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Abstract 

Finite strain numerical solutions are derived for the in-plane, elastic-plastic response of a filled 

hexagonal honeycomb in uniaxial compression and in uniaxial tension. The cell walls and core are 

treated as elastic, ideally plastic von Mises solids, but the uniaxial strength of the core material is much 

less than that of the cell walls. The honeycomb has sides of equal length, and its inclined (but non-

vertical) cell walls subtend an angle with respect to the transverse direction that can deviate from the 

usual value of +/-30° which is characteristic of a regular honeycomb. Two responses of the core are 

assumed: the fully bonded, ‘non-cavitating core’ (in the presence of a sufficiently high macroscopic 

pressure) and a ‘cavitating core’ that can cavitate or debond freely from the cell walls. When the 

honeycomb has cell walls that are inclined at 30° or less, the unit-cell response in uniaxial compression 

is stable and displays macroscopic hardening, regardless of whether the core can cavitate or not. In 

contrast, when the inclination of the cell walls exceeds 30°, the honeycomb with a cavitating core 

displays mild softening in uniaxial compression while the honeycomb with a non-cavitating core has 

a high initial yield strength, followed immediately by a strongly softening response. The strongly 

softening, isochoric mode occurs in an inclined shear band by the rotation of inextensional plastic 

hinges in the cell walls over a wavelength of two cells. A Maxwell construction is adequate for 

prediction of the propagation stress of the shear band in a finite specimen from a starter defect. 

Additional insight into the collapse mechanisms of the filled honeycomb (with a cavitating or non-

cavitating core) is obtained via analytical solutions for a rigid, ideally plastic honeycomb, whereby the 

cell walls are treated as slender beams and the core has vanishing deviatoric strength. The full 

numerical solutions reveal that the filled honeycomb exhibits strong tension-compression asymmetry 

for both a cavitating core and a non-cavitating core.  

Keywords:  lattice materials, hexagonal honeycomb, plasticity, finite strain, shear band, collapse 

mechanisms 
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1.  Introduction 

A literature has emerged over the past 30 years on the mechanics of porous micro-architectured 

materials, also termed ‘lattice materials’ (Gibson and Ashby (1997); Ashby et al. (2000), Fleck et al. 

(2010)). Recently, the subject has had a major stimulus due to the emergence of nanoscale porous 

materials and of additive manufacture and rapid prototyping technologies, offering the possibility of 

‘material properties upon demand’. The voids within a lattice material are usually air-filled and, to first 

order, the mechanical properties of a lattice material depend upon its relative density. Additional 

opportunities exist for multi-phase lattices, such that the voids are filled with a solid or liquid to 

enhance macroscopic stiffness and strength, thermal or electrical conductivity, and so on. Only a very 

limited literature exists on lattices that have been filled with solids or fluids that are nearly 

incompressible yet possess a low deviatoric strength (see for example Tankasala et al. (2021), Shalchy 

et al. (2022) and Wang et al. (2020)), despite the fact that numerous biological examples exist of such 

filled lattices, e.g. adipose tissue (Comley and Fleck (2010); Comley and Fleck (2012)). An analysis 

of complex biological systems will require modifications to the approach adopted in the present basic 

study. For example, visco-elastic effects may be important and, at small scale, surface tension may 

also play a role. 

A literature has been established on the in-plane compressive response of 2D and 3D lattice 

materials with a compressible foam core, see for example Cartie and Fleck (2003), Yan et al. (2013) 

and the recent review by Han et al. (2017). Synergistic strengthening can occur whereby the foam core 

stabilises the lattice against elastic or plastic buckling and changes the buckling mode. The structural 

benefit achieved by filling the air gaps of a lattice-cored sandwich panel with a ceramic or polymeric 

foam has also been explored, particularly for dynamic loading, see the recent review by Han et al. 

