↵

⇡

E

1� ⌫2
h . (8)

Upon inserting Eq.(5) into Eq.(8) and defining the projected contact area as Ap = ⇡a
2, the

Young’s modulus E is related to S via [38, 40, 44]

E =

p
⇡

2

S(1� ⌫
2)p

Ap
. (9)

The right-hand side of the above expression needs to be multiplied by a correction factor 1/⇣

in case the projected contact area Ap is non-circular, with ⇣ equal to 1.012 and 1.034 for,

respectively, square and triangular shape indents [45].

2.2. Elastic unloading of an elasto-plastic solid

Equation (9) can be used to determine the Young’s modulus from indentation tests on an

elasto-plastic solid by following the procedure of Oliver and Pharr [38, 40], summarized as

follows. Assume that the indent is elasto-plastic in nature but unloading is elastic from an

indentation depth h = hmax to a residual depth hf at zero load, see Figure 2. Equation (1)1

is used to fit the unloading curve from the recoverable, elastic indentation depth h � hf as
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Figure 2: Schematic representation of the loading and unloading stages in an indentation experiment. During
loading, the load F is increased from zero to a value Fmax, whereby the indentation h obtains a value hmax.
Under subsequent unloading, the indentation depth decreases towards a residual, plastic indent hf at zero load.
The reversible, elastic indentation experienced during unloading is hmax � hf . The elastic contact sti↵ness at
the onset of unloading is S. This figure is based upon a representation presented in [38].

[38, 40]

F = Ch(h� hf )
m
. (10)

From the calibrated curve Eq.(10), the unloading contact sti↵ness S at the indentation depth

h = hmax is computed as

S =
@F

@h

����
h=hmax

= mCh(hmax � hf )
m�1

. (11)

Oliver and Pharr [40, 42] further assumed that the sink-in displacement hs is purely elastic,

and thus for a conical indenter, via Eqs.(6) and (7), is related to the elastic indentation depth

hmax � hf as

hs =
⇡ � 2

⇡
(hmax � hf ) . (12)

Additionally, by inserting the exponent m = 2 for elastic indentation in Eqs.(10) and (11), it

follows from these expressions that the elastic contact sti↵ness S at h = hmax reads

S =
2Fmax

hmax � hf
, (13)
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with Fmax the indentation force at the indentation depth hmax. Combining Eqs.(7), (12) and

(13) then provides the following expression for the contact depth hc:

hc = hmax � hs = hmax � ⇠
Fmax

S
, (14)

with the unloading contact sti↵ness S of the elasto-plastic solid given by the general expression,

Eq.(11), and ⇠ = 2(⇡ � 2)/⇡ = 0.73 for a conical indenter. A slightly lager value of ⇠ =

0.75 needs to be selected when the e↵ective indenter shape during unloading is (accurately)

approximated by a paraboloid of revolution [42]. The projected contact area Ap is determined

from the value of hc as deduced from Eq.(14), using the fitting procedure described in [38].

Alternatively, the contact area can be measured directly by imaging of the residual indent

[38, 40]. Finally, the values of Ap and S are inserted into Eq.(9) to obtain the Young’s

modulus E of the indented solid, while the hardness follows from H = Fmax/Ap.

2.3. Indentation of an elastic, ideally plastic solid

Marsh [46] and Johnson [3, 47] assumed that conical indentation of an elastic, ideally

plastic solid by a rigid, conical indenter can be idealized by the expansion of an internally

pressurised, hemispherical cavity from a vanishing initial radius to a current radius equal to

the contact radius a, see Figure 3. The stress state � inside the void (or “core”) is a uniform

pressure, � = �pI, where I is the usual second-order identity tensor. The deformation state

external to the hemispherical core is taken to be the same as that for an elastic, ideally plastic

full space containing a spherical cavity of radius a and subjected to an internal pressure p [48].

The plastic zone extends from the core to an outer elastic-plastic boundary at radius r = c,

with c > a. At the interface r = a between core and plastic zone, the radial stress in the

plastic zone equals the hydrostatic stress p in the core. In addition, the radial displacement at

the interface is compatible with the volume displaced by the conical indenter, assuming that

the material within the core is incompressible. It is further assumed that no pile-up or sink-in

of material occurs during indentation, such that the indentation depth is h = hc = a/ tan↵,

see Figure 3.

Write �y as the yield strength of the indented material and � = 90� � ↵ as the inclination

of the conical indenter. Then, the mean indentation pressure pm under the indenter is given
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Figure 3: Cavity expansion indentation of a homogeneous, elastic, ideally plastic material to a depth h, using
an indenter with semi-apex angle ↵. Indentation produces a hemispherical core of a radius equal to the contact
radius a. The stress generated inside the core induces a hemispherical plastic zone of radius c.

by [3, 47]:

pm

�y
=

8
>>><

>>>:

p

�y
+

2

3
for 2  E tan�

�y
 27,

2.8 for
E tan�

�y
> 27 ,

(15)

where

p

�y
=

2

3

✓
1 + ln

✓
1

3

E tan�

�y

◆◆
,

in which Eqs.(15)1 and (15)2, respectively, define the elasto-plastic and fully plastic indentation

responses.

Note from Eq.(15) that the mean indentation pressure pm is fully determined by the dimen-

sionless parameter (E tan�)/�y, which can be interpreted as the ratio of the strain imposed

by the indenter, tan�, and the yield strain, �y/E [3]. The use of alternative headshapes of

indenters (spherical, Vickers, Berkovich) somewhat changes the point of first yield and full

yielding in Eq.(15), but preserves the overall form of Eq.(15) [3]. Although the solution given

by Eq.(15) is based upon the assumption that the indented solid is incompressible, the e↵ect

of the value of Poisson’s ratio upon the elasto-plastic response is minor [3, 47]. The compliance

of the indenter is taken into account upon replacing the Young’s modulus E in Eq.(15) by the

reduced modulus Er as given by Eq.(3) [3, 47]. The force F on the conical indenter follows

directly from the mean indentation pressure pm and the projected contact area Ap = ⇡a
2, such
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that

F = pmAp , (16)

and consequently the constant Ca in the general expression, Eq.(1)2, specializes to Ca = ⇡pm,

with pm given by Eq.(15), and the exponent n = 2. Further, from the relation h = a/ tan↵,

the parameters Ch and m in Eq.(1)1 follow as Ch = ⇡pm(tan↵)2 and m = 2.

