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Abstract 

The growth of voids at the electrode/electrolyte interface of a solid state Li battery is analysed 

by establishing a framework that uses the Onsager formalism to couple the power-law creep 

deformation of the Li electrode and flux of Li+ through a single-ion conductor solid electrolyte. 

For realistic combinations of the interfacial resistance and electrolyte conductivity, standard 

Butler-Volmer kinetics for the interfacial flux does not provide sufficient flux focussing to 

initiate void growth and so a modified kinetics is adopted where the interfacial resistance is 

decreased by the presence of dislocations within the creeping Li electrode. Micron-sized pre-

existing voids shrink under stripping conditions as flux focussing on the periphery of these 

voids is always low. However, spatially inhomogeneous creep in the electrode around a 

hemispherical impurity particle reduces the interfacial resistance with consequent significant 

flux focussing at the periphery of the impurity. This flux focussing results in void growth with 

two distinct regimes of behaviour: (i) at low currents stable but small voids form while (ii) at 

higher currents large voids form but these ultimately collapse. No conditions are identified for 

which isolated voids are predicted to grow larger than 10 μm in size suggesting that cell failure 

does not occur by the growth of isolated voids. We therefore propose a hypothesis for the 

coalescence of voids that initiate around impurity particles being deposited on the interface 

during stripping of the electrode. The ensuing predictions are consistent with measurements of 

cell failure and provide clues of the failure mechanisms due to void growth. 
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1.  Introduction 

Batteries with reactive metal anodes, such as Li or Na, have the potential to deliver higher 

specific energies [1, 2]. However, liquid electrolyte batteries with a Li metal electrode 

experience dendrite nucleation and growth from the Li electrode/electrolyte interface. These 

features can take the form of mossy growth [3], needle-protrusions or globular extrusions [4, 

5] and can grow across the electrolyte to short-circuit the battery. It was hoped that solid-state 

cells composed of stiff ceramic electrolytes would not experience dendrite nucleation and 

growth and would also deliver enhanced safety along with higher specific energies [6, 7]. In 

reality, solid-state cells also fail by short-circuiting due to the penetration of Li filaments 

through the ceramic electrolyte. This failure mode operates at currents exceeding the so-called 

“critical current density” [8, 9]; below the critical current density the battery can cycle stably.  

 

Bruce and co-workers [10, 11] have recently observed two distinct critical current densities: 

the critical current for stripping (CCS), and the critical current for plating (CCP). They 

observed that Li filaments initiate and grow in Argyrodite (Li6PS5Cl) electrolytes when Li 

metal is plated onto the electrode at a current that exceeds the CCP [10, 11]. Conversely, 

stripping Li metal electrode leads to the formation of voids in the electrode when the CCS is 

exceeded, resulting in a concentration of current at the remaining areas of contact between the 

electrode and electrolyte. Typically, the value of CCS is less than that of CCP and experiments 

suggest that Li filaments preferentially grow in the vicinity of voids at the electrode/electrolyte 

interfaces with voids reducing the CCP. Similar observations of two distinct critical current 

densities corresponding to plating and stripping have been reported in a wide range of solid-

state electrolytes with reactive metal electrodes including Li/LLZO (Li stuffed garnet 

Li7La3Zr2O12) [12, 13] and Na/Na-𝛽′′-alumina [14] interfaces. Thus, the prevention of void 
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growth is technologically important and a number of attempts have been made to design an 

architected electrode [15-17] to exploit creep for stabilising the electrode/electrolyte interface. 

 

A fundamental understanding of the mechanism of void formation and growth at the 

electrode/electrolyte interface is needed to improve battery performance. Recently, a series of 

elementary models [12, 18, 19] have been proposed suggesting that flux focusing around the 

periphery of an initial imperfection on the electrode/electrolyte interface is the cause of void 

growth. The basic hypothesis is sketched in Fig. 1a and is explained as follows. Imperfections 

along the interface and/or loss of contact between the electrolyte and the electrode due to 

surface roughness give rise to a circular disk of diameter 2𝑎0 where flux of the Li+ ions is 

blocked. The resulting spatially inhomogeneous electric field concentrates the Li flux around 

the periphery of the imperfection, which in turn induces creep deformation of the electrode and 

growth of the void. However, this simple explanation, based on Butler-Volmer kinetics, has a 

flaw as elucidated by Roy et al. [19] and enunciated as follows. 

 

Define the concentration factor 𝐾𝐽 for flux focussing as the ratio of the maximum interfacial 

flux at the periphery of the imperfection, i.e., max(𝑗), to the far-field interfacial flux 𝑗∞. 

Pedictions using the usual Butler-Volmer kinetics by Roy et al. [19] of 𝐾𝐽 as a function of 

�̅�0 ≡ 𝑎0/(𝜅𝑍0) are plotted in Fig. 1b; here, 𝜅 is the ionic conductivity of the electrolyte and 𝑍0 

is the interfacial resistance. We emphasise that the product 𝜅𝑍0 defines a material length scale 

and using typical values for Li/LLZO/Li cells, viz. 𝜅 = 0.4 mS cm−1 and 𝑍0 = 5 Ωcm2 [20], 

we obtain 𝜅𝑍0 ≈ 20 μm. Thus, given that the flux concentration 𝐾𝐽 < 3 for �̅�0 < 10 (Fig. 1b), 

this suggests that flux focussing remains small for imperfections of size < 200 μm. In fact, 

Roy et al. [19] demonstrated that, for 𝜅𝑍0 = 20 μm, no void growth will occur from 

imperfections < 1 mm in size. Interfacial imperfections > 1 mm are unrealistic and in fact 
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while voids do grow to > 100 μm in size [10], they are typically less than a few microns in 

diameter in the early stages of growth. 

 

  

Figure 1: (a) Sketch showing flux focussing over the periphery of the imperfection which sweeps Li 

over the void/imperfection surface and tends to grow a void at the interface, while the overall stripping 

flux in the electrode tends to close the void. (b) Predictions [19] using standard Butler-Volmer kinetics 

of the flux concentration factor 𝐾𝐽 around the periphery of the imperfection as a function of the 

normalised imperfection size �̅�0 ≡ 𝑎0/(𝜅𝑍0). 

 

Butler-Volmer kinetics, as employed in most of the literature including the work of Roy et al. 

[19], adequately describes the flux across the Li electrode/electrolyte interface when the 

electrode is not deforming. However, if the Li electrode maintains contact with a rigid solid 

electrolyte, a non-deforming electrode implies spatially uniform stripping/plating over the 

interface. But void growth implies spatially non-uniform stripping and is usually accompanied 

by power-law creep deformation of the electrode. The mechanism of power-law creep is climb-

mediated glide of dislocations [21] and Shishvan et al. [22] argued that nucleation and 

multiplication of dislocations strongly influence the interface kinetics. Accounting for the 

influence of dislocations, Shishvan et al. [22] showed that void growth can initiate from sub-
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micron scale impurity particles on the electrode/electrolyte interfaces due to a reduction in the 

interfacial resistance around the periphery of the impurity particles. The initiation of these 

voids is suppressed by the imposition of a stack pressure and the predictions of Shishvan et al. 

[22] are consistent with measurements reported by Wang et al. [13]. While Shishvan et al. [22] 

modelled the initiation of void growth from sub-micron sized impurity particles, it is known 

from experiments that voids can grow to sizes in excess of 100 μm [10]. The mechanism by 

which voids can grow to such large sizes remains unclear. The focus of this study is to extend 

the void initiation formulation of Shishvan et al. [22] to model the growth of voids at the 

electrode/electrolyte interface and propose a hypothesis for cell failure based on void 

coalescence.  

 

2. Problem definition and model formulation 

We consider the axi-symmetric problem sketched in Fig. 2a where Li+ is progressively stripped 

from the electrode across the Li electrode/LLZO electrolyte interface. Envision that a small 

hemispherical impurity particle, or hemispherical void, of radius 𝑎0 exists on the interface, 

thereby preventing flux across the interface over a circular patch of radius 𝑎0. The Li electrode 

maintains contact with the rigid solid electrolyte, and the growth of void is accompanied by 

deformation of the Li electrode via climb-mediated glide of dislocations, i.e., power-law creep 

[21]. We shall first summarise some key aspects of the thermodynamics of a Li electrode 

containing dislocations and vacancies as developed in [22]. Subsequently, we use the Onsager 

[23-24] formalism for non-equilibrium processes to develop an interfacial flux law for the case 

when a growing void exists within the electrode. 
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2.1 Summary of the effect of dislocations on interface kinetics 

Standard Butler-Volmer kinetics neglects the effect of dislocations in the Li electrode as the 

dislocation density in Li is vanishingly small in the absence of creep deformation. In creep 

deformation, the dislocation density increases with increasing deviatoric stress [21, 25] and 

Shishvan et al. [22] argued that the presence of the dislocations changes both the availability 

of lattice sites and the enthalpy of the Li+ ions in the electrode. Consequently, creep of Li 

affects interface kinetics with the two important effects of dislocations being: 

(i) The presence of dislocations results in a small expansion of the metal which in turn 

increases the effective fraction of vacant lattice sites within the Li electrode. This 

effective fraction 𝜃v  of vacant sites at a temperature 𝑇 is related to the density 𝜌d of 

dislocations of Burgers vector 𝑏 via 

𝜃v = exp (−
ℎv
𝑅𝑇
) + 𝛼

ΩLi(𝜌d𝑏
2)

Ωv
, (1) 

where ℎv is the enthalpy of vacancy formation in Li with 𝑅 the gas constant, Ωv and 

ΩLi are the molar volume of vacancies and Li, respectively, while the constant 𝛼 

depends on the metal crystal structure. For example, 𝛼 ≈ 0.25 for fcc Cu and ≈ 2.7 for 

bcc Fe [26]. The expression (1) is a sum of the fraction of vacancies in the Li (first 

term) and a term proportional to 𝛼 that models the extra space due to expansion of the 

lattice by dislocations.  

(ii) The distortion of the Li lattice both within the dislocation cores and by the long-range 

elastic fields of the dislocations enhances the enthalpy of the Li+ ions. 

 

Using (1) and the assumption that the fraction of effective vacant sites 𝜃v  is such that it 

minimizes the free-energy for a given 𝜌d (i.e., an equilibrium assumption), Shishvan et al. [22] 

calculated the enthalpy and entropy of the electrode as a function of the dislocation density. 