(2017). For the case of ballistic loading and shock loading, filling of the gaps between the struts of the 

lattice material adds mass to the sandwich structure and thereby reduces the kinetic energy of projectile 

and structure immediately following an inelastic impact event: this has been clearly demonstrated by 

the study of Wang et al. (2020) on the blast loading of a sandwich beam with a water-filled corrugated 

core. However, the water was contained in the corrugated core only by a weak sealing tape, and so the 

water was able to leak easily from the corrugated core and only provided minimal support of the lattice 

after initial impact. The existing literature does not address the collapse mechanisms of a 2D lattice 

under quasi-static in-plane loading by adding an incompressible fluid or solid of negligible deviatoric 

strength. This is a major objective of the present study. 
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A fundamental mechanics question is addressed in the present study: what is the effect upon the 

finite strain, in-plane response of a lattice material if its internal porosity is replaced by an 

incompressible solid of vanishing deviatoric strength, or equivalently by an incompressible, inviscid 

fluid? An initial attempt to address this question was made by Tankasala et al (2021). They analysed 

the small strain, elasto-plastic response of a fluid-filled hexagonal honeycomb and determined the 

sensitivity of shape of the yield surface to the inclination of the cell walls of the honeycomb. The 

macroscopic yield surface comprises several facets: some facets are associated with a weak, bending 

mode of collapse (macroscopic strength scaling quadratically with the relative density of the 

honeycomb) while other facets are dictated by a stronger, stretching mode (macroscopic strength 

scaling linearly with the relative density of the honeycomb). Tankasala et al (2021) also obtained 

closed form, analytical expressions for each facet of the in-plane yield-surface.  

 

1.1  Scope of present study 

The present study addresses the finite strain, elasto-plastic, uniaxial response of a filled hexagonal 

lattice. The sensitivity of macroscopic response to the presence/absence of core cavitation, cell wall 

inclination and relative density of the honeycomb is explored. An elastic, ideally plastic law is assumed 

for the hexagonal lattice, along with a much weaker elastic, ideally plastic response for the core. The 

significance of geometric hardening or softening is explored at finite strain, including the formation of 

crush bands and incompressible shear bands. The intent is to scope out the rich diversity of behaviour 

exhibited by the prototypical case of a 2D filled honeycomb.  

It is fully anticipated that several of the above features will persist when the lattice and core strain 

harden, and for the 3D case of a closed-cell 3D lattice or foam. In a preliminary investigation (not 

reported here in any detail), the authors included the role of strain hardening in the core and cell walls 

of the honeycomb.  It was found that the main features of macroscopic hardening and softening of the 

filled honeycomb were preserved when strain hardening was included. Thus, in order to highlight the 

major effects of geometric hardening and softening in dictating structural instabilities, and to make 

contact with analytical results such as those given by Tankasala et al. (2021), the authors chose to 

neglect the role of strain hardening in this initial study. 

Now consider the relative behaviour of 2D and 3D lattices. The macroscopic response of a filled 

open-cell 3D lattice or foam is significantly different to that of the closed-cell 3D microarchitectured 

solid: in the 3D open-cell case, the solid or fluid that fills the porosity can migrate from cell to cell 

rather than remain contained within each representative cell. By way of example, consider the yield 
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response of an open-cell metallic foam, as characterised by the Deshpande and Fleck (2000) yield law. 

The empty foam strains macroscopically in a deviatoric manner, with no volume change, under 

macroscopic shear loading. Consequently, the addition of an inviscid, incompressible fluid to the foam 

has no effect upon its macroscopic response provided the fluid can migrate freely from one cell to the 

next through the random microstructure. Such inter-cell transport is prevented in a closed-cell 2D or 

3D foam. 

 

1.2  The filled hexagonal honeycomb: geometry and properties of constituents 

The in-plane, elasto-plastic response of a filled hexagonal honeycomb, with cell walls of thickness 

𝑡 and length ℓ as shown in Fig. 1(a), is analysed by both finite element (FE) and upper bound analysis. 