Three-dimensional indentation simulations reveal that Johnson’s cavity expansion model

gives a rather good representation of the nominal hardness of polymers (e.g., paints); an ap-

proximately spherical plastic zone develops and no material pile-up occurs next to the indenter

[49, 50]. In order to verify the accuracy of Eq.(15), the results of this model are first compared

to large deformation Finite Element (FE) simulations of the indentation of an elastic, ideally

plastic half space, using the commercial FE package ABAQUS Standard2. The indentation

problem is modelled as axisymmetric, with the vertical line of symmetry passing through the

centre of the indenter.

The indented solid is discretized using axisymmetric 4-node iso-parametric elements with

a 2 ⇥ 2 Gauss quadrature. The conical indenter is modelled as rigid and frictionless, and is

characterized by a semi-apex angle of ↵ = 70.3�, corresponding to an inclination � = 19.7�

of the indenter. The numerical stability of the solution is enhanced by slightly rounding

o↵ the indenter tip through the application of a small, finite tip radius. The application

of a tip radius also makes the indenter more representative of a practical conical indenter.

The indenter is displaced vertically into the solid using an incremental time-marching scheme

with an automatic time-step adaptation. The maximum indentation depth is set to 8 µm,

which is a factor of 6.25 smaller than the radial and vertical dimensions of 50 µm defining

the axisymmetric finite element configuration. A so-called node-to-surface contact criterion is

adopted in order to rigorously check for new contacts between the indenter and the elements

that define the top surface of the solid.

The FE mesh is refined near the indenter tip, and the semi-infinite character of the solid is

simulated by placing 4-node infinite elements with an elastic material behaviour along the lat-

eral and lower boundaries of the finite element geometry [51]. The converged FE discretization

deduced from the above mesh refinement study corresponds to a spatial discretization of 4499

2Dassault Systems Simulia Sorp., Providence, RI, USA.
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finite elements and 100 infinite elements. The choice of element discretization is determined

from a preliminary mesh refinement study on the initial, elastic indentation response, upon

noting that elastic deformation in the vicinity of the indenter tip extends over a relatively re-

stricted domain. In the mesh refinement study the elastic response was simulated by selecting

an almost incompressible solid with ⌫ = 0.499; the converged numerical results agree with the

analytical solution given by Eq.(2) to within an acceptable inaccuracy of 1%.

In the FE simulations of the indentation of the elastic, ideally plastic solid the mesh density

of the converged elastic solution is preserved and the size of the mesh is increased by a factor of

10 in the radial and vertical directions to ensure that the plastic zone generated by the conical

indenter does not reach the elastic infinite elements located at the perimeter of the FE model.

Consequently, the number of finite elements in this FE model equals 15557. The number of

infinite elements is kept the same as in the mesh convergence study, i.e., 100. The Poisson’s

ratio of the solid ⌫ = 0.35 is representative of various solids, including historical paints [52].

J2-flow theory is used for the plastic response, and the Young’s modulus E and yield strength

�y are selected such that the dimensionless parameter (E tan�)/�y appearing in Eq.(15) is

varied stepwisely from 1 to 100, in correspondence with 100 separate FE simulations.

Figure 4 shows a comparison between the results obtained from the FE simulations (grey

circles and black solid line) and Johnson’s cavity expansion model, Eq.(15), (dashed line).

Each vertical column of data points designated by the grey circles corresponds to an increase

in indentation depth h for an integer number of contact nodes. The bottom point of each

column of data points gives the instant at which a new node comes into contact with the

indenter. Thus, the contact radius a remains constant and the mean indentation pressure

pm (plotted along the vertical axis) grows until the next node makes contact. This feature of

mesh discretization repeats itself and a new column of vertical data points is generated, see also

[53, 54, 55]. The black solid line depicted in Figure 4 captures the mean values of the vertical

columns of data points. The cavity expansion model, Eq.(15), is in reasonable agreement with

the response of the FE simulations, with an underprediction in the intermediate elasto-plastic

regime and an overprediction in the final, plastic regime. Although not illustrated here, the FE

results also show that the ratio of contact depth hc to indentation depth h in the elasto-plastic

regime monotonically increases from hc/h = 2/⇡ to hc/h = 1: the initial, elastic value is in

agreement with the expression given by Eq.(6). When (E tan�)/�y exceeds 27 the plastic

deformation regime is reached, the mean indentation pressure pm becomes constant, and the
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contact depth develops with hc/h > 1, indicating that material piles up next to the indenter,

as previously discussed [3, 47].

Additional comparisons between the results of the cavity expansion model and those of FE

simulations can be found in [47], including a comparison of the subsurface and surface stress

fields in Figures 6.15 and 6.16, which shows good agreement.

1 10 100
0.0

1.0

2.0

3.0
Elastic Elasto-Plastic Plastic

Figure 4: Indentation response of an elastic, ideally plastic solid. Mean indentation pressure pm normalized

by the yield strength �y as a function of the dimensionless parameter (E tan�)/�y. The figure shows the FE

response (grey circles), the mean FE response (solid black line) and the prediction by the cavity expansion

model, Eq.(15) (dashed line).