7 

 

They showed that the standard chemical potential of the Li+ ions (i.e., chemical potentials 

absent the configurational entropy contribution) within the electrode at an electric potential 𝜙p 

and subjected to a pressure 𝑝 is given by 𝜒Li+ = 𝜇0 + 𝑅𝑇 ln(𝜃v ) + 𝐹𝜙p + 𝑝ΩLi where 𝐹 is 

the Faraday constant and 𝜇0 the reference chemical potential at zero pressure and electric 

potential. Combining this relation with (1), we observe that 𝜒Li+  increases due to the presence 

of dislocations because of the enhancement in the enthalpy due to distortion of the Li lattice 

associated with dislocations. Given this expression for 𝜒Li+ , Shishvan et al. [22] evaluated the 

interfacial barrier for Li+ ions to cross the electrode/electrolyte interface using the usual Butler-

Volmer assumption that the barrier is set by the weighted mean of the standard chemical 

potentials of the two end-states. The increase in 𝜒Li+  reduces the barrier for the crossing of Li+ 

ions from the electrode to the electrolyte and thereby reduces the interfacial resistance 𝑍. 

Specifically, 𝑍 is related to the resistance 𝑍0 in the absence of dislocations by 

𝑍 = 𝑍0𝜃v 
𝛽−1

exp [−
(1 − 𝛽)ℎv

𝑅𝑇
], (2) 

where 0 ≤ 𝛽 ≤ 1 is the Butler-Volmer symmetry factor. Typically, 𝛽 equals 0.5 and, upon 

combining (1) and (2), we observe that the interfacial resistance 𝑍 decreases with increasing 

dislocation density 𝜌d. 

 

Following [25], the dislocation density in the Li metal subjected to a stress 𝜎 scales as 𝜌d ∝

(1/𝑏2)(𝜎/𝐺Li), where 𝐺Li is the shear modulus of Li. Consequently, the flux across the 

interface is strongly coupled to the creep deformation of the electrode. An increase in creep 

strain rate (or equivalently an increase in stress) reduces the interfacial resistance in the vicinity 

of the imperfection and thereby increases the flux concentration. This flux concentration in 

turn influences the creep of the electrode, resulting in strong two-way coupling between creep 

deformation and interface kinetics. 
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2.2 Interfacial flux for a Li electrode with a growing void 

A flux that varies along the electrode/electrolyte interface (which will occur during void growth 

within the electrode) necessarily requires deformation of the electrode. We calculate the 

interfacial flux by developing a variational principle [23-24] wherein the rate of loss of 

potential energy Π̇ of the electrode drives not only the dissipation due to creep within the 

electrode but also the dissipation associated with the interfacial flux. 

 

 

Figure 2: (a) Sketch of the axi-symmetric problem with an isolated hemispherical impurity particle on 

the interface of the stripping electrode/solid electrolyte. The symmetric cell shown is powered by an 

external power source with the cell subjected to a stack pressure 𝑝. The inset shows the small region of 

the cell that is analysed here with key features labelled. The (𝑟, 𝑧) co-ordinate system is included in the 

inset. (b) A representative example of the evolution of the “moving mesh” in the electrode around the 

impurity. 
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A large electrode (as shown in Fig. 2a with radius 𝑅Li and thickness 𝐻Li), in contact with an 

electrolyte, is maintained at an electric potential 𝜙p and is subjected to a stack pressure 𝑝. The 

primarily electrode deforms over a local volume 𝑉D, at the location where void growth may 

occur near the electrode/electrolyte interface (see inset of Fig. 2a). We analyse a small spatially 

fixed portion of the Li cell as shown by the dashed lines in Fig. 2a. Within this region analysed 

is a volume 𝑉 of the electrode that is sufficiently large that the remote boundaries are far from 

𝑉D: the remote Li electrode boundaries are non-deforming. The surface of 𝑉 is denoted by 𝑆, 

with 𝑆m (𝑧 = 𝐻 in Fig. 2a) and 𝑆I (𝑧 = 0− in Fig. 2a) denoting the top and bottom surfaces, 

respectively. The Li in 𝑉 occupies a region 𝑉Li ≤ 𝑉 as the impurity and/or void are also part of 

𝑉. It is instructive to separate the bottom surface 𝑆b of 𝑉Li into two portions such that 𝑆b ≡

𝑆e ∪ 𝑆v. Here, 𝑆e is just within the electrolyte along the portion of the interface where the Li is 

in contact with the electrolyte (i.e., 𝑆e is common to 𝑆b and 𝑆I) and 𝑆v is the void surface or 

impurity particle surface (if the Li is detached from the impurity, 𝑆v is the traction-free void 

surface while it is the impurity particle surface if the Li is in contact with the impurity). 

Importantly, as the void grows 𝑆e and 𝑆v are not spatially fixed boundaries. By contrast, the 

lateral and top boundaries of 𝑉Li are spatially fixed. Thus, while the region 𝑉 is a spatially fixed 

region, the region 𝑉Li is a mixed Eulerian/Lagrangian domain. In developing a variational 

principle, it is convenient to define 𝑉 as the system and consider the rate of potential energy 

change and dissipation within this system. 

 

The Li fluxes across the lateral boundaries of 𝑉 vanish while the Li flux and stack pressure 𝑝 

on the top surface 𝑆m of 𝑉 is spatially uniform and normal to the surface. The chemical potential 

of the Li entering 𝑉 via top surface 𝑆m is 𝜇Li = 𝜇0 + 𝑝ΩLi, where 𝜇0 is the reference chemical 

potential of Li. Along the 𝑆e portion of bottom surface of 𝑉, the chemical potential of Li+ 
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exiting the system is 𝜇Li+
e = 𝜇0

e + 𝐹𝜙, where 𝜇0
e is the reference chemical potential of Li in the 

electrolyte and 𝜙 is the electric potential in the electrolyte at the interface. Write the chemical 

potential of the electrons as 𝜇el− = −𝐹𝜙p while, under isothermal conditions for a region of 

fixed volume 𝑉, the rate of change of the Helmholtz free-energy of 𝑉 is �̇� = �̇�Li𝜇0 with �̇�Li 

being the rate of change of Li content 𝑁Li in 𝑉. The second law of thermodynamics requires 

that for an isothermal process the rate of change of potential energy Π̇ of volume 𝑉 satisfies 

the inequality 

Π̇ ≡ �̇� +
1

𝐹
∫ 𝜇Li𝑗𝑖

Li𝑛𝑖𝑑𝑆
𝑆m

+
1

𝐹
∫ 𝜇el−𝑗𝑖

el−𝑛𝑖𝑑𝑆
𝑆m

+
1

𝐹
∫ 𝜇Li+

e 𝑗𝑖
Li+𝑛𝑖𝑑𝑆

𝑆e

≤ 0, (3) 

where 𝑗𝑖
Li and 𝑗𝑖

el− are the fluxes of Li and electrons, respectively, across 𝑆m while 𝑗𝑖
Li+ is the 

Li+ flux across 𝑆e (the only flux leaving 𝑉 over 𝑆I is along 𝑆e) with 𝑛𝑖 denoting the normal to 

the respective surfaces. Note that in writing (3) we have neglected contributions from the work 

of adhesion between the Li and electrolyte and surface energy of Li. This assumption is justified 

by noting that the electrical energy and creep dissipation are significantly larger than the 

surface energy contributions and therefore this approximation is expected to result in negligible 

errors. 

 

Conservation of charge (i.e., the volume 𝑉 remains charge neutral) implies 

−∫ 𝑗𝑖
el−𝑛𝑖𝑑𝑆

𝑆m

+ ∫ 𝑗𝑖
Li+𝑛𝑖𝑑𝑆

𝑆e

= 0, (4) 

while conservation of Li demands 

∫ 𝑗𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

+ ∫ 𝑗𝑖
Li+𝑛𝑖𝑑𝑆

𝑆e

= −𝐹�̇�Li . (5) 

Upon substituting for the chemical potentials, viz. 𝜇Li+
e = 𝜇0

e + 𝐹𝜙,  𝜇el− = −𝐹𝜙p and 𝜇Li =

𝜇0 + 𝑝ΩLi, as well as recalling that 𝑝 is spatially uniform over 𝑆m it follows from (5) that 
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Π̇ =
1

𝐹
∫ (𝜇0

e − 𝜇0 + 𝐹𝜙)𝑗𝑖
Li+𝑛𝑖𝑑𝑆

𝑆e

− 𝜙p∫ 𝑗𝑖
el−𝑛𝑖𝑑𝑆

𝑆m

+
𝑝ΩLi
𝐹

∫ 𝑗𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

. (6) 

The overpotential across the electrode/electrolyte interface is defined as 𝜂 ≡ 𝜙p − (𝜙 + 𝒰) 

with the open circuit potential 𝒰 ≡ (𝜇0
e − 𝜇0)/𝐹. Now making use of (4) we obtain 

Π̇ = −∫ 𝜂𝑗𝑖
Li+𝑛𝑖𝑑𝑆

𝑆e

+
𝑝ΩLi
𝐹

∫ 𝑗𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

. (7) 

The decrease in potential energy of 𝑉 is associated with dissipation in 𝑉 by two mechanisms: 

(i) dissipation related to the creep deformation of the bulk electrode and (ii) dissipation 

associated with the flux of Li+ across the electrode/electrolyte interface. First consider 

dissipation in the bulk of the electrode due to incompressible creep flow of the Li. The 

deviatoric stress 𝑠𝑖𝑗 (≡ 𝜎𝑖𝑗 − (𝜎𝑘𝑘/3)𝛿𝑖𝑗 where 𝜎𝑖𝑗 is the stress and 𝛿𝑖𝑗 the Kronecker delta) in 

the Li is obtained from a dissipation potential Φm via 

𝑠𝑖𝑗 ≡
𝜕Φm

𝜕휀�̇�𝑗
, (8) 

where 휀�̇�𝑗 is an incompressible strain rate (i.e., 휀�̇�𝑘 = 0). Note that Φm = 0 in the void and/or 

impurity particle. The dissipation rate per unit volume in the bulk electrode is �̇�m =

(𝜕Φm/𝜕휀�̇�𝑗)휀�̇�𝑗. Next consider the dissipation associated with flux across the 

electrode/electrolyte interface. Following Shishvan et al. [22], we define an interface 

dissipation potential ΦI ≡ 𝑗2𝑍/2 (with 𝑗 = 𝑗𝑖
Li+𝑛𝑖) such that the dissipation rate per unit area 

of interface is �̇�I = 𝑗(𝜕ΦI/𝜕𝑗). 