The analytical model assumes rigid, ideally plastic beam theory for the cell walls, and an inviscid, 

incompressible core. In the finite element formulation, both the cell walls and the core comprise 

continuum elements made from elastic, ideally plastic von Mises solids. The cell walls possess a 

Young’s modulus 𝐸0 and yield strength 𝜎0, while the core has a Young’s modulus 𝐸𝐶 and yield strength 

𝜎𝐶 . The yield strength and modulus of the core are taken to be less than those of the cell walls, such 

that 𝜎𝐶 = 10−4𝜎0 and 𝐸𝐶 = 10−4𝐸0. Consequently, the core has the same yield strain as that of the 

cell walls, 𝜀0 = 𝜎0/𝐸0 = 0.001. The Poisson’s ratio of the cell walls and core equal 0.3 and 0.4999, 

respectively; thus, the core is almost incompressible, and the properties of the core can be taken to 

represent an incompressible, inviscid fluid. The cell walls have a density 𝜌0, whereas the core has a 

density 𝜌𝐶 = 0.37𝜌0 (to simulate a core of density comparable to that of water, gels or polymers, and 

cell walls made from an aluminium alloy, for example.) In general, the macroscopic loading rate is 

sufficiently slow for inertial effects to be negligible; however, when snap-back instabilities occur, 

material inertia plays a role in the transient dynamic response of the filled lattice, with wave reflections 

occurring throughout the structure. Attention is restricted to vanishing strain hardening in order to 

explore the significance of geometric hardening and softening as the filled honeycomb undergoes finite 

deformation under uniaxial tension or uniaxial compression. 

The deformation of the honeycomb is determined in a Cartesian reference frame, with unit 

orthogonal base vectors (𝒆1, 𝒆2) as defined in Fig. 1(a). In the initial undeformed and stress-free 

configuration, the inclined cell walls of the hexagonal honeycomb subtend angles of 𝜔0 and (𝜋 − 𝜔0) 

with respect to the transverse direction; consequently, the elastic response of the honeycomb is 

transversely isotropic. We shall determine the uniaxial tensile and uniaxial compressive response of 

the filled honeycomb for 3 choices of cell wall inclination: 𝜔0= 20°, 30° and 40°. The choice 𝜔0= 30° 
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is isotropic in elastic response, and for the case of an empty honeycomb this choice of inclination 

defines an extremal hexagonal structure of lowest relative density for cell walls of fixed length ℓ. 

Honeycombs of inclination below the transition value of 𝜔0= 30°, such as choice 𝜔0= 20°, behave in 

one characteristic manner whereas honeycombs of inclination above the transition value, such as 

choice 𝜔0= 40°, behave in a different manner. It will also be shown that the qualitative collapse 

response in uniaxial tension and in uniaxial compression are sensitive to the inclination of cell walls, 

and to the possibility of core cavitation. Cavitation is due to either debonding of the core from the 

surrounding lattice of each unit cell, or to void nucleation and growth (Hill, 1950). Note that cavitation 

can be prevented by superposition of a sufficiently large macroscopic pressure. In the finite element 

simulations reported herein, the non-cavitating core is realised by ensuring that a void-free core 

remains fully bonded to the cell walls. 

It is instructive to express the macroscopic, effective properties of the filled honeycomb in terms 

of the relative density 𝜌̅ of the hexagonal lattice in the initial state, absent the contribution from the 

core; upon writing the volume of each hexagon in the undeformed state as 𝑉0 = 2ℓ2[(1 +

sin 𝜔0) cos 𝜔0], the relative density is  

𝜌̅ =
3𝑡ℓ

𝑉0
=

3𝑡

2ℓ
[(1 + sin 𝜔0) cos 𝜔0]−1, (1.1) 

as detailed by Tankasala et al (2021), where ℓ is the side length of the side of the hexagon and 𝑡 is the 

cell-wall thickness (Fig. 1a). The expression (1.1) for 𝜌̅ achieves a minimum value at 𝜔0= 30°. In 

broad terms, it will be shown that the uniaxial tensile and compressive strength of the filled lattice 

scale as either 𝜌̅ or 𝜌̅2, depending upon the activation of collapse modes of bar-stretching or bar-

bending, respectively, following the notation of Deshpande et al. (2001).  