3. Closed-form expression for the e↵ective elastic modulus of a bi-material

The indentation model for a homogeneous solid reviewed in Section 2 will be adapted to

the case of a bi-material composed of a hemispherical inclusion at the surface of a dissimilar

half space, with the indent placed at the centre of the inclusion. As will be demonstrated in

Section 4, this adaptation will be achieved via an e↵ective elastic modulus of the bi-material,

followed by taking this e↵ective modulus as the Young’s modulus in an indentation model for

a homogeneous solid. In the present section an analytical expression for the e↵ective elastic

modulus is derived from the response of a hollow, spherical particle embedded in an infinite

medium of dissimilar elastic properties, and subjected to a uniform, internal pressure, see

Figure 5. The elastic displacement field in the bi-material is derived in Section 3.1, and an

analytical expression for the e↵ective elastic modulus is obtained in Section 3.2.
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Figure 5: A spherical shell of outer radius b (material 1) embedded in an infinite medium (material 2). The

spherical cavity of radius a is pressurized by a uniform pressure p. The inset shows the spherical coordinate

system (r, ✓, '), with r � a the radial coordinate of a material point, ✓ the polar angle coordinate, and ' the

azimuth angle coordinate.

3.1. Elastic displacement field

The geometry depicted in Figure 5 is characterized by an elastic spherical shell of outer

radius b (material 1) that is embedded in an infinite solid of dissimilar elastic properties

(material 2). The spherical cavity of radius a is subjected to an internal uniform pressure p.

A spherical coordinate system (r, ✓, ') is adopted, where r � a is the radial coordinate, ✓ the

polar angle coordinate, and ' is the azimuth angle coordinate. Upon exploiting the spherical

symmetry of the problem, the following equilibrium and kinematic conditions hold:

�r✓ = �r' = �✓' = 0 ,

�✓✓ = �'' ,

u✓ = u' = 0 ,

"r✓ = "r' = "✓' = 0 ,

"✓✓ = "'' .

(17)

Here, �mn, "mn and um are the stress, strain and displacement components in the spherical

coordinate system. The constitutive relations and the remaining equilibrium and kinematic

12



relations of the solid are

�rr � 2⌫i�✓✓ = Ei "rr ,

�✓✓(1� ⌫i)� ⌫i�rr = Ei "✓✓ ,

@�rr

@r
+

2

r
(�rr � �✓✓) = 0 ,

"rr =
@ur

@r
,

"✓✓ =
ur

r
,

(18)

where Ei and ⌫i are the Young’s modulus and Poisson’s ratio of material i 2 {1, 2}. Addition-

ally, the boundary conditions (at r = a and r ! 1) and interfacial conditions (at r = b) are

given by:

�rr(r = a) = �p ,

ur(r ! 1) = 0 ,

�rr,1(r = b) = �rr,2(r = b) ,

ur,1(r = b) = ur,2(r = b) ,

(19)

in which the comma and subindices 1 and 2 used in the definition of the interfacial conditions

Eq.(19)3,4 refer to materials 1 and 2, respectively. Combining Eqs.(18) and (19) leads to the

following expression for the radial displacement:

ur(r) =

8
>>>>>>>><

>>>>>>>>:

a
3
p
�
2
�
b
3 � r

3
�
E2

�
2⌫21 + ⌫1 � 1

�
� E1

�
b
3 + 2r3 +

�
b
3 � 4r3

�
⌫1
�
(1 + ⌫2)

�

2r2E1 (�E2 (a3 + 2b3 + (a3 � 4b3) ⌫1) + (a3 � b3)E1 (1 + ⌫2))

for a  r  b,

3a3b3p (�1 + ⌫1) (1 + ⌫2)

2r2 (�E2 (a3 + 2b3 + (a3 � 4b3) ⌫1) + (a3 � b3)E1 (1 + ⌫2))
for r > b.

(20)

For the specific case of a vanishing material 2 (i.e., E2 = 0, ⌫2 = 0), Eq.(20) reduces to:

ur(r) =
a
3
p(b3 + 2r3 + (b3 � 4r3)⌫)

2(b3 � a3)r2E
with a  r  b, (21)

in which the subscripts of the elastic parameters E1 and ⌫1 have been dropped for the sake of

clarity. Equation (21) gives the elastic displacement field for a homogeneous spherical shell of

finite thickness (b� a), with a free outer boundary at r = b, and loaded by a uniform pressure

p at its inner boundary r = a; this expression is in agreement with that given in [48]. For the

special case of an internally pressurized spherical cavity in an infinite, homogeneous medium,

13



i.e., E1 = E2 = E and ⌫1 = ⌫2 = ⌫, Eq.(20) reduces to the classical solution [56]:

ur(r) =
a
3
p(1 + ⌫)

2r2E
with r � a. (22)

3.2. E↵ective elastic modulus of an embedded spherical shell

It follows from Eqs.(18)4 and (22) that, for the case of a homogeneous infinite medium,

the radial strain at the boundary r = a of the cavity can be written as

"rr(r = a) =
�p(1 + ⌫)

E
, (23)

which, upon rearrangement, expresses the Young’s modulus as a function of the radial strain

at r = a:

E =
�p(1 + ⌫)

"rr(r = a)
. (24)

The assumption is made that the embedded spherical shell can be idealized by an equivalent

cavity of radius a in a homogeneous full space by introducing an e↵ective modulus Ē for the

cavity in a homogeneous full space. The calibration is based on the assumption that the radial

strain at the boundary r = a of the cavity is the same for the two cases. Thus, the e↵ective

modulus Ē for the cavity in a homogeneous full space is defined by rearrangement of the above

equation to read:

Ē ⌘ �p(1 + ⌫1)

"rr(r = a)
. (25)

Here, the value of the radial strain at the boundary r = a is for the embedded spherical shell,

and is determined from Eqs.(18)4 and (20)1 as

"rr(r = a) =
�p

��
2b3 + a

3
�
E2

�
2⌫21 + ⌫1 � 1

�
� E1

�
b
3 � a

3 +
�
b
3 + 2a3

�
⌫1
�
(1 + ⌫2)

�

E1 (�E2 (a3 + 2b3 + (a3 � 4b3) ⌫1) + (a3 � b3)E1 (1 + ⌫2))
. (26)

Now insert Eq.(26) into Eq.(25) to obtain the e↵ective elastic modulus:

Ē =
E1(�E2(a3 + 2b3 + (a3 � 4b3)⌫1) + (a3 � b

3)E1(1 + ⌫2))(1 + ⌫1)

(a3 + 2b3)E2(2⌫21 + ⌫1 � 1)� E1(�a3 + b3 + (2a3 + b3)⌫1)(1 + ⌫2)
. (27)

As required, this expression reduces to the Young’s modulus of a homogeneous material,

Ē = E, when E1 = E2 = E and ⌫1 = ⌫2 = ⌫. In Section 4 the above expression for the

e↵ective elastic modulus of the bi-material will be combined with the indentation models for

14

Oz



homogeneous materials reviewed in Section 2 to simulate the indentation response of elastic

and elasto-plastic bi-materials.