 

We can now proceed to derive the flux relation for the deforming electrode. Following [22], 

define a functional 

Ψ(휀�̇�𝑗, 𝑗𝑖) ≡ Π̇ + ∫ ΦI𝑑𝑆 + ∫Φm𝑑𝑉
𝑉𝑆e

 . (9) 

The variation 𝛿Ψ with respect to arbitrary variations 𝛿𝑗𝑖 in flux is given by 
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δΨ = −
1

𝐹
∫ 𝜂𝛿𝑗𝑖

Li+𝑛𝑖𝑑𝑆
𝑆e

+
𝑝ΩLi
𝐹

∫ 𝛿𝑗𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

+∫
𝜕ΦI

𝜕𝑗
𝛿𝑗𝑖

Li+𝑛𝑖𝑑𝑆 + ∫
𝜕Φm

𝜕휀�̇�𝑗
𝛿휀�̇�𝑗𝑑𝑉

𝑉Li𝑆e

  

= 𝛿Π̇ + ∫ 𝛿�̇�I 𝑑𝑆 + ∫ 𝛿�̇�m 𝑑𝑉
𝑉Li𝑆e

 , 

(10) 

where 𝛿�̇�m = 𝑠𝑖𝑗𝛿휀�̇�𝑗 = 𝜎𝑖𝑗𝛿휀�̇�𝑗 since 휀�̇�𝑘 = 0 and we have replaced the integral over 𝑉 by the 

integral over 𝑉Li since Φm = 0 in the void and/or impurity particle. At equilibrium, arbitrary 

variations in the potential energy are balanced by the equivalent variations in the dissipation 

thereby requiring δΨ = 0. Write 𝑣𝑖 as the material velocity of the Li in the electrode and write 

the traction on the surface 𝑆Li of the volume 𝑉Li as 𝑇𝑖 ≡ 𝜎𝑖𝑗𝑛𝑗, where 𝑛𝑖 is the outward normal 

to 𝑆Li. Then, application of the divergence theorem, along with the stress equilibrium relation 

𝜎𝑖𝑗,𝑗 = 0 and the compatibility relation 휀�̇�𝑗 = 0.5(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) gives 

∫ 𝑇𝑖𝛿𝑣𝑖𝑑𝑆
𝑆Li

+∫ 𝑍𝑗𝛿𝑗𝑑𝑆
𝑆e

= ∫ 𝜂𝛿𝑗𝑖
Li+𝑛𝑖𝑑𝑆

𝑆e

−
𝑝ΩLi
𝐹

∫ 𝛿𝑗𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

 . (11) 

 

On 𝑆v, the traction 𝑇𝑖 vanishes where the Li has detached from the impurity, and 𝑣𝑖𝑛𝑖 = 0 

where the Li remains in contact with the impurity particle. Now write 𝑡𝑖 as a unit vector along 

the interfaces 𝑆v and 𝑆e, and assume that the Li is free to slip over both the impurity particle 

and the electrolyte surface 𝑆e such that 𝑇𝑖𝑡𝑖 = 0 on 𝑆v ∪ 𝑆e. Then recalling that the flux 

vanishes on the lateral boundaries, (11) simplifies to 

∫ 𝑇𝑖𝛿𝑣𝑖𝑑𝑆
𝑆m

+∫ 𝑇𝑖𝛿𝑣𝑖𝑑𝑆
𝑆e

+∫ 𝑍𝑗𝛿𝑗𝑑𝑆
𝑆e

= ∫ 𝜂𝛿𝑗𝑖
Li+𝑛𝑖𝑑𝑆

𝑆e

−
𝑝ΩLi
𝐹

∫ 𝛿𝑗𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

 . (12) 

Upon recalling that 𝑇𝑖 = −𝑝𝑛𝑖 and 𝑣𝑖 = 𝑗𝑖
LiΩLi/𝐹 over 𝑆m, and 𝑣𝑖 = 𝑗𝑖

Li+ΩLi/𝐹 over 𝑆e, it 

follows that 

𝑗 =
𝜂 − 𝑇𝑖𝑛𝑖ΩLi/𝐹

𝑍
 . (13) 

This is the usual form of the Butler-Volmer relation but here we have shown, using the Onsager 

[23-24] formalism, that it applies for a deforming electrode within which a void might grow. 



13 

 

Note that there are two sources for electro-mechanical coupling in (13): (i) the 𝑇𝑖𝑛𝑖ΩLi/𝐹 term 

in the numerator which is traditionally thought to be the source of the coupling and (ii) the 

interfacial resistance 𝑍 given by (2) that depends upon the dislocation density and hence also, 

in turn, on the mechanical state of the electrode. Typically, |𝑇𝑖𝑛𝑖ΩLi/(𝐹𝜂)| ≪ 1 and thus, as 

discussed in Roy et al. [19] and shown explicitly by Shishvan et al. [22], this term has little 

influence on the solution. We shall proceed to show that the strong electro-mechanical coupling 

which gives rise to void growth is an outcome of the changes in the interfacial resistance 𝑍 due 

to dislocations associated with the creep deformation of the electrode. 

 

2.3 The governing equations and constitutive models 

The governing equations for the mechanical fields within the electrode are strongly coupled to 

the electrochemical fields within the electrolyte and vice-versa. Here, we summarize these 

coupled governing equations and the associated constitutive models. 

 

2.3.1 Li electrode 

There is general agreement in the literature that Li, at room temperature, behaves as an 

incompressible creeping solid [21, 27]. Thus, the Li electrode is required to satisfy static stress 

equilibrium 𝜎𝑖𝑗,𝑗 = 0 while the velocity field is divergence-free, i.e., 𝑣𝑖,𝑖 = 0. The strain rate 

휀�̇�𝑗 ≡ 0.5(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) and the deviatoric stress are related via (8) with incompressibility 

implying that the hydrostatic stress 𝜎𝑘𝑘 is solved as a Lagrange multiplier to ensure 휀�̇�𝑘 = 0. 

These governing equations together are referred to as the nonlinear Stokes equations which 

implies that the Li electrode is essentially treated as an incompressible fluid. At high levels of 

stress, dislocation creep is the dominant mechanism and the stress is related to strain rate via a 

power-law relation. At lower levels of stress, diffusional flow (i.e., either Coble creep or 

Nabarro-Herring creep depending on the grain size) dominates with the stress scaling linearly 
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with strain rate. We define a dissipation potential Φm in terms of a reference stress 𝜎0 and 

strain rate 휀0̇ as 

Φm ≡

{
 
 

 
 
𝜎0휀0̇
𝑛 + 1

(
휀̇

휀0̇
)
𝑛+1

       for 휀̇ ≥ 휀ċ 

𝜎0휀ċ
2
(
휀ċ
휀0̇
)
𝑛

(
휀̇

휀ċ
)
2

  otherwise,

 (14) 

where 𝑛 is the power-law exponent. Here, 휀̇ ≡ √(2/3)휀�̇�𝑗휀�̇�𝑗 is the von-Mises effective strain 

rate in terms of the incompressible strain rate 휀�̇�𝑗 (i.e., 휀�̇�𝑘 = 0) and 휀ċ is the critical value of 휀̇ 

at which creep response transitions from diffusional flow to power-law creep. For this 

incompressible material, the incompressible strain rate 휀�̇�𝑗 is related to the deviatoric stress 𝑠𝑖𝑗 

via (8). The hydrostatic stress 𝜎𝑘𝑘 is not specified by the constitutive relation and is treated as 

a Lagrange multiplier that enforces incompressibility. We emphasize that (14) along with the 

associated parameters is an empirical relation based on creep measurements [21, 27] for 

polycrystalline Li and thus implicitly includes the effect of grain boundaries on the creep of 

polycrystalline Li. Typical grain sizes of Li electrodes are ~150 μm [27]. We shall show that 

the length-scale for void growth is ≪ ~150 μm and thus neglecting the effects of grain 

boundary heterogeneities on void growth is a reasonable assumption. 

 

It remains to relate the dislocation density 𝜌d to the deformation of the Li. In the linear viscous 

regime, deformation is an outcome of vacancy diffusion and the dislocation density is 

negligible. In contrast, power-law creep is a consequence of climb-assisted dislocation glide 

and there exists a large literature on the dependence of dislocation density upon magnitude of 

stress for a range of metals [28]. However, to-date there have been no such measurements 

reported for Li and hence we shall follow [22] in utilising the model of Weertman [25] which 

was motivated by measurements on metals such as aluminium. We specify that the dislocation 
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density scales with the von-Mises effective stress 𝜎 ≡ √(3/2)𝑠𝑖𝑗𝑠𝑖𝑗 and the shear modulus 𝐺Li 

of Li as  

𝜌d =

{
 

 𝑘 (
𝜎 − 𝜎c
𝐺Li𝑏

)
2

       for 𝜎 ≥ 𝜎c 

0                           otherwise,

 (15) 

where 𝑘 is a non-dimensional constant on the order of unity. In (15), 𝜎c ≡ 𝜎0(휀ċ/휀0̇)
𝑛 is the 

value of 𝜎 at which the creep behaviour transitions from linear viscous to power-law so that 

the above relation assumes that the dislocation density vanishes in the linear viscous regime. 

 

2.3.2 Solid electrolyte 

Now, consider the ceramic single-ion conductor electrolyte. We make two simplifying 

assumptions that have been widely used for such systems to reduce the complexity of the 

governing equations and allow for all of the required material and interfacial properties for 

Li/LLZO/Li symmetric cells to be directly obtained from measurements already reported in the 

literature. These assumptions are: (i) the electrolyte is electroneutral [29, 30] so that the 

concentration of Li+ within a homogeneous electrolyte is spatially uniform and balanced by 

the immobile anions and (ii) the molar volume Ωe of Li within the electrolyte is assumed to be 

zero [31-33]. Assumption (ii) is justified by speculating that the Li in Li-stuffed garnet-type 

ceramic electrolytes lies within a rigid ceramic skeleton which does not deform upon 

removal/addition of a Li atom. These assumptions significantly reduce the complexity of the 

governing equations which we now proceed to describe. 