 

2.  Periodic unit cell response 

Finite strain finite element (FE) simulations1 of the collapse of filled and empty honeycombs 

were performed assuming plane strain deformation. Explicit calculations, with automatic time-

stepping, were used to model the moving contact conditions of the cavitating core, to handle the large 

number of elements without excessive run times, to deal with snap-back instabilities in several cases, 

and to give accurate solutions when there is a large contrast between the strength of the core and that 

of the cell walls. Automatic mesh generation for both the cell walls and core employed a combination 

 
1 Abaqus/Explicit, version 6.14.1. Dassault Systèmes Simulia Corp., Providence, RI, USA.  
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of quadrilateral and triangular elements. Core cavitation was made possible by imposing frictionless 

contact between core and lattice. A non-cavitating response was achieved by imposing tie constraints 

on all core-lattice interfaces.  

 

2.1 FE model and boundary conditions 

First, the periodic unit cell response is reported for a representative volume element of width 𝑊𝐶 =

2ℓ cos 𝜔0 and height 𝐻𝐶 = 2ℓ(1 + sin 𝜔0), as shown in Fig. 1(c). The unit cell contains two hexagons 

and can thereby capture the deformation of the infinite honeycomb over a wavelength of one or two 

hexagons: it will be confirmed in a subsequent section on the collapse of a large number of hexagons 

that the weakest collapse mode has a wavelength of one or two hexagons, depending upon the problem 

in hand. 

Periodic boundary conditions were imposed on the boundaries of the unit cell as follows. Define 

two representative points A and 𝐵 on opposing vertical sides of the unit cell and two representative 

points C and D on opposing horizontal sides of the unit cell (Fig. 1c). The macroscopic strain rate is 

specified via the following constraints, 

𝑢̇𝑖
B − 𝑢̇𝑖

𝐴 = 𝑢̇i,1
∞ 𝑊𝐶 ,      𝑢̇𝑖

D − 𝑢̇𝑖
C = 𝑢̇i,2

∞ 𝐻𝐶 ,       𝑖 = 1,2  (2.1) 

where the comma subscript 1 in 𝑢̇i,1
∞  denotes differentiation with respect to 𝑋1, and so on. Now impose 

a vanishing rotation rate to give  

𝑢̇1
B − 𝑢̇1

A = 𝜀1̇1
∞ 𝑊𝐶 , 𝑢̇2

D − 𝑢̇2
C = 𝜀2̇2

∞ 𝐻𝐵, (2.2a) 

and 

(𝑢̇2
B − 𝑢̇2

A)𝐻𝐶 = (𝑢̇1
C − 𝑢̇1

D)𝑊𝐶 = 𝜀1̇2
∞ 𝑊𝐵𝐻𝐵, (2.2b) 

where  𝜀𝑖̇𝑗
∞ is the nominal strain rate. The strain rate 𝜀2̇2

∞ ≡ 𝜀̇∞ is imposed while 𝜀1̇1
∞  and 𝜀1̇2

∞  serve as 

free, natural boundary conditions. Consequently, the periodic cell calculation delivers the macroscopic 

nominal stress component 𝜎22
∞ ≡ 𝜎∞ which is work-conjugate to the nominal strain rate  𝜀2̇2

∞ ≡ 𝜀̇∞, 

and vanishing stress components 𝜎11
∞ and 𝜎12

∞ which are work-conjugate to  𝜀1̇1
∞  and  2𝜀1̇2

∞ , respectively. 

In the simulations where a stable behaviour was observed, the macroscopic strain rate is sufficiently 

low that inertial effects play a negligible role. In other simulations, a snap-back instability was 



7 

 

observed and the response post peak-load involved transient wave effects. However, the peak load and 

the response subsequent to a few oscillations during the snap-back phase were unaffected by material 

inertia.  