Note that an alternative expression for the e↵ective modulus of the bi-material can be

obtained by suitable matching of the hoop strain of the bi-material problem and the cavity in

an e↵ective, homogeneous full space at r = a. Combine Eqs.(18)5 and (22) for the cavity in a

homogeneous full space, and substitute E by Ē and ⌫ by ⌫1:

Ē ⌘ p(1 + ⌫1)

2 "✓✓(r = a)
. (28)

Then, assume that the value of "✓✓(r = a) for the embedded spherical shell equals that for the

equivalent e↵ective full space. A preliminary comparison study not presented here revealed

that the e↵ective modulus Ē based on Eq.(25) provides a more accurate estimate of the elastic

indentation response of an embedded hemispherical inclusion than that based on Eq.(28).

4. Indentation of embedded hemispherical particles

The closed-form expression for the e↵ective elastic modulus of the bi-material, Eq.(27), is

now combined with the analytical indentation models for homogeneous materials, as reviewed

in Section 2. First, the indentation of an elastic hemispherical particle embedded in an elastic

half space is reported in Section 4.1. Second, the indentation of an elastic, ideally plastic

hemispherical particle embedded in an elastic half space is given in Section 4.2. In each section,

the accuracy of the analytical models is established by comparing analytical predictions with

detailed finite element simulations.

4.1. Indentation of an elastic hemispherical particle embedded in an elastic half space

The elastic indentation of a hemispherical particle embedded in a half space of di↵ering

elastic properties is sketched in Figure 6. The analytical indentation model makes use of

Eq.(27) in the F -a relation, Eq.(2)2. Accordingly, the indentation force F on the rigid conical

indenter is expressed in terms of the contact radius a of the bi-material as

F = �
⇡

2 tan↵

Ē

(1� ⌫
2
1)
a
2
, (29)

in which the Poisson’s ratio corresponds to that of the indented material 1. Equation (29) has

been extended by a factor �, which corrects for a small, artificial overlap between the geometry
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Figure 6: Indentation of an elastic hemispherical particle of radius b (material 1) embedded in an elastic half
space (material 2), using an indenter with semi-apex angle ↵. The contact radius a, contact depth hc and
sink-in depth hs each depend upon the indentation depth h.

of the rigid indenter and the deformed material surface, as characteristic of Sneddon’s solution,

see also [57]. An analytical expression for the factor � is obtained by calibrating Eq.(29) on the

FE indentation response of a homogeneous material - here designated as “material 1” - with the

Poisson’s ratio taking values in the range of 0 to 0.5. The FE mesh used for the axisymmetric

indentation models corresponds to that following from the mesh convergence study described

in Section 2.3. The calibration of the factor � is performed when the indentation response

has converged towards a steady state, as characterized by a (virtually) constant value of the

dimensionless indentation force F/(ApE1), with Ap = ⇡a
2 the projected contact area. The

value of � is taken as the average of the values calibrated for a range of contact radii a. Figure

7 illustrates that the numerical values for � are accurately captured by the linear relation

� = 1.2� 0.4⌫1 . (30)

Note that � = 1 in the limit of an incompressible material, ⌫ = 0.5, which is the case that has

been selected for the mesh refinement study discussed Section 2.3.

4.1.1. Elastic indentation response

The elastic indentation response of the bi-material configuration sketched in Figure 6 is

illustrated in Figure 8. Specifically, the dimensionless indentation force F/(ApE1) is plotted as

a function of the dimensionless indentation radius a/b for three values of modulus mismatch,

E2/E1 = [0.2, 1.0, 5.0], and 6 choices of Poisson ratios, ⌫1 = ⌫2 in the range of 0 to 0.5. The

black solid line represents the FE response, which develops in a sawtooth fashion due to the
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Figure 7: Analytical expression for the factor � (black line) as given by Eq.(30), which is obtained from
calibrating Eq.(29) for a homogeneous material to the results of FE simulations (red circles) for selected values
of Poisson’s ratio ⌫1.

fact that the contact condition of the indenter is prescribed in a spatially discrete manner via

the individual finite element nodes, see also Figure 4 and the explanation provided in Section

2.3. The mean of the FE sawtooth curve is given by the red dotted line. The analytical model,

Eq.(29), with � and Ē respectively given by Eqs.(30) and (27), is represented by the black

dashed line. Additionally, for the specific case of E2/E1 = 0.2, the analytical model with

an e↵ective modulus for an incompressible bi-material is depicted in Figures 8(a)-(f) by the

black dotted line; the corresponding expression for the e↵ective modulus follows from inserting

⌫1 = ⌫2 = 0.5 into Eq.(27):

Ē = Ēinc =
E1

�
b
3 � a

3
�
+ E2a

3

b3
, (31)

with the subscript “inc” referring to “incompressible”. This expression correctly reduces

to Ēinc = E1 for a homogeneous material, E2/E1 = 1. The analytical indentation model,

Eq.(29), that uses the e↵ective modulus of the incompressible material, Eq.(31), henceforth

will be denoted “analytical model for the incompressible bi-material”; the indentation model

also describes indented materials with a Poisson’s ratio ⌫1 di↵erent from 0.5, via the terms

� = 1.2� 0.4⌫1 and (1� ⌫
2
1) in Eq.(29).