 

The electrolyte is treated as an isotropic linear dielectric. Gauss’s law for a linear dielectric of 

permittivity ℇ requires that the electric field 𝐸𝑖 satisfies ℇ𝐸𝑖,𝑖 = 𝜌f where 𝜌f is the density of 

free-charge. Further, in electrostatics, the Maxwell-Faraday equation is automatically satisfied 
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by defining 𝐸𝑖 ≡ −𝜙,𝑖, where 𝜙 is the electric potential and so Gauss’s law reduces to ℇ𝜙,𝑖𝑖 =

−𝜌f. However, since we have restricted our analysis to the case of an electroneutral electrolyte 

where the concentration of the Li+ remains fixed at 𝑐e
0, the density of free-charge 𝜌f vanishes 

and Gauss’s law for the electrolyte reduces to 𝜙,𝑖𝑖 = 0. The flux of Li+ in the electrolyte is 

specified in terms of the local driving force given by the gradient of chemical potential of Li+. 

Specifically, this driving force is 𝑓𝑖 ≡ −𝜕𝜇Li+
e /𝜕𝑥𝑖 and the flux in the electroneutral electrolyte 

is ℎ𝑖 ≡ 𝑚𝑐e
0𝑓𝑖, where 𝑚 is the mobility of Li+ in the electrolyte. Typically, the flux in the 

electrolyte is measured in terms of the ionic current 𝑗𝑖 = 𝐹ℎ𝑖 of the Li+ ions, with the mobility 

written in terms of an ionic conductivity defined as 𝜅 ≡ 𝑗1/𝐸1 for an electrical field applied in 

the 1 −direction. Thus, upon setting 𝜅 = 𝑚𝑐e
0𝐹 the current is related to the gradient of the 

electric potential as 𝑗𝑖 = −𝜅𝜙,𝑖 which is essentially a statement of Ohm’s law. The divergence 

of the current is proportional to the rate of change of the concentration of Li+ ions and since 

we are constraining the electrolyte to remain electroneutral the current is divergence-free. The 

flux balance law then reduces to 𝜙,𝑖𝑖 = 0. Thus, for the electroneutral electrolyte with Ωe = 0, 

the electrical and Li+ flux balance laws reduce to a single governing equation given by the 

Laplace equation 𝜙,𝑖𝑖 = 0 that needs to be solved with appropriate boundary conditions. We 

emphasize that this reduction in the number of independent governing equations implies that 

no solutions exist for certain problems (e.g., electrolyte loaded by blocking electrodes that 

impose an electrical potential across the electrolyte but prohibit the flux of Li+ across the 

electrolyte/electrode interfaces). However, the electroneutrality assumption admits solutions 

for the boundary value problems analysed here and hence this simplification is considered 

appropriate for this study. In the following, it is convenient to define an electric potential �̂� ≡

𝜙 + 𝒰 with the governing equation in the electrolyte being �̂�,𝑖𝑖 = 0: this allows us to specify 

all boundary conditions for the electrolyte in terms of �̂� without the need to explicitly specify 

𝒰. 
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2.4 Boundary conditions 

We consider the case of an isolated hemispherical impurity/void of radius 𝑎0 on the 

electrode/electrolyte interface as shown in Fig. 2a and analyse a cylindrical region of radius 𝑅 

with the electrode/electrolyte interface located at 𝑧 = 0 and the bottom surface of the 

electrolyte at 𝑧 = −𝐿 while the top surface of the electrode is at 𝑧 = 𝐻 (see inset of Fig. 2a). 

With 𝐿 ≫ 𝑎0, this rear surface of the electrolyte is far from the imperfection and the electric 

field at 𝑧 = −𝐿 is one-dimensional. Thus, without loss of generality we can set �̂� = 0 on 𝑧 =

−𝐿. Similarly, the cylindrical surface at 𝑟 = 𝑅 is also far from the imperfection and there is no 

flux in the electrolyte across this surface. The boundary conditions (in cylindrical co-ordinates) 

for the Laplace equation �̂�,𝑖𝑖 = 0 governing the electric potential within the electrolyte are:  

�̂� = 0         over     𝑧 = −𝐿,

�̂�,𝑖𝑛𝑖 = 0          over     𝑟 = 𝑅,

�̂�,𝑖𝑛𝑖 = 0   over    the portion of 𝑧 = 0 that is not part of  𝑆e,

�̂�,𝑖𝑛𝑖 = −𝑗/𝜅   over    𝑆e.

 (16) 

Here, 𝑛𝑖 is the outward normal to the appropriate surfaces of the electrolyte and the current 𝑗 

is given by rewriting Eq. (13) as 

𝑗 =
(𝜙p − �̂�) − 𝑇𝑖𝑛𝑖ΩLi/𝐹

𝑍
 , (17) 

where 𝜙p is the imposed value of the electrode potential and 𝑇𝑖 the traction on the electrolyte 

surface in contact with the electrode (which is equal and opposite to the traction on the electrode 

surface). Both the traction 𝑇𝑖 on the electrolyte surface and the interfacial resistance 𝑍 are not 

known without a solution of the creep deformation within the electrode, i.e., electrical fields 

within the electrolyte are fully coupled with the mechanical deformation of the electrode. 

 

We analyse the central region 𝑉Li which is bounded by a mixture of Eulerian and Lagrangian 

surfaces. The Eulerian surfaces (i.e., surfaces fixed in space with material flowing across them) 
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are the top surface located at 𝑧 = 𝐻 (i.e., 𝑆m) and the side surface at 𝑟 = 𝑅. The boundary 

conditions along the bottom surface 𝑆b ≡ 𝑆e ∪ 𝑆v are more complex and evolve with the 

growth of the void. The surface 𝑆b has two portions: (i) a surface 𝑆e along 𝑧 = 0 that is in 

contact with the electrolyte and located at 𝑟 > 𝑎, where 𝑎 ≥ 𝑎0 is the current radius of the void 

along 𝑧 = 0 (inset of Fig. 2a) and (ii) the void surface 𝑆v located at 𝑟 < 𝑎 and 𝑧 > 0 (inset of 

Fig. 2a). The surface 𝑆e is an Eulerian surface that is always at 𝑧 = 0 with Li+ flowing across 

it from the electrode to the electrolyte while 𝑆v is a Lagrangian surface and moves/evolves with 

the motion of the material (the Li electrode in this case). The boundary conditions imposed on 

the electrode assume that Li near the top and side faces of the volume 𝑉Li exists in a state of 

hydrostatic pressure 𝑝. The justification for this assumption is based on the friction hill analysis 

[34] that we briefly describe here. A friction hill analysis [34] of the electrode of the symmetric 

cell considered here (Fig. 2a) shows that there is no slip between the electrode/electrolyte 

interface over a central region of radius 𝑟s = 𝑅Li[1 + 𝐻Li ln(√3𝜇f) /(2𝜇f𝑅Li)], where 𝜇f is the 

friction co-efficient between the Li and the electrolyte. This is because friction between the 

electrode and electrolyte builds up hydrostatic pressure from the edge of the electrode so that 

the central portion is under hydrostatic pressure. For a relatively low value of 𝜇f = 0.2 and 

electrode of diameter 2𝑅Li =1 mm and thickness 𝐻Li = 40 μm [10], 𝑟s/𝑅Li ≈ 0.8 which shows 

that most of the electrode is under nearly pure hydrostatic pressure. Therefore, following [22] 

we model free slip on the contacting surfaces of the electrode along the impurity and electrolyte 

surfaces. Specifically, the imposed boundary conditions on the Eulerian surfaces are given by 

 
 𝑇𝑖𝑡𝑖 = 0  and 𝑇𝑖𝑛𝑖 = −𝑝       over 𝑟 = 𝑅 and over 𝑧 = 𝐻,

 𝑇𝑖𝑡𝑖 = 0 and 𝑣𝑖𝑛𝑖 =
𝑗ΩLi
𝐹

     over 𝑟 > 𝑎 on 𝑧 = 0 (i. e. , over 𝑆e).
 (18) 

Here, 𝑡𝑖 and 𝑛𝑖 are unit tangential and outward normal vectors to the electrode surfaces with 

𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗. On the Lagrangian void surface 𝑆v, we impose 𝑇𝑖 = 0 on the portion not in contact 

with the impurity (i.e., vacuum or no pressure inside the void as there is no path for atmospheric 
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air to enter the growing void) and frictionless contact over the portion in contact with impurity 

surface such that  𝑇𝑖𝑡𝑖 = 0  and 𝑣𝑖𝑛𝑖 = 0. Recall that, in (18), 𝑗 over 𝑆e is not known a-priori 

and requires the coupled solution with the governing equations of the electrolyte. 

 

Finally, we need to specify the loading of the cell. Envisage an external power source (Fig. 2a) 

connected to the symmetric cell being analysed. The loading due to this power source is 

specified in terms of the areal current density 𝑗∞ in the cell in the absence of impurity. In this 

case, the electric field within the electrolyte is one-dimensional with 𝑗∞ related to the electrode 

potential 𝜙p via 

𝑗∞ =
𝜙p

(𝐿/𝜅 + 𝑍0)
. (19) 

Since 𝑅 ≫ 𝑎, the relation 

𝐼 = 2𝜋∫ 𝑗 𝑟𝑑𝑟
𝑅

0

≈ 𝑗∞𝜋𝑅
2 (20) 

holds to within 0.005% for all the calculations presented here, i.e., to a very high degree of 

accuracy the total current is not affected by the presence of the impurity. 

 

2.5 Material parameters and numerical solution methodology 

All results are presented for an Li/LLZO interface of relatively low resistance which typically 

implies 2 Ωcm2 ≤ 𝑍0 ≤ 20 Ωcm2 [20]: here we choose a representative value of 𝑍0 = 5 Ωcm
2 

for all calculations presented in Sections 3 and 4. The material parameters for the LLZO and 

Li are well-established in the literature and are listed in Table 1. We shall present results for an 

impurity particle/void of radius 𝑎0 in the range 0.1 μm ≤ 𝑎0 ≤ 0.5 μm and, following 

Shishvan et al. [22], we will take 𝑎0 = 0.25 μm as the reference value. 
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Table 1: Summary of material parameters for an Li/LLZO/Li cell. 

Material parameter Symbol Value Ref. 