Both the cell walls and the core were meshed using first order reduced integration, 4-noded plane 

strain elements with hourglass control (CPE4R in ABAQUS notation), and supplemented by a small 

number of 3-noded plane strain elements (CPE3) to ensure that all space is filled. The lattice was 

discretised by a uniform mesh of element size equal to one fifth of the bar thickness 𝑡, which gave 

adequate accuracy according to a mesh convergence study (details not reported). The core was 

discretised into a non-uniform, graded mesh, of size on the order of 𝑡/5 near the cell walls and ℓ/10 

at the centre of each hexagon. 

 

2.2 Reference cases: tensile and compressive responses of the empty honeycomb 

First, consider the reference cases of the tensile and compressive responses of a periodic unit cell 

of empty honeycomb. The elasto-plastic deformation of the empty hexagonal honeycomb at both small 

and large strain is well-documented, see for example Papka and Kyriakides (1994), Gibson and Ashby 

(1997), and Tankasala et al. (2017). The collapse of empty honeycombs is by the formation of 

inextensional plastic hinges, see Fig. 2(b). Consequently, the macroscopic modulus and strength under 

uniaxial loading scale as 𝜌̅3𝐸0 and 𝜌̅2𝜎0 , respectively, with constants of proportionality that depend 

upon the cell wall inclination 𝜔0. At finite strain, a stable stiffening response is observed for uniaxial 

tension. In uniaxial compression, an unstable softening response occurs until opposing cell walls of 

the periodic unit cell make contact and volumetric lock-up ensues. These behaviours in tension and in 

compression are typified in Fig. 2 by plots of nominal stress 𝜎∞ versus nominal strain 𝜀∞ for the 

choice 𝑡/ℓ = 0.05 and bar inclination 𝜔0 equal to 20°, 30° and 40°. The macroscopic yield strength 

of the empty honeycomb is almost identical in tension and in compression, consistent with the fact that 

the yield strain of the bars (and core) 𝜀0 is sufficiently small for finite strain effects (associated with 

cell wall rotation prior to yield) to be negligible and for elastic buckling not to intervene.  

The macroscopic yield strength in tension and in compression increase by approximately 60% 

when 𝜔0 is increased from 20° to 40°. Post yield, the degree of geometric hardening in tension, and 

the degree of geometric softening in compression are greatest for 𝜔0 = 40°. Mild softening persists 

for −0.9 ≤ 𝜀∞ ≤ −0.6, with volumetric lock-up absent, but this portion of the response has been 

omitted from the figure in order to highlight the initial behaviour. The simulations of compressive 
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response were continued until 𝜀∞ ≈ −0.9 at which point the calculation gave excessive element 

distortion. 

The mode of collapse for 𝜔0 = 40° is shown in Fig. 2(c) for uniaxial tension. Discrete hinges are 

evident, and their location is sketched in Fig. 2(b); this collapse mode occurs for all 3 values of 𝜔0 and 

for both tension and compression. It is clear from Fig. 2 that the softening behaviour in compression 

and stiffening in tension are associated with finite changes in geometry. The vertical bars remain 

vertical during tensile straining of the honeycomb, but undergo a symmetry-breaking mode of rotation 

during compressive straining, as first noted by Papka and Kyriakides (1994). 

 

2.3 Tensile behaviour of filled honeycomb 

The recent analysis by Tankasala et al. (2021) of a non-cavitating, filled honeycomb revealed that 

the small-strain tensile response is highly sensitive to the inclination angle 𝜔0. For the special case 

𝜔0 = 30°, initial yield is associated with the activation of inextensional plastic hinges and 

consequently 𝜎𝑌
∞ scales as 𝜌̅2𝜎0. For other choices of inclination angle 𝜔0, the macroscopic tensile 

yield strength 𝜎𝑌
∞ additionally requires the plastic stretching of bars and consequently 𝜎𝑌

∞ is 

proportional to 𝜌̅𝜎0, with the constant of proportionality depending upon the value of 𝜔0. With these 

features in mind, the finite tensile response is plotted in Fig. 3(a), using 𝜎∞/(𝜌̅𝜎0) and 𝜀∞ as axes. For 

the choice 𝑡/ℓ = 0.05, the relative density 𝜌̅ equals 0.0595, 0.0577 and 0.0596 for 𝜔0 = 20°, 30° and 

40°, respectively. Predictions are shown both for a core that can cavitate and for a core that cannot 

cavitate. 