For the case E2/E1 = 0.2 of a sti↵ particle embedded in a soft matrix, the mean FE results

plotted in Figure 8 show that the dimensionless indentation force F/(ApE1) monotonically

decreases with increasing indentation radius a/b after a relatively short initiation phase3. In

3The FE results shown in Figure 8 are characterized by a short initiation phase, during which the round
indenter tip establishes contact with the material surface and the dimensionless indentation force F/(ApE1)
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Figure 8: Indentation response of an elastic hemispherical particle embedded in an elastic half space. Dimension-
less indentation force F/(ApE1) versus dimensionless indentation radius a/b, as calculated by FE simulations
(black solid line), the analytical model Eq.(29) with the general sti↵ness expression Eq.(27) (black dashed line),
and the analytical model Eq.(29) with the sti↵ness expression for an incompressible material Eq.(31) (black
dotted line). The mean FE response is represented by the red dotted line. The results are shown for three
values of modulus mismatch, E2/E1 = 0.2, 1.0, and 5.0, and for (a) ⌫1 = ⌫2 = 0.0, (b) ⌫1 = ⌫2 = 0.1, (c)
⌫1 = ⌫2 = 0.2, (d) ⌫1 = ⌫2 = 0.3, (e) ⌫1 = ⌫2 = 0.4, (f) ⌫1 = ⌫2 = 0.5.

contrast, for a homogeneous material, E2/E1 = 1.0, F/(ApE1) is independent of a/b, and for

the case E2/E1 = 5.0 of a compliant particle embedded in a sti↵ matrix F/(ApE1) increases

increases.
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monotonically with a/b. Remarkably, the indentation load for the sti↵ particle configuration,

E2/E1 = 0.2, is almost insensitive to the choice of Poisson’s ratio ⌫1 and ⌫2, and is adequately

captured by the analytical model for an incompressible bi-material, Eq.(31). The analytical

model with the general sti↵ness expression, Eq.(27), overpredicts the FE results for this case,

although the discrepancy decreases for a larger value of Poisson’s ratios, and eventually van-

ishes in the limit of an incompressible bi-material, ⌫1 = ⌫2 = 0.5. For a homogeneous material,

E2/E1 = 1, the analytical models with the sti↵ness expressions given by Eqs.(27) and (31)

lead to an identical result, and accurately describe the mean FE response. For the compliant

particle configuration, E2/E1 = 5.0, the analytical model with the general sti↵ness expression

Eq.(27) gives close agreement with the mean FE results over the full range of dimensionless

indentation radii a/b in case of moderate values of the Poisson’s ratios, 0.2  ⌫i  0.3 and

i 2 {1, 2}. Since this range includes the Poisson ratios of many engineering materials, it is

concluded that this analytical indentation model is of practical value. For values of Poisson ra-

tios falling outside this range, Figure 8 shows that the analytical model only provides accurate

results up to a normalized indentation radius of a/b ⇡ 0.3 to 0.4, and for larger indentation

values may significantly underpredict (for ⌫1, ⌫2 < 0.2) or overpredict (for ⌫1, ⌫2 > 0.3) the

mean FE response of the compliant particle configuration. Finally, note from Figure 8(f) that,

for E2/E1 = 5.0, the analytical model for the incompressible bi-material deviates from the FE

results obtained for a Poisson’s ratio of 0.5, which is the reason that analytical predictions for

an incompressible bi-material with E2/E1 = 5.0 have been omitted from Figures 8(a)-(e).

4.1.2. E↵ective elastic modulus

The mean FE results indicated by the red dotted line in Figure 8 can be used to compute

the normalized e↵ective elastic modulus Ē/E1 of the bi-material from the inverse relation of

Eq.(29), i.e.,

Ē

E1
=

2 tan↵

�

F (1� ⌫
2
1)

ApE1
. (32)

Accordingly, in Figures 9(a)-(f) the e↵ective modulus following from the FE simulations is

compared to the e↵ective modulus, Eq.(27), and the e↵ective modulus for the incompressible

bi-material, Eq.(31), by plotting the dimensionless value Ē/E1 against the dimensionless in-

dentation radius a/b for three values of sti↵ness mismatches E2/E1 = [0.2, 1.0, 5.0] and six

values of Poisson ratio over the range 0 to 0.5. After a minor initiation phase, all curves attain

an e↵ective modulus of Ē = E1, which confirms that at small indentation the e↵ective mod-
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Figure 9: Indentation response of an elastic hemispherical particle embedded in an elastic half space. Di-
mensionless e↵ective elastic modulus Ē/E1 versus dimensionless indentation radius a/b, as calculated by FE
simulations and using Eq.(32) (black solid line), the analytical model Eq.(27) (black dashed line), and the
analytical model for the incompressible material Eq.(31) (black dotted line). The results are shown for three
values of modulus mismatch, E2/E1 = 0.2, 1.0, and 5.0, and for (a) ⌫1 = ⌫2 = 0.0, (b) ⌫1 = ⌫2 = 0.1, (c)
⌫1 = ⌫2 = 0.2, (d) ⌫1 = ⌫2 = 0.3, (e) ⌫1 = ⌫2 = 0.4, (f) ⌫1 = ⌫2 = 0.5.

ulus equals the Young’s modulus of the hemispherical particle. Under continued indentation,

the e↵ective modulus of the sti↵ particle configuration, E2/E1 = 0.2, monotonically decreases,

for the homogeneous material, E2/E1 = 1.0, it remains constant and equals Ē = E1, and for

the compliant particle configuration, E2/E1 = 5.0, it monotonically increases. In agreement
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with the observation made from Figure 8, for the sti↵ particle configuration, E2/E1 = 0.2,

the analytical model for the incompressible bi-material closely matches the e↵ective modulus

determined from the FE simulations. For the homogeneous material the general analytical

expression, Eq.(27), and the expression for the incompressible bi-material, Eq.(31), lead to

the same result Ē = E1, which match the FE results. For the soft particle configuration,

E2/E1 = 5.0, the agreement between the e↵ective modulus expression, Eq.(27), and the FE

results is adequate for Poisson ratios in the range 0.2  ⌫i  0.3 where i 2 {1, 2}, and is

adequate up to an indentation of a/b = 0.3 to 0.4 for Poisson ratios falling outside this range.