Conductivity of LLZO 𝜅  0.46 mS cm−1 [20] 

Shear modulus of Li metal 𝐺Li  3 GPa [21] 

Magnitude of Burgers vector 𝑏  0.25 nm [21] 

Molar volume of Li ΩLi  13.1 × 10−6 m3 mol−1 standard 

Enthalpy of vacancy formation in Li ℎv  50 kJ mol−1 [35] 

Molar volume of vacancies in Li metal Ωv  6 × 10−6 m3 mol−1 [36] 

Reference stress for Li metal 𝜎0  1 MPa [27] 

Reference strain rate for Li metal 휀0̇  0.01 s−1 [27] 

Critical strain rate for Li metal* 휀ċ 10−5 s−1 [21] 

Power-law exponent for Li metal 𝑛  1/6.6 [27] 

Reference interfacial resistance  𝑍0  5 Ωcm2 [20] 

Reference Butler-Volmer symmetry factor 𝛽 0.5 standard 
* Li metal in [21] has a grain size of 100 μm. 

 

The inclusion of the effect of dislocations on the interfacial flux requires some additional 

considerations. Consider the case of loading with a current 𝑗∞ = 1 mA cm
−2. The strain rate 

in the vicinity of a 𝑎0 = 0.25 μm impurity particle scales as 휀̇ ∝ 𝑗∞ΩLi/(𝐹𝑎0) and the stress 

follows from (14) as 𝜎 ≈ 1 MPa. Consequently, we anticipate a dislocation density 𝜌d ≈

0.3 μm−2 around the particle with an associated dislocation spacing 1/√𝜌d ≈  1.8 μm. On the 

other hand, large gradients in stress will occur over a length ≈ 10𝑎0 = 2.5 μm. Recall that the 

empirical dislocation density relation (15) is inferred from uniaxial tensile experiments and is 

valid when the spatial variations in 𝜎 are small over length scales on the order of the dislocation 

spacing. Clearly, this requirement is not met for the flow field within the Li around the 𝑎0 =

0.25 μm impurity and thus it is not appropriate to use (15) along with (1) and (2) to estimate 𝑍 

in a pointwise manner along the interface. To circumvent this issue, Shishvan et al. [22] 

proposed a scheme whereby a dislocation density averaged over a regularising length scale 𝜆 

is employed in (2) rather than a pointwise density. This sort of averaging to regularise a local 

constitutive description has been used extensively to describe mechanical properties; see for 

example [37-38] and here we shall extend such a scheme to model void growth. 



21 

 

 

First, consider the interfacial resistance 𝑍tip at the tip 𝑟 = 𝑎 of the void along 𝑧 = 0. We 

assume that 𝑍tip is set by an average dislocation density in the vicinity of the tip and thereby 

modify (2) so that 

𝑍tip = 𝑍0〈𝜃v 〉
𝛽−1 exp(−

(1 − 𝛽)ℎv
𝑅𝑇

), (21) 

where 〈𝜃v 〉 is a volume-averaged fraction of effective vacant sites given by 

〈𝜃v 〉 = exp (−
ℎv
𝑅𝑇
) + 𝛼

ΩLi𝑏
2

Ωv𝑉
∫ 𝑤𝜆𝜌d 𝑑𝑉.
𝑉Li

 

 

(22) 

Here, 𝑤𝜆 is a weighting function that is introduced to bias 〈𝜃v 〉 to depend more significantly 

on dislocations in the vicinity of the void tip. The regularising length scale 𝜆 is introduced 

through 𝑤𝜆 such that 

𝑤𝜆 ≡
exp[−(𝑑/𝜆)2]

∫ exp[−(𝑑/𝜆)2]𝑑𝑉
𝑉Li

  , 

 

(23) 

where 𝑑 is the radial distance of a material point within the Li electrode measured from the 

current tip of the void located at (𝑟, 𝑧) = (𝑎, 0); see inset of Fig. 2a. Recall that since the 

dislocation spacings are on the order of the length scales over which the electrode is deforming, 

we cannot calculate 𝑍 in a pointwise manner and hence propose a phenomenological form for 

the spatial distribution of 𝑍 along the interface. Recalling that the reduction in resistance is a 

maximum at the void tip (𝑟, 𝑧) = (𝑎, 0) and that 𝑍 will be affected by dislocations over a length 

that scales with the current void size we specify that 𝑍 varies as 

𝑍(𝑟) = 𝑍tip + (𝑍0 − 𝑍tip) [1 − exp (−
𝑟 − 𝑎

𝛾𝑎
)], (24) 
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where 𝛾 is a non-dimensional parameter that sets the length scale over which dislocations 

influence the interfacial resistance. Thus, accounting for the effect of dislocations within the 

electrode adds three new material parameters to the formulation, viz. 𝛼𝑘, 𝜆 and 𝛾. The 

parameters 𝛼𝑘 and 𝜆 are calibrated in [22] and here we shall use these values, viz. 𝛼𝑘 = 2.7 

and 𝜆 = 0.5 μm. The additional parameter 𝛾 is not precisely known via independent 

measurements and based on some scoping simulations carried out as part of this study we use 

𝛾 = 4 for the results presented in the main text and show the sensitivity of the results to the 

choice of 𝛾 in the Supplementary Information. 

 

In all calculations presented subsequently, we use a domain of size 𝑅 = 𝐿 = 𝐻 = 400𝑎0 which 

is sufficiently large to approximate an isolated impurity in an infinitely large cell. The coupled 

solutions of the Laplace equation in the electrolyte and nonlinear Stokes flow equations in the 

electrode were obtained using the Multiphysics software Comsol®. As shown in Fig. 2b, a 

regular mesh is needed in the Li for resolving the flow fields. To maintain the quality of the 

mesh during the void growth, we employ a feature called “moving mesh” in the Multiphysics 

software Comsol®; see Fig. 2b. With this feature enabled, the solution technique used in the 

electrode is akin to an Arbitrary Lagrangian-Eulerian (ALE) description which is capable of 

coping with the large distortion of the Li. Further, to impose contact between the Lagrangian 

Li surface and the impurity particle, we use the “volume force” interface/feature in the 

Multiphysics software Comsol® which penalizes the penetration of Li into the impurity 

particle. 

 

3. Predictions of interfacial flux focusing 

High flux focussing is a requirement to initiate void growth. Hence, we first discuss predictions 

of flux focusing to set the context of the void growth results presented in Section 4. All 
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predictions use the modified Butler-Volmer kinetics which accounts for the decrease in 

interfacial resistance due to dislocations associated with the creep deformation of the Li 

electrode. Throughout, time 𝑡 = 0 corresponds to the instant when the stripping current was 

imposed. 

 

A dimensional analysis provides insight into the dependence of flux focussing on key 

parameters that include the creep properties of the Li, the impurity size and the imposed 

stripping current 𝑗∞. For fixed values of the parameters 𝛼𝑘, 𝜆 and 𝛾 associated with the presence 

of dislocations, the functional form of the non-dimensional interfacial current at time 𝑡 = 0+ 

is 

 
𝑗

𝑗
∞

= 𝑓 [�̅� ≡
𝑟

𝑎0
, �̅�0 ≡ (

ΩLi
𝐹𝑍0

)

2
𝜎0
휀̇0𝜅

, �̅�
∞
≡

𝑗
∞
ΩLi

𝐹휀̇0𝜅𝑍0
, �̅�0 ≡

𝑎0
𝜅𝑍0

], (25) 

where 𝑗 = 𝑗𝑖𝑛𝑖 is the interfacial current along the interface with 𝑛𝑖 denoting the outward normal 

to the electrode. We now proceed to explore this dependency of 𝑗/𝑗∞ around both an isolated 

pre-existing hemispherical void or impurity particle of radius 𝑎0. 

 

3.1 Low flux focusing on the periphery of pre-existing voids 

First consider the case of a pre-existing hemispherical void of radius 𝑎0. Predictions of the 

spatial variation of the normalised flux 𝑗/𝑗∞ along the interface at time 𝑡 = 0+ are shown in 

Fig. 3a for selected choices of 𝑎0. A small flux concentration exists at the periphery of the void 

(𝑟/𝑎0 = 1) with the flux dropping to its far-field value of 𝑗∞ for 𝑟/𝑎0 > 3. We define the flux 

concentration factor as 𝐾𝐽 = max (𝑗)/𝑗∞ and include predictions of 𝐾𝐽 as a function of 𝑎0 in 

Fig. 3b. Over the entire range of void sizes investigated here 𝐾𝐽 ≈ 1 which implies spatially 

uniform stripping with minimal deformation of the Li electrode. Under these conditions, the 

void is expected to shrink rather than grow (this is shown explicitly in Section 4.1). Thus, 
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stripping in the presence of a pre-existing void occurs without creep deformation and therefore 

the strain rate and stress fields within the electrode almost vanish. We can therefore set 휀0̇ →

∞ and the functional dependence (25) of 𝑗 upon the independent non-dimensional groups 

reduces to 𝑗/𝑗∞ =  𝑓[�̅�, �̅�0]. Consequently, flux focussing predictions presented in Fig. 3 are 

independent of the creep properties of the Li and the imposed stripping current 𝑗∞. We note in 

passing that since there is no creep deformation of the electrode around a pre-existing void and 

hence no generation of dislocations within the electrode, standard Butler-Volmer kinetics 

adequately describes the interface flux in this case. 

    

Figure 3: (a) Spatial distribution of the normalised flux 𝑗/𝑗∞ over the interface at time 𝑡 = 0+ for three 

initial sizes 𝑎0 of a pre-existing hemispherical void at the interface and a hemispherical impurity of size 

𝑎0 = 0.25 μm. (b) The corresponding flux concentration factor 𝐾𝐽 as a function of 𝑎0 for impurity 

particles and pre-existing voids. The normalised fluxes for a pre-existing void are insensitive to the 

current 𝑗∞ but are strongly influenced by 𝑗∞ for the impurity.  

 

3.2. High flux focusing on the periphery of impurities on the interface 

The presence of dislocations enhances the flux focussing by reducing the interfacial resistance, 

but dislocations are only generated when the Li deforms, i.e., a spatially non-uniform velocity 

field is required to exist within the Li. One scenario where a spatially non-uniform velocity 
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field is inevitable is when an impurity particle is present on the interface as shown in Fig. 2a: 

flux across the interface is prevented by the impurity and compatibility of deformation implies 

that Li needs to flow over the impurity particle surface. This spatially inhomogeneous flow will 

induce deformation within the Li and thereby generate dislocations. To address this, we 

proceed to analyse the case of a hemispherical solid impurity particle of radius 𝑎0 on the 

interface. 