The tensile response for 𝜔0 = 40° is insensitive to imposition of the constraint of no cavitation: 

as deformation proceeds, a positive (compressive) pressure develops within the core of the honeycomb. 

The yield strength 𝜎𝑌
∞ is on the order of 0.3 𝜌̅𝜎0, close to the value of 0.28 𝜌̅𝜎0 for the collapse mode 

identified by Tankasala et al. (2021) using simple beam theory and discrete extensional plastic hinges 

in plane strain. Mild geometric hardening follows first yield, as shown in Fig. 3(a). An estimate of the 

pressure that is generated in the core is given by the small strain analysis of Tankasala et al. (2021). 

They considered the case of uniaxial tension and stated in their (7.7) that the pressure p is given by  

𝑝

𝜎0
=

2

3√3
𝜌 ̅ cos 𝜔0 cot 𝜔0 (2.3) 

upon making suitable use of (1.1) and recognising that the macroscopic stress is elevated by the factor 

of 2/√3 in plane strain. Recall that the present study is designed to determine the in-plane, plane strain 
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response a hexagonal lattice with cell walls in the form of plates that extend deep into the out-of-plane 

direction. This explains the need to elevate the strength of the cell walls from the simple beam solutions 

of Tankasala et al. (2021) by the factor of 2/√3 to account for plane strain. 

Likewise, for 𝜔0 = 30°, the tensile response of the filled honeycomb with a core that can cavitate 

is identical to that of a non-cavitating core to within numerical accuracy. Initial yield occurs by the 

formation of inextensional plastic hinges in the bars as shown in Fig. 2(b), but subsequent deformation 

requires axial extension of the bars. Consequently, strong geometric hardening occurs as the 

honeycomb progressively aligns with the direction of tensile straining. 

The case 𝜔0 = 20° is the most complex. The tensile response of the empty honeycomb is included 

in Fig. 3(a) and has the feature that tensile yield and subsequent plastic flow dilates the honeycomb. 

Consequently, the initial response of the filled honeycomb, but allowing for cavitation, is the same as 

that of the empty honeycomb. In contrast, imposition of the no-cavitation constraint on the core leads 

to a much higher yield strength 𝜎𝑌
∞, with plastic collapse requiring axial straining of bars in the plastic 

range; immediately following yield there is a switch in mechanism to a strongly softening mode that 

involves rotation of the vertical bars, as shown in Fig. 3(b). The arrangement of inextensional plastic 

hinges that give rise to this collapse mode is included in Fig. 3(b). The bars that were initially vertical 

first rotate in one direction and then reverse their direction of rotation until they become aligned again 

with the loading direction and strong hardening ensues.  

Immediate insight into the tensile collapse mode of an empty honeycomb, or a filled honeycomb 

with a core that can cavitate for 𝜔0 < 30°, is obtained by considering the volume 𝑉 of each hexagon 

of the honeycomb as a function of current inclination angle 𝜔. Assume that the honeycomb deforms 

by the rotation of inextensional plastic hinges such that ω increases under macroscopic tension and 

decreases under macroscopic compression. Then, at any stage of deformation, the volume 𝑉 is given 

by  

𝑉/ℓ2 = sin 2 𝜔 + 2 cos 𝜔, (2.4) 

from (1.1); as already noted, 𝑉 has a maximum at 𝜔 = 30°. Consequently, an empty honeycomb of 

initial inclination 𝜔0 = 20° dilates under macroscopic tension until the bar inclination equals 30°. 