From the above comparison with the FE results (and from similar comparisons with FE

results for alternative sti↵ness mismatches E2/E1 = 0.5 and 2.0, but omitted here for the sake

of brevity), it is concluded that the analytical expressions for the e↵ective elastic modulus Ē of

the indented bi-material given by Eqs.(27) and (31) are adequate for a broad range of sti↵ness

mismatches, 0.2  E2/E1  5.0, and Poisson ratios, 0  ⌫i  0.5 with i 2 {1, 2}, within the

following regimes of the normalized indentation radius a/b:

Ē =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

E1(�E2(a3 + 2b3 + (a3 � 4b3)⌫1) + (a3 � b
3)E1(1 + ⌫2))(1 + ⌫1)

(a3 + 2b3)E2(2⌫21 + ⌫1 � 1)� E1(�a3 + b3 + (2a3 + b3)⌫1)(1 + ⌫2)
,

for 0  a/b  1 if 1.0 < E2/E1  5.0 and 0.2  ⌫i  0.3 ,

for 0  a/b  0.3 if 1.0 < E2/E1  5.0 and 0  ⌫i < 0.2 or 0.3 < ⌫i  0.5 ,

for 0  a/b  1 if 0.5 < E2/E1 < 1.0 and 0.3  ⌫i  0.4 ,

for 0  a/b  0.5 if 0.5 < E2/E1 < 1.0 and 0  ⌫i < 0.3 or 0.4 < ⌫i  0.5 ,

E1
�
b
3 � a

3
�
+ E2a

3

b3
,

for 0  a/b  0.6 if 0.2  E2/E1  0.5 and 0  ⌫i  0.5 ,

with i 2 {1, 2} .
(33)

Note that in the above expressions the various regimes follow each other through the specific

ranges selected for the elastic parameters. The homogeneous limit E2/E1 = 1 is omitted

from Eq.(33), but, as has already been mentioned, the result is correctly obtained from this

equation as Ē = E1 for the complete range of Poisson ratios 0  ⌫i  0.5. Further, the

maximum indentation radius a/b = 1 for simplicity has been included in the applicability
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Figure 10: Indentation of an elastic, ideally plastic hemispherical particle of radius b (material 1) embedded in
an elastic half space (material 2), by an indenter of semi-apex angle ↵. The indentation produces a hemispherical
core of radius equal to the contact radius a, and a hemispherical plastic zone of radius c.

ranges of Eq.(33), although for certain combinations of elastic parameters the maximum value

of a/b may be somewhat smaller than unity, due to the fact that the indenter prematurely

touches the supporting material 2 under a relatively large vertical deformation of material 1,

see also Figures 8 and 9.

4.2. Indentation of an elastic, ideally plastic hemispherical particle embedded in an elastic half

space

The elastic configuration studied in Section 4.1 is now extended to the case of an elastic,

ideally plastic hemispherical particle (material 1) embedded in an elastic half space (material

2), see Figure 10. The size of the plastic zone generated within the hemispherical particle is

denoted by the radius c. The plastic zone can expand until it reaches the material interface

between the hemispherical particle and the supporting elastic half space, c = b, or until the

indenter reaches the material interface, a = b. The indentation response of the bi-material con-

figuration is analysed analytically by an adapted version of Johnson’s cavity expansion model

for a homogeneous material Eq.(15), and numerically by means of finite element analyses. The

adaptation of Johnson’s model involves the replacement of the Young’s modulus E in Eq.(15)
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by the analytical expression for the e↵ective elastic modulus Ē of the bi-material, leading to

pm

�y
=

8
>>><

>>>:

p

�y
+

2

3
for 2  Ē tan�

�y
 27,

2.8 for
Ē tan�

�y
> 27 ,

(34)

where

p

�y
=

2

3

✓
1 + ln

✓
1

3

Ē tan�

�y

◆◆
,

with Ē given by Eq.(27). Instead of Eq.(27), the refined, more complicated sti↵ness expression,

Eq.(33), could have been used, but it is expected that, due to the contribution of plasticity

e↵ects, this leads to only minor di↵erences in the elasto-plastic indentation response.

Figure 11 illustrates the indentation response from both the FE simulations and the ana-

lytical cavity expansion model of the bi-material, Eq.(34). The Poisson ratios of the materials

1 and 2 are taken to be ⌫1 = ⌫2 = 0.35. Note that the incorporation of the e↵ective elas-

tic modulus Ē of the bi-material in the dimensionless parameter (Ē tan�)/�y plotted along

the horizontal axis is consistent with the analytical expression in Eq.(34). Consequently,

the response plotted for the cavity expansion model includes the role of sti↵ness mismatch

E2/E1. As already discussed in Section 2.3, the mean FE response for a homogeneous ma-

terial, Ē = E1 = E2, is adequately approximated by the cavity expansion model. The mean

FE responses for the bi-material refer to a high sti↵ness ratio E2/E1 = 10 (red solid line)

and to a low sti↵ness ratio E2/E1 = 0.1 (blue solid line). These FE responses are calculated

by performing separate analyses for 9 di↵erent values of yield strength �y, which start along

the horizontal axis at 9 di↵erent values of (Ē tan�)/�y. In correspondence with the range of

validity of the cavity expansion model, the FE analyses are continued until the plastic zone

reaches the material interface, c = b, or the indenter reaches the material interface, a ⇡ b.

For small indentations the contribution of the supporting material 2 to the overall response

is negligible, as a result of which the e↵ective modulus equals that of the hemispherical particle,

Ē = E1. Under increasing indentation of the particle embedded in a relatively compliant half

space, E2/E1 = 0.1, the values of (Ē tan�)/�y and pm/�y decrease in the initial elastic regime

and also in the subsequent elasto-plastic regime. Specifically, the contribution of the compliant

half space to the response grows with increasing indentation, so that the values of the mean
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hydrostatic stress pm = F/Ap and the e↵ective modulus Ē diminish, as already observed

for the elastic responses shown in Figures 8 and 9, respectively. For the same reason, the

elastic and elasto-plastic indentation responses of the particle embedded in a relatively sti↵

half space, E2/E1 = 10, reveal an increase of (Ē tan�)/�y and pm/�y. Note further that, in

the final, plastic regime, the mean indentation pressure pm is almost insensitive to the elastic

properties of the bi-material, and is essentially set by the yield strength �y.