 

Predictions of the normalised flux 𝑗/𝑗∞ over the interface at time 𝑡 = 0+ are also shown in 

Fig. 3a for an impurity of size 𝑎0 = 0.25 μm and imposed currents 𝑗∞ = 1 mAcm−2 and 

0.6 mAcm−2. These results are markedly different from that for a pre-existing void in two 

important ways: (i) the flux concentration around the periphery is much higher such that 𝐾𝐽 ≈

8.5 for the impurity particle while 𝐾𝐽 ≈ 1 for the same size of a pre-existing void, and (ii) 

significant stresses are generated in the Li electrode and consequently the normalised 

interfacial fluxes are now dependent on 𝑗∞ in line with the full dependence shown in (25). The 

dependence of flux concentration factor 𝐾𝐽 upon impurity size 𝑎0 is included in Fig. 3b for two 

values of 𝑗∞. The variation of 𝐾𝐽 with 𝑎0 is very similar for two values of 𝑗∞ and additionally, 

𝐾𝐽 increases with increasing 𝑗∞. Intriguingly, in contrast to the case of a pre-existing void, 𝐾𝐽 

for an impurity particle varies non-monotonically with increasing 𝑎0. 
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Figure 4: (a) The variation in 𝑍tip with impurity particle radius 𝑎0 at time 𝑡 = 0+ and (b) the 

corresponding velocity �̇� of the growth of the void along the interface at time 𝑡 = 0+. Results are shown 

for two choices of the stripping current 𝑗∞. In (a) we also show the case of the void where 𝑍tip/𝑍0 = 1 

over the whole range of 𝑎0 values investigated here. 

 

The source of this rather counterintuitive behaviour can be traced to 𝑍tip. Predictions of the 

initial (𝑡 = 0+) normalised tip interfacial resistance 𝑍tip/𝑍0 as a function of 𝑎0 are given in 

Fig. 4a. While 𝑍tip  equals 𝑍0 for a pre-existing void, 𝑍tip is much less than 𝑍0 for an impurity 

particle on the interface. This decrease in interfacial resistance around the periphery of the 

impurity particle is the source of the high flux concentration when an impurity particle is 

present – a lower 𝑍tip value implies a higher interfacial flux for the same overpotential across 

the interface. The non-monotonic variation of 𝐾𝐽 with 𝑎0 (Fig. 3b) is also mirrored in 𝑍tip 

(Fig. 4a) and both the reduction in 𝑍tip compared to 𝑍0 and the non-monotonic variation can 

be understood by considering the stress (and dislocation density) in the vicinity of the impurity 

particle. The spatial variation of the normalised von-Mises stress 𝜎/𝜎0 in the Li around the 

impurity at 𝑡 = 0+ for impurity particles of radii 𝑎0 = 0.1 μm, 0.5 μm and 10 μm is included 

in Fig. 5 (for an imposed current 𝑗∞ = 1 mAcm−2). Large stresses develop in the vicinity of 
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the impurity particle and are associated with spatial gradients in the velocity field: the flow of 

Li around the impurity results in a strain rate in the vicinity of the impurity particle that scales 

as 𝑗∞ΩLi/(𝐹𝑎0) and thus, the strain rates (and stresses) decrease with increasing 𝑎0. However, 

the region over which these large stresses persist also scales with 𝑎0 and this implies that while 

the stresses increase with decreasing 𝑎0 these stresses are increasingly localised over smaller 

volumes. These stresses within the Li (which in turn set the dislocation density distributions – 

see dual colour bar scale in Fig. 5) explain the high values of 𝐾𝐽 and the corresponding non-

monotonic variation in 𝐾𝐽 with 𝑎0 as follows: 

(i) The high stresses around the impurity lead to a high dislocation density 𝜌d (Fig. 5) 

which in turn reduces 𝑍tip, see (21) and (22). 

(ii) High stresses and high dislocation densities exist over a region of size ~𝑎0 around 

the impurity. On the other hand, the volume-averaged dislocation density in (22) 

that sets 𝑍tip is calculated by averaging over a length scale 𝜆 = 0.5 μm. Thus, the 

average dislocation density is low in the 𝑎0 = 0.1 μm case as the averaging region 

is larger than the region over which the high stresses exist; see Fig. 5a. With 

increasing 𝑎0 the stresses are high over a larger portion of the averaging region 

(Fig. 5b) and thus 𝑍tip decreases and 𝐾𝐽 increases. This continues until 𝑎𝑜 ≈ 𝜆. 

(iii) For 𝑎0 > 𝜆, deformation occurs over the entire averaging volume, but the strain 

rates which scale as 𝑗∞ΩLi/(𝐹𝑎0) decrease with increasing 𝑎0. Thus, the dislocation 

densities are lower and therefore 𝑍tip increases (Fig. 4a) and 𝐾𝐽 decreases (Fig. 3b) 

with increasing 𝑎0 > 𝜆. 

(iv) For impurity sizes 𝑎0 > 10 μm (Fig. 5c), the flux concentration factor 𝐾𝐽 again 

starts to increase with increasing 𝑎0 (Fig. 3b). This is surprising as the above 

arguments suggest that for 𝑎0 > 𝜆, 𝐾𝐽 should continue to decrease with increasing 
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𝑎0. However, another effect comes into play. Flux concentrations due to 

inhomogeneity in the electric field within the electrolyte increase as the material 

length scale 𝜅𝑍0 becomes on the order of the impurity sizes 𝑎0. For 𝑎0 > 10 μm, 

�̅� ≡ 𝑎0/(𝜅𝑍0) > 0.5 and the flux concentration due to the electric field within the 

electrolyte becomes significant. This effect combines with the elevation in 

dislocation density due to flow of Li in the electrode around the impurity to increase 

𝐾𝐽 with increasing 𝑎0 for 𝑎0 > 10 μm. 

 

Figure 5: Predictions of the distribution of the normalised von-Mises stress 𝜎/𝜎0 around the (a) 𝑎0 =

0.1 μm, (b) 𝑎0 = 0.5 μm and (c) 𝑎0 = 10 μm impurity particle at time 𝑡 = 0+ for a stripping current 

𝑗∞ = 1 mAcm
−2. We show a region (dashed line) of radius 𝜆 = 0.5 μm centred at the tip of the impurity 

(shaded grey) along the interface to indicate the region over which the dislocation density is averaged. 

Recalling that the dislocation density is directly related to 𝜎 via Eq. (15) we include a non-linear dual 

scale to indicate the spatial distribution of the dislocation density 𝜌d. 

 

The high flux concentration around the periphery of the impurity (i.e., high 𝐾𝐽 value) is 

commonly assumed to result in void growth [15]. For the low values of 𝐾𝐽 associated with a 

pre-existing void (Fig. 3), we show in Section 4.1 that the void shrinks over the full range of 

void sizes considered here. On the other hand, an impurity particle on the interface results in a 

high 𝐾𝐽 value and we expect voids to initiate under these circumstances. The initiation of void 
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growth occurs at the periphery of the impurity along the electrode/electrolyte interface (i.e., at 

(𝑟, 𝑧) = (𝑎0, 0)) and we give predictions of the initial void growth rate �̇� along 𝑧 = 0 in 

Fig. 4b. A positive value of �̇� implies the detachment of Li from the impurity at (𝑟, 𝑧) = (𝑎0, 0) 

and therefore the initiation of void growth commences over the whole range of impurity 

particle sizes and current densities considered in Fig. 4b. Importantly, the value of �̇� is sensitive 

to the value of 𝐾𝐽 such that a higher 𝐾𝐽 value results in a higher initial growth rate of a void. 

Additional exploratory calculations with lower currents 𝑗∞ (not included here for the sake of 

brevity) suggest that voids do not initiate (i.e., �̇� = 0) for 𝐾𝐽 values less than about 2.5. 

 

4. Analysis of void growth during stripping 

We proceed to analyse the temporal evolution of voids at the electrode/electrolyte interface 

during stripping of Li from the electrode. We consider the two cases of isolated hemispherical 

imperfections on the electrode/electrolyte interface discussed in Section 3: (i) a pre-existing 

void and (ii) a rigid impurity particle. 

 

4.1. Pre-existing voids shrink during stripping 

First consider the case of the isolated pre-existing hemispherical void of radius 𝑎0 = 0.25 μm. 

Predictions of the time-evolution of void shape are given in Fig. 6 at three selected times for 

the cell subjected to a current density 𝑗∞ = 0.5 mA cm−2 (see also Supplementary video S1). 

This figure also includes the spatial distribution of normalised flux 𝑗𝑧/𝑗∞ in the electrolyte, 

where 𝑗𝑧 is the flux in the 𝑧 −direction, and the spatial distribution of normalised von-Mises 

stress 𝜎/𝜎0 within the electrode. It is clear from the snapshots in Fig. 6 that the void shrinks 

(i.e., radius of the void decreases along 𝑧 = 0 and reduces in volume) under stripping 

conditions. This occurs with negligible deformation of the Li as is evident by observing that 

the stresses (and consequently strain rates) within the Li are small as anticipated from the flux 
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focussing predictions of Fig. 3. To further illustrate that stripping occurs with negligible 

deformation of the electrode, we include contours of the Stokes stream function 𝜓 within the 

electrode. These surfaces are placed such that the difference in value of the stream function Δ𝜓 

between consecutive surfaces is constant and given by Δ�̅� ≡ Δ𝜓𝐹/(𝑗∞ΩLi𝑎0
2) = 0.5 so that 

the volumetric flow rate of the Li between consecutive surfaces equals 𝑄 = 2𝜋Δ𝜓 =

𝜋(𝑗∞ΩLi𝑎0
2)/𝐹. The contours are almost vertical: recalling that the material velocities are 

parallel to the stream function contours, void shrinkage occurs with Li being uniformly stripped 

over the electrode/electrolyte interface 𝑆e.  