With continued tensile macroscopic straining, the bar inclination increases beyond 30° and shrinkage 

ensues. The lattice recovers its initial volume 𝑉0 at a value 𝜔𝑓 that satisfies 
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sin 2𝜔𝑓 + 2 cos 𝜔𝑓 = sin 2𝜔0 + 2 cos 𝜔0 , (2.5) 

upon equating V in (2.4) to 𝑉0 in (1.1). Thus, 𝜔𝑓 equals 39.68° for the choice 𝜔0 = 20°. The above 

discussion has immediate implications for a honeycomb with a core of vanishing deviatoric strength 

that can cavitate: the filled honeycomb behaves in the same manner as an empty honeycomb until the 

point at which the volume of the hexagonal honeycomb recovers its initial value. At this instant 

volumetric lock-up occurs, and thereafter the filled honeycomb deforms in an incompressible manner. 

 

2.4 Compressive behaviour of filled honeycomb 

The compressive response of the periodic unit cell, for a cavitating and non-cavitating core, is 

shown in Fig. 4(a). Predictions are given for 𝑡/ℓ = 0.05 and for the same values of 𝜔0 = 20°, 30° and 

40° as for the tensile case. First, note that the compressive yield strength of the honeycomb with a non-

cavitating core equals that of the tensile yield strength as the yield strain of the honeycomb lattice is 

sufficiently small for elastic buckling effects to be negligible.  

The compressive responses of the honeycombs of inclination 𝜔0 = 20° and 30° are insensitive to 

imposition of the no-cavitation constraint: the compressive collapse mode of these filled honeycombs 

do not involve core cavitation. For the choice 𝜔0 = 20°, initial yield occurs by stretching of the 

inclined bars. Mild geometric hardening follows this initial collapse, similar to that observed for the 

case of 𝜔0 = 40° in tension. Initial yield of the filled honeycomb of inclination 𝜔0 = 30° occurs by 

the formation of inextensional plastic hinges. Subsequent deformation involves axial stretching of bars 

and a strongly hardening response is observed post-yield.  

The compressive response for 𝜔0 = 40° is sensitive to the imposition of the constraint of no 

cavitation in a similar manner to the tensile response of the honeycomb of 𝜔0 = 20°, compare 

Figs. 4(a) and 3(a). Imposition of no cavitation endows the filled honeycomb with a high compressive 

yield strength of 0.28𝜌̅𝜎0 in plane strain, as predicted by Tankasala et al. (2021). A tensile hydrostatic 

stress is generated in the non-cavitating core of the honeycomb at the onset of yield; it is of equal 

magnitude to that given in (2.3) for tensile macroscopic loading but is opposite in sign. Thus, a 

macroscopic pressure that exceeds the value (2.3) is required to suppress cavitation in a 𝜔0 = 40° 

honeycomb under compressive loading.  

Continue to consider the compressive response of a 𝜔0 = 40° non-cavitating filled honeycomb in 

the post-yield regime. A strongly softening response is exhibited, involving the symmetry-breaking 
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rotation of the vertical bars. Inextensional plastic hinges are formed, as sketched in Fig. 4(d). This 

response closely resembles that of the non-cavitating honeycomb of 𝜔0 = 20° tested in tension, 

compare Figs. 3(a) and 4(a), and compare Figs. 3(b) and 4(d). The compressive response of the empty 

honeycomb and of the filled honeycomb with a cavitating core are almost identical up to a compressive 

strain of about 𝜀∞ = −0.15: the filled honeycomb dilates and then shrinks until volumetric lock-up 

occurs at 𝜀∞ = −0.15. Lock-up of the empty honeycomb (by interference of cell-walls) occurs at a 

much larger value of macroscopic nominal strain between -0.9 and -1, beyond the regime of interest 

in Fig. 4(a). Note that the empty honeycomb and the honeycomb with a cavitating core both display 

mild geometric softening prior to lock-up. 