In summary, the elastic, ideally plastic indentation response of a bi-material can be quan-

tified in terms of the e↵ective elastic modulus, Eq.(27), in the representation in Figure 11,

with the FE results supporting the analytical cavity expansion model, Eq.(34). Thus, the cav-

ity expansion model can be used as a practical, analytical tool to estimate the elasto-plastic

material properties of embedded samples from indentation tests.

1 10 100
0.0

1.0

2.0

3.0
Elastic Elasto-Plastic Plastic

Figure 11: Indentation of an elastic, ideally plastic hemispherical particle embedded in an elastic half space.

Mean indentation pressure pm normalized by the yield strength �y as a function of the dimensionless parameter

(Ē tan�)/�y, with Ē given by Eq.(27). The FE results are depicted for a homogeneous solid, E2/E1 = 1 (black

solid line), and for bi-materials with modulus mismatches E2/E1 = 0.1 (blue solid line) and E2/E1 = 10 (red

solid line), with 9 initial values of (Ē tan�)/�y. The Poisson’s ratios are ⌫1 = ⌫2 = 0.35. The analytical result

for the cavity expansion model of the bi-material Eq.(34) (black dashed line) holds for arbitrary value of the

sti↵ness mismatch E2/E1 via the parameter Ē.

5. Applicability of analytical model to indentation test on embedded paint sample

The practical applicability of the analytical expression for the e↵ective modulus, Eq.(27),

is demonstrated through a case study on indentation tests taken from the literature [21]. The

indentation tests were performed on an acrylic, titanium white paint layer of Golden Artist

24

Italy use
interpret

I



ab

z

x
Į hhc

Material 1
E1�Ȟ1

Material 2
E2�Ȟ2

hs

Figure 12: Indentation of a semi-infinite elastic bi-material with a straight, vertical material interface. The
indentation of material 1 (paint) is performed at a distance b from the interface with material 2 (resin). The
indentation depth h relates to a contact radius a, a contact depth hc, and a sink-in depth hs. The configuration
is representative of the embedded paint sample tested in [21].

Colors® (material 1) that was fully embedded in a resin specified as a Technovit® 2000 LC

fixing paste (material 2). The width of the paint sample was 210 µm and the thickness in

the depth direction was considerably larger, above 1 mm. The reduced modulus measured

by indenting the resin with a diamond Berkovich indenter was Er ⇡ 15 GPa [21]. Assuming

a representative value of ⌫2 = 0.35 for the Poisson’s ratio of the resin, Eq.(3) implies that

E2 ⇡ Er(1� ⌫
2
2) = 13.2 GPa.

A sketch of the geometry at the material interface and the characteristics of the indenter

is presented in Figure 12. The embedded paint sample was subjected to two indentations,

performed at distances b = 12 µm and b = 72 µm from the vertical interface between the paint

and the resin. The indentation tests were carried out using a continuous sti↵ness measure-

ment (CSM) technique, entailing harmonic loading of amplitude F0 at a frequency of 20 Hz,

superimposed on the quasi-static loading. This allows for the determination of the contact

sti↵ness as a function of indent depth without interrupting the indentation [6, 40]. The am-

plitude h0 of the induced dynamic oscillation was on the order of nanometers, much less than

that of the quasi-static signal. The contact sti↵ness S = (F0/h0) cos �, where � is the phase

shift between the harmonic load and displacement induced in the embedded viscoelastic paint

sample [6, 58, 59, 60].

The contact sti↵ness S measured at a specific quasi-static loading step Fmax and corre-

sponding indentation depth hmax provides the actual contact depth hc through Eq.(14) (using

⇠ = 0.75), which, under the assumption of a perfect Berkovich indenter, subsequently renders

the contact area as Ap = ⇡a
2 = ⇡(hc tan↵)2 [38], where ↵ = 68.6� for the Berkovich indenter
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employed in the experiment [21]. From the value of Ap and the corresponding value of S, the

e↵ective modulus Ē of the bi-material is calculated as

Ē =

p
⇡

2

S(1� ⌫
2
1)

�
p
Ap

. (35)

Equation (35) is an approximation based on Eq.(9) for a homogeneous solid, whereby the

Young’s modulus E is replaced by the e↵ective modulus Ē. Further, the factor � given by

Eq.(30) has been added to correct for the artificial overlap between the indenter geometry

and the deformed material surface, which typifies Sneddon’s solution, Eq.(9). The accuracy

of Eq.(35) for determining the e↵ective modulus of the experimental bi-material configuration

sketched in Figure 12 has been confirmed in Appendix A via a comparison with the indentation

result obtained from a detailed, three-dimensional FE simulation. Since the Berkovich indenter

used in the experiment generates a triangular shape indent, the e↵ective modulus computed

with Eq.(35) needs to be multiplied by a correction factor 1/⇣, with ⇣ = 1.034, see also the

discussion below Eq.(9).

Figures 13(a) and (b) show the normalized e↵ective modulus, Ē/E1, as a function of the

normalized contact radius a/b of the indenter, as measured at distances b = 12 µm and b = 72

µm from the material interface, respectively. The grey circles represent the experimental data

in the format provided by the sti↵ness expression, Eq.(35), and the black solid line reflects the

result from the analytical model, Eq.(27). In both figures the experimental data is accurately

matched by the analytical model, whereby it is observed that the indentation response close
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(a) b = 12 µm (b) b = 72 µm

Figure 13: Indentation response of a paint sample embedded in a resin. Dimensionless e↵ective elastic modulus
Ē/E1 versus the dimensionless indentation radius a/b, as determined from the experimental data in [21] via
Eq.(35) (grey circles), and from the analytical model, Eq.(27) (black solid line). The indentations were performed
at distances (a) b = 12 µm and (b) b = 72 µm from the material interface between the paint sample and the
supporting resin, see Figure 12 for the geometrical characteristics at the material interface.
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to the material interface, b = 12 µm, reveals a sti↵ening e↵ect caused by the supporting resin.