 

Figure 6: Snapshots showing the evolution of a pre-existing hemispherical void of radius 𝑎0 = 0.25 μm 

on the electrode/electrolyte interface with a stripping current 𝑗∞ = 0.5 mAcm
−2 (see also 

Supplementary Video S1). We include contours of the normalised von-Mises stress 𝜎/𝜎0 in the Li and 

the flux 𝑗𝑧/𝑗∞ in the electrolyte. Contour surfaces of equally spaced Stokes stream functions (with Δ�̅� =

0.5) are also shown to indicate the flow of the Li and the associated velocity gradients. 

 

4.2. Void growth occurs around an impurity particle on the interface 

Pre-existing voids on the electrode/electrolyte interface shrink but the flux focussing results of 

Section 3 indicate that void growth is expected to initiate around a hemispherical impurity 

particle on the electrode/electrolyte interface. We thus proceed to investigate temporal 
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evolution of void growth around an isolated hemispherical impurity both in the absence of and 

with an imposed stack pressure. 

 

4.2.1. Predictions in the absence of stack pressure 

Two distinct regimes of void growth are observed, depending upon the combination of imposed 

current and impurity size. We consider each of them in turn. First, consider the case of a high 

current with 𝑗∞ = 1 mA cm−2 and 𝑎0 = 0.25 μm. The temporal evolution of the growth of a 

void around the impurity is shown in Fig. 7 and Supplementary Video S2 with contours of 

normalised von-Mises stress 𝜎/𝜎0 and normalised flux 𝑗𝑧/𝑗∞ shown in the Li and electrolyte, 

respectively. Contour surfaces of the Stokes stream function 𝜓, spaced at Δ�̅� ≡

Δ𝜓𝐹/(𝑗∞ΩLi𝑎0
2) = 10, are included within the electrode to illustrate the flow of Li. Two 

phases of growth of the void are observed. Initially, the void grows along the 

electrode/electrolyte interface but without growing in height until 𝑡 ≈ 400 s: the void evolves 

to a pancake-like shape, as observed experimentally [10]. The contours of Stokes stream 

function curve over the surface of this growing void consistent with the void growing in the 

𝑟 −direction. At 𝑡 ≈ 400 s, the void along the electrode/electrolyte interface has attained a 

radius 𝑎 ≈ 4 μm and the void then begins to collapse, i.e., its volume reduces as its height 

shrinks but there is negligible reduction in the radius 𝑎 (Fig. 7). To understand this, recall that 

the high flux concentration around the periphery of the void causes the void to grow while the 

overall stripping flux 𝑗∞ tends to close the void. While the normalised void radius 𝑎/𝑎0 remains 

relatively small (𝑎/𝑎0 < 16 in this case), the mechanical support provided by the impurity 

particle combined with the high flux concentration is sufficient for the void to grow and not 

collapse. For 𝑎/𝑎0 ≥ 16, the dislocation density remains high on the void periphery (see dual 

colour bar scale in Fig. 7) and consequently there continues to be high flux focussing. However, 

the central mechanical support provided by the impurity particle is insufficient for this 
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relatively large void and the void begins to collapse under the high stripping flux of 𝑗∞ =

1 mA cm−2. 

 

Figure 7: Temporal evolution of void for evolving around an 𝑎0 = 0.25 μm impurity particle with an 

imposed stripping current  𝑗∞ = 1 mA cm
−2 (see also Supplementary Video S2). We include contours 

of the normalised von-Mises stress 𝜎/𝜎0 in the Li and the flux 𝑗𝑧/𝑗∞ in the electrolyte. Contour surfaces 

of equally spaced Stokes stream functions (with Δ�̅� = 10) are also shown to indicate the flow of the Li 

and the associated velocity gradients. Recalling that the dislocation density is directly related to 𝜎 via 

Eq. (15) we include a non-linear dual scale to indicate the spatial distribution of the dislocation density 

𝜌d. 

 

Now consider the case of a low stripping current 𝑗∞ = 0.4 mA cm−2 again with an isolated 

𝑎0 = 0.25 μm impurity on the interface. The temporal evolution of the Li around the impurity 

and the associated flux within the electrolyte are illustrated in Fig. 8 in a manner analogous to 

Fig. 7. A void initiates from the surface of the impurity and grows along the interface without 
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growing in height, i.e., it assumes a pancake shape. However, void growth is now less with the 

void attaining a maximum radius 𝑎 ≈ 1.5 μm. More intriguingly, this void, unlike the 𝑗∞ =

1.0 mA cm−2 case, does not collapse but stabilises at the state shown at 𝑡 = 1800 s in Fig. 8 

(see also Supplementary Video S3). We rationalise this by noting that the lower current implies 

a lower 𝐾𝐽 and thus the void does not grow to the extent seen in Fig. 7. This smaller void is 

mechanically supported by the impurity, and a balance is attained between the flux 

concentration at the void periphery that tends to grow the void and the overall stripping current 

𝑗∞ that tends to collapse the void. We emphasise that the stable voids are much smaller than 

those observed in experiments [10]. 

 

Figure 8: Temporal evolution of void for evolving around an 𝑎0 = 0.25 μm impurity particle with an 

imposed stripping current  𝑗∞ = 0.4 mA cm
−2 (see also Supplementary Video S3). We include contours 

of the normalised von-Mises stress 𝜎/𝜎0 in the Li and the flux 𝑗𝑧/𝑗∞ in the electrolyte. Contour surfaces 

of equally spaced Stokes stream functions (with Δ�̅� = 4) are also shown to indicate the flow of the Li 

and the associated velocity gradients. 

 

The results for calculations over a range of stripping currents and impurity particles sizes are 

summarised in Fig. 9a in terms of the maximum radius 𝑎max − 𝑎0 of the void along the 

electrode/electrolyte interface as a function of 𝑗∞. Here, 𝑎max is defined as either the maximum 
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radius of the stable void (Fig. 8 and Supplementary Video S3) or the maximum radius that the 

void attains before it collapses (Fig. 7 and Supplementary Video S2). Stable void radii in Fig. 

9a are marked with filled symbols while an open symbol indicates a collapsing void. Clearly, 

the regime of behaviour is dependent on both 𝑎0 and 𝑗∞ and we illustrate this via the map in 

Fig. 9b using axes of 𝑎0 and 𝑗∞. The map shows that for a given impurity size, stable voids 

form at low currents but voids collapse at higher currents and the transition current density 𝑗T 

increases with increasing 𝑎0. 

  

Figure 9: (a) Predictions of the maximum radius 𝑎max that a void growing around an impurity particle 

of radius 𝑎0 attains before it either collapses or attains a stable shape as a function of the stripping 

current 𝑗∞. Here 𝑎max is measured along the electrode/electrolyte interface and results shown for 

selected choices of the impurity size 𝑎0. We plot the results in terms of 𝑎max − 𝑎0 to allow for easy 

comparison across the different impurity particle sizes. The open and filled symbols indicate a 

collapsing and stable void, respectively. (b) A map using axes of 𝑎0 and 𝑗∞ to show the regimes where 

voids collapse or attain stable shapes. 

 

4.2.2. Effect of an imposed stack pressure 

The imposition of a stack pressure 𝑝 (Fig. 2a) is known to suppress the formation of voids at 

the electrode/electrolyte interface [10, 13]. Here, we analyse the effect of stack pressure 𝑝 via 
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the boundary conditions detailed in Section 2.4 where the central portion of the electrode is 

under an overall state of hydrostatic pressure 𝑝.  

 

Figure 10: Temporal evolution of void for evolving around an 𝑎0 = 0.25 μm impurity particle with an 

imposed stripping current 𝑗∞ = 1 mA cm
−2 for a cell subjected to a stack pressure 𝑝 = 1 MPa (see also 

Supplementary Video S4). We include contours of the normalised von-Mises stress 𝜎/𝜎0 in the Li and 

the flux 𝑗𝑧/𝑗∞ in the electrolyte. Contour surfaces of equally spaced Stokes stream functions (with Δ�̅� =

10) are also shown to indicate the flow of the Li and the associated velocity gradients. 

 

The temporal evolution of the void growing around the 𝑎0 = 0.25 μm impurity is shown in 

Fig. 10 for the choice 𝑗∞ = 1 mAcm−2 and a stack pressure 𝑝 = 1 MPa (see also 

Supplementary Video S4). The void grows to 𝑎 ≈ 0.5 μm and then stabilises. By contrast, in 

the absence of a stack pressure the void grows to 𝑎 ≈ 4 μm and then collapses (Fig. 7). The 

imposed pressure suppresses void growth, and consequently the void remains sufficiently 

supported by the impurity particle preventing void collapse. Predictions of the temporal 

evolution of the void radius 𝑎 − 𝑎0 along the electrode/electrolyte interface for 𝑗∞ =

1 mAcm−2 at selected stack pressures 𝑝 are shown in Fig. 11a. Results are presented for voids 

growing from 𝑎0 = 0.25 μm and 0.5 μm impurity particles: as anticipated, void growth is 

reduced with increasing 𝑝. This is summarised in Fig.  11b where we include predictions of the 
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maximum radius 𝑎max − 𝑎0 of a void growing from the 𝑎0 = 0.25 μm impurity as a function 

of 𝑝 for two imposed currents 𝑗∞. The maximum void radius increases with increasing current 

and over the range of pressures and currents in Fig. 11, we again observe two regimes of 

behaviour, (i) void collapse, and (ii) formation of a stable void. The behaviour transitions from 

void collapse at low pressures to the formation of a stable void at larger pressures (the open 

and filled symbols in Fig. 11b indicate collapsing and stable voids, respectively). This 

behaviour is summarised in a map in Fig. 12 with axes of 𝑝 and 𝑗∞: for 𝑝 ≥ 1 MPa, a stable 

void forms for all currents investigated here while in the absence of superimposed pressure a 

stable void only forms for 𝑗∞ < 0.5 mAcm−2. 

  

Figure 11: (a) Temporal evolution of the radius 𝑎 of the void measured along the electrode/electrolyte 

interface for a stripping current 𝑗∞ = 1 mA cm−2 and two choices of the impurity particle radius 𝑎0 

and selected imposed stack pressures 𝑝. The curves that end with a cross indicate that the void collapsed 

onto the interface at this instant. (b) Predictions of the maximum radius 𝑎max that the void growing 

around an impurity particle of radius 𝑎0 attains before it either collapses or attains a stable shape as a 

function of the stack pressure 𝑝. Here 𝑎max is measured along the electrode/electrolyte interface. 