This sti↵ening e↵ect increases monotonically with indentation depth, and remains absent if

the indenter is su�ciently far away from the material interface, as can be clearly seen in Figure

13(b) for b = 72 µm. When assuming the Poisson’s ratio of the paint to be ⌫1 = 0.35 [52],

together with the elastic parameters of the resin, E2 = 13.2 GPa and ⌫2 = 0.35, the Young’s

modulus E1 of the paint material is obtained from Figures 13(a) and (b) by evaluating the

calibrated curves for the e↵ective modulus Ē at a/b = 0, resulting in E1 = 1.8 GPa for the

indentation at b = 12 µm, and E1 = 1.4 GPa, for the indentation at b = 72 µm. Interestingly,

these modulus values are in close correspondence with the values following from the calibration

procedure applied in [21], whereby the indentation response was corrected by compensating

for the overall structural compliance of the embedded paint sample. The relative di↵erence of

22% in the above two modulus values is likely caused by spatial material heterogeneities in the

test sample. With this result, the average sti↵ness mismatch of the embedded paint sample

becomes E2/E1 = 13.2/1.6 = 8.3. Although this sti↵ness mismatch is somewhat higher than

the initially estimated sti↵ness mismatch of E2/E1 = 5.0 adopted for generating the results

of the comparison study depicted in Figure 14 in Appendix A, it may be reasonably expected

that this does not significantly a↵ect the accuracy of the calibration procedure.

6. Conclusions

An analytical model has been successfully developed to deduce the elastic and plastic

properties of embedded samples from indentation measurements. The model makes use of the

analytical expressions for the elastic and elasto-plastic indentation responses of homogeneous

materials, but adapts them by the introduction of an e↵ective modulus for the embedded sam-

ple. The range of validity of the predictions has been established by comparing the analytical

results for various bi-material configurations with those from detailed finite element method

simulations. The analyses show that, in the elastic and elasto-plastic regimes, the indentation

response may be substantially influenced by the modulus of the embedding material. In the

fully plastic regime the response is essentially set by the yield strength of the embedded parti-

cle. The practical applicability of the indentation model has been demonstrated by deducing

the elastic modulus of a paint from indentation measurements on an embedded paint sample

as reported in the literature.
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Appendix A: Three-dimensional finite element model versus analytical model for

a paint indentation problem

The bi-material configuration sketched in Figure 12 represents a paint (material 1) em-

bedded in a resin (material 2), which has been subjected to indentation testing as reported in

[21], see also Section 5. The suitability of the analytical model, Eq.(27), for determining the

e↵ective sti↵ness Ē of this configuration is assessed by means of a comparison with the results

obtained from a detailed 3D FE indentation model. The 3D FE simulation is carried out in a

similar fashion as described in Section 2.3 for the axisymmetric indentation models. For the

tests performed in [21] the sample depth and width are considerably larger than the inden-

tation contact radius a and the distance b between the indenter and the material interface;

consequently, the geometry of the embedded sample is treated as semi-infinite. The origin of

the (x, y, z) coordinate system shown in Figure 12 corresponds to the horizontal centre point

of the half space configuration, and is located along the free upper boundary, at a distance b

from the vertical interface between the paint (material 1) and the supporting resin (material

2). The dimensions of the FE geometry are 100 ⇥ 100 ⇥ 50 µm3. This tetragonal volume

is discretized using 8-node iso-parametric brick elements with a 2 ⇥ 2 ⇥ 2 Gauss quadrature.

The model symmetry in the y-direction is exploited by applying appropriate fixed and roller

supports along the x� z plane that crosses the origin of the (x, y, z) coordinate system. The

semi-infinite character of the half space is simulated by placing 8-node infinite elements along
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Figure 14: Indentation response of the semi-infinite elastic bi-material with a straight, vertical material interface
as shown in Figure 12 (which represents an embedded paint sample). The modulus mismatch equals E2/E1 =
5.0 and the Poisson’s ratios are ⌫1 = ⌫2 = 0.35. Dimensionless e↵ective elastic modulus Ē/E1 versus the
dimensionless indentation radius a/b, as determined from applying the sti↵ness expression Eq.(35) (solid line)
to the FE results, and from the analytical model Eq.(27) (dashed line).

the lateral boundaries and the lower boundary of the FE model. The FE mesh is constructed

by employing 606786 finite elements and 22594 infinite elements, whereby the mesh density is

increased towards the indenter tip for obtaining highly accurate numerical results, as confirmed

from a mesh refinement study.

Figure 14 shows the e↵ective modulus calculated with the FE model and the analytical

model, by plotting the dimensionless modulus Ē/E1 versus the dimensionless indentation ra-

dius a/b for a sti↵ness mismatch of E2/E1 = 5.0 and Poisson’s ratios of ⌫1 = ⌫2 = 0.35. The

value of the sti↵ness mismatch is considered as an initial estimate for the embedded paint

sample tested in [21]. The e↵ective modulus is deduced from the FE results by applying the

sti↵ness expression Eq.(35), whereas for the analytical result it directly follows from Eq.(27).

The contact sti↵ness S in Eq.(35) is determined from the FE results via the discrete approx-

imation of its definition given in Eq.(11), i.e., S ⇡ �F/�h, with �F and �h the numerical

increments of the applied load and the indentation depth, respectively. The results of the FE

simulation are plotted up to the stage at which the indenter reaches the supporting material

2; as indicated in Figure 12, the contact radius a is measured in the direction opposite to the

material interface, so that the indenter reaches the material interface at a value a/b somewhat

smaller than unity, i.e., a/b = 0.76. It can be observed in Figure 14 that the analytical e↵ec-

tive modulus matches the numerical e↵ective modulus closely over its full range of indentation

radius a/b. Hence, the analytical model, Eq.(27), can be used for an accurate calibration of

the experimental indentation response presented in [21] if the interpretation of the test data
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is done with the sti↵ness expression, Eq.(35).
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