Consistent with Fig. 9, we plot the void size as 𝑎max − 𝑎0 and show results for two choices of the 

stripping current 𝑗∞ for an impurity particle of size 𝑎0 = 0.25 μm. The open and filled symbols indicate 

a collapsing and stable void, respectively. 
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Figure 12: A map using axes of the stack pressure 𝑝 and stripping current 𝑗∞ to show the regimes where 

voids collapse or assume a stable shape around an impurity of size 𝑎0 = 0.25 μm. 

 

5. A hypothesis for cell failure by void coalescence  

Our calculations show that while pre-existing voids shrink, voids grow around impurity 

particles on the electrode/electrolyte interface. However, these voids grow to radii of no more 

than ~10 μm before they either collapse or stabilise and thus these isolated voids cannot give 

rise to the measured precipitous increase in cell voltage during stripping. We hypothesise that 

the observed failure is a consequence of the coalescence of voids and proceed to discuss this 

mechanism in the context of our isolated void simulations presented above. 
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Figure 13: Sketches of impurity particles present in the Li electrode being deposited on the 

electrode/electrolyte interface during stripping, and the growth of a large void that is supported at 

multiple locations by these deposited impurity particles. 

 

The impurity particles on the interface can either pre-exist or be deposited on the interface from 

within the stripping Li electrode as illustrated in Fig. 13. Continued stripping results in an 

increasing density of impurity particles on the interface with voids growing around each of 

these impurities. Failure of the cell (i.e., precipitous increase in voltage to maintain the imposed 

cell current) will occur when voids growing around each of these impurity particles coalesce. 

Let 𝑓 denote the volume fraction of spherical impurities particles of radius 𝑎0 within the Li 

electrode. After stripping for a time 𝑡 with a current 𝑗∞, a height Δ𝐻Li = 𝑗∞𝑡ΩLi/𝐹 of Li has 

been stripped from the electrode (Fig. 13). All impurities within the stripped portion of the 

electrode are deposited on the interface. Assuming that these impurity particles are uniformly 

distributed over the interface, their spacing 𝐿p after a time 𝑡 of stripping is then given by 

 𝐿p ≈ √
𝐹𝑎0

3

𝑓𝑗∞𝑡ΩLi
. (26) 

Cell failure by void coalescence occurs at a time 𝑡 = 𝑡f when this impurity spacing is related 

to the maximum void radius via 𝐿p = 2𝑎max. It then follows that cell failure occurs after a 

critical stripping 𝐶crit = 𝑗∞𝑡f obtained from (26) as 
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 𝐶crit ≈
𝐹𝑎0

3

4𝑓𝑎max2
. (27) 

Recall that 𝑎max is a function of 𝑗∞ and the stack pressure 𝑝 (see for example Fig. 11b) and 

therefore (27) predicts that the critical stripping capacity at which battery failure occurs also 

depends on (𝑗∞, 𝑝). 

 

Predictions of 𝐶crit as a function of the stack pressure 𝑝 are included in Fig. 14a for two choices 

of 𝑗∞ and our reference set of parameters with 𝑎0 = 0.25 μm and a volume fraction 𝑓 = 0.01% 

of impurities. In qualitative agreement with measurements, the tendency for cell failure 

decreases (i.e., critical stripping capacity 𝐶crit increases) with increasing stack pressure for a 

given current and with decreasing current for a given stack pressure. Measurements of cell 

failure are typically conducted by imposing a constant current 𝑗∞ and then gradually decreasing 

the imposed stack pressure until failure due to a precipitous voltage increase occurs [10-13]. 

From these measurements, we can extract the time 𝑡f of failure when failure occurs at the stack 

pressure 𝑝. Measurement of (𝐶crit ≡ 𝑗∞𝑡f, 𝑝) from [12] is included in Fig. 14a and clearly 

shows that the model grossly overpredicts the measured critical stripping capacity. Specifically, 

at an imposed pressure 𝑝 = 0.1 MPa the predictions suggest 𝐶crit ≈ 1 mAhcm
−2 for a current 

𝑗∞ = 0.6 mAcm−2 while the measurements show that a current as low as 𝑗∞ = 0.1 mAcm−2 

results in failure at 𝐶crit ≈ 1 mAhcm
−2. 
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Figure 14: Comparison between predictions and measurements [12, 13] of cell failure by the 

coalescence of voids growing around impurity particles being deposited on the interface as depicted in 

Fig. 13. Predictions using (a) reference parameters and (b) modified parameters with 𝑍0 = 20 Ωcm
2 

and 𝛽 = 0. All predictions use spherical impurity particles of radius 𝑎0 = 0.25 μm and a volume 

fraction 𝑓 = 0.01% of impurities. The imposed currents 𝑗∞ in mAcm−2 and the associated reference 

(within square brackets) for the experimental data points are indicated in each case. 

 

We attributed this discrepancy between predictions and measurements to uncertainties of the 

model parameters and therefore performed an extensive parametric study to examine the 

sensitivity of the predictions to key parameters. This study revealed that increasing the interface 

resistance to 𝑍0 = 20 Ωcm2 and employing a reduced Butler-Volmer symmetry factor of 𝛽 =

0 bring the predictions more in line with the measurements. Predictions with these modified 

parameters (Fig. 14b) show excellent agreement with measurements not only from Ref. [12] 

but also from Ref. [13] that employed a higher stack pressure. It is worth emphasizing that it 

generally known that a higher electrode/electrolyte interface resistance increases the propensity 

of cell failure, and our predictions were brought into agreement with measurements by 

increasing this interfacial resistance. Thus, while our predictions strongly suggest that the 
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failure mechanism is the coalescence of voids growing around impurities deposited on the 

interface, additional experiments are of course required to test this new hypothesis. 

 

6. Concluding discussion 

We have investigated the growth of voids at the electrode/electrolyte interface using a 

framework that couples, via the Onsager formalism, power-law creep deformation of the Li 

electrode and flux of Li+ through a single-ion conductor solid electrolyte. The dissipation at 

the electrode/electrolyte interface is modelled by a modified Butler-Volmer kinetics wherein 

dislocation-driven creep deformation of the Li electrode leads to a reduction in the interfacial 

resistance. The dislocation density is set by the deviatoric stresses within the electrode and thus 

the governing equations for the mechanical fields within the electrode are strongly coupled to 

the electrochemical fields within the electrolyte and vice-versa. 

 

Pre-existing micron-sized voids along the electrode/electrolyte interface shrink during 

stripping of the electrode as there is near uniform stripping of Li over the interface. This in turn 

implies a negligible dislocation density in the electrode and thereby no reduction of interfacial 

resistance near the void. In contrast, when an impurity particle is present on the interface, the 

impurity blocks the Li flux and enforces a non-uniform velocity field (i.e., deformation) of the 

electrode. This deformation and consequent increase in the dislocation density result in a large 

flux concentration around the periphery of the impurity particle which induces the initiation 

and growth of a void around the impurity particle. Two regimes of void growth are predicted: 

(i) at low stripping currents and impurity particle sizes, small and stable voids form and (ii) at 

high currents or larger impurity particle sizes, larger voids form but these voids ultimately 

collapse as the impurity particle provides insufficient structural support to keep large voids 

open. The imposition of a stack pressure typically tends to reduce the void size with these 
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smaller voids being stable. Nevertheless, for impurity particles on the order of a micron or less, 

isolated voids grow to no greater than 10 μm in size which is substantially smaller than the 

observed 100 μm or so void sizes. 

 

While the physics which allows for isolated voids to grow to large sizes (e.g., > 100 μm) is 

unclear, we hypothesized that cell failure occurs by the coalescence of voids that grow around 

impurity particles deposited on the interface from within the stripping Li electrode. These 

predictions suggest that cell failure is not only dependent on the imposed stack pressure and 

cell current but also depends on the stripping time. The model predictions were shown to be in 

good agreement with measurements over a range of cell currents and stack pressures. 

Nevertheless, this is a new hypothesis for cell failure by void coalescence and requires further 

experimental validation. 
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Supplementary Information 

 

Influence of the parameter 𝛄 that sets the averaging length scale 

The non-dimensional parameter 𝛾 sets the length scale over which dislocations influence the 

interfacial resistance. We have used 𝛾 = 4 in all the calculations in the main body of the paper. 

To illustrate the influence of 𝛾, we include in Fig. S1 predictions of the temporal evolution of 

the void radius 𝑎 along the electrode/electrolyte interface around an 𝑎0 = 0.25 μm impurity 

particle. Results are shown for 𝛾 = 2 as well as the reference value of 𝛾 = 4. In these 

calculations, a stripping current 𝑗∞ = 0.6 mAcm−2 was imposed with no stack pressure and 

the calculations terminated when the void collapses. While reducing 𝛾 results in the formation 

of a marginally larger void before collapse, the value of 𝛾 does not influence the regime of 

behaviour (i.e., void collapse or formation of a stable void). Moreover, over the full loading 

range (i.e., imposed current, pressure and impurity size) investigated here, the main conclusion 

that large voids on the order of 100 μm cannot form around isolated micron-sized impurity 

particles remains unaffected by the choice of 𝛾. 

 

Figure S1: Temporal evolution of the radius 𝑎 of the void measured along the electrode/electrolyte 

interface for a stripping current 𝑗∞ = 0.6 mA cm−2 and two values of the parameter 𝛾 (no stack pressure 

and 𝑎0 = 0.25 μm). In both cases the calculations are terminated by the collapse of the void.  
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Captions for Videos S1 to S4: 

Video S1: Temporal evolution of a pre-existing hemispherical void of radius 𝑎0 = 0.25 μm on 

the electrode/electrolyte interface with a stripping current 𝑗∞ = 0.5 mAcm−2. No imposed 

stack pressure. 

Video S2: Temporal evolution of void for evolving around an 𝑎0 = 0.25 μm impurity particle 

with an imposed stripping current  𝑗∞ = 1 mA cm−2. No imposed stack pressure. 

Video S3: Temporal evolution of void for evolving around an 𝑎0 = 0.25 μm impurity particle 

with an imposed stripping current  𝑗∞ = 0.4 mA cm−2. No imposed stack pressure. 

Video S4: Temporal evolution of void for evolving around an 𝑎0 = 0.25 μm impurity particle 

with an imposed stripping current 𝑗∞ = 1 mA cm−2 for a cell subjected to a stack pressure 𝑝 =

1 MPa. 

 
 