 

2.5 Analytical model for compressive response of a honeycomb unit cell with a non-cavitating 

core 

Tankasala et al (2021) have detailed the small-strain, in-plane collapse response of a honeycomb 

with a non-cavitating core; they used rigid, ideally plastic analysis and beam theory to obtain the exact 

solutions for the competing collapse modes that define the facets of the yield surface. Here, we extend 

their analysis into the finite strain regime for the uniaxial compression of a honeycomb of inclination 

𝜔0 exceeding 30°, with a focus on the choice 𝜔0 = 40°. The imposition of a non-cavitating core leads 

to an initial yield mode that involves axial stretch of both vertical bars and inclined bars, termed ‘mode 

B’ by Tankasala et al (2021), with macroscopic strength given by their (7.8) as 

|𝜎∞|

𝜌̅𝜎0
 ≈

2(sin 𝜔 − cos 2𝜔)

3√3 sin 𝜔
 . (2.6) 

Note that a factor of 2/√3 is included in (2.6) in order to give the plane strain solution, rather than the 

plane stress solution of Tankasala et al (2021). In this initial mode, the vertical bars do not rotate but 

are in a state of tensile yield. Tankasala et al (2021) explained in their section 7.2 that, in mode B, an 

extensional plastic hinge forms at each end of the vertical bars with a vanishing plastic moment due to 

the existence of a vertex in the moment-tension collapse locus for the hinge. Consequently, plastic 

bifurcation occurs immediately from mode B into a softening mode that involves rotation of the 

vertical bars. After a small rotation of the vertical bars (by less than 1 degree) this mode is replaced by 

a finite strain, incompressible version of the Gibson and Ashby (1997) shear mode of collapse. 

The infinitesimal shear mode of Gibson and Ashby (1997) involves the rotation of the vertical cell 

walls from their initial inclination 𝜔3 = 90°, and is an incompressible mode of deformation. However, 
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when this mode persists to finite strain, transverse and axial straining occurs at the macroscopic level. 

We emphasise that the correlation directions of this periodic mode of deformation are along the 

Cartesian base vectors (𝒆1, 𝒆2) as defined in Fig. 1. This finite strain response is summarised as 

follows. 

Consider the plastic collapse of a hexagonal honeycomb of initial configuration (𝜔1 = 𝜔0, 𝜔2 =

𝜋 − 𝜔0, 𝜔3 = 𝜋/2), as shown in Fig. 1(a). (For analytical calculations, angles are specified in 

radians.) Inextensional plastic hinges develop in two of the three bars, with the inactive rigid bar 

changing as deformation proceeds, as explained below. The honeycomb deforms by the finite rotation 

of the three bars, while maintaining the symmetry of the two inclined bars 𝜔2 = 𝜋 − 𝜔1, and constant 

volume 𝑉 = 𝑉0, where  

𝑉 = 2ℓ2(sin 𝜔1 + sin 𝜔3) cos 𝜔1 = 𝑉0. (2.7) 

Consequently, the bar inclination 𝜔3 can be expressed in terms of 𝜔1 as 

sin 𝜔3 =
cos 𝜔0 + cos 𝜔0 sin 𝜔0 − cos 𝜔1 sin 𝜔1

cos 𝜔1
 , (2.8) 

Also, the axial tensile component of macroscopic nominal strain 𝜀∞ is 

𝜀∞ =
sin 𝜔1 + sin 𝜔3 − sin 𝜔0 − 1

1 + sin 𝜔0
 . (2.9) 

Insight into the collapse mode is obtained by considering (2.8) and (2.9). Take, as an example 

𝜔0 = 40°, and assume that collapse is by a monotonically decreasing value of 𝜔1. Then, 𝜀∞  becomes 

increasingly negative, while the transverse component of nominal strain 𝜀11
∞  increases in a positive 

manner by incompressibility. The dependence of 𝜔3 upon 𝜔1 is plotted in Fig. 5 for 𝜔0 = 40°, upon 

making use of (2.8). The plot includes finite element predictions for the 𝜔0 = 40° honeycomb for the 

3 types of core: non-cavitating, cavitating and empty. The finite element simulation for the non-

cavitating core supports the mode (2.8). This collapse mode progresses as follows. As 𝜔1 decreases 

monotonically, (2.8) demands that 𝜔3 first decreases from 90°, and then attains a minimum value of 

𝜔3=72.37° at 𝜔1=32.53°. Upon continued decrease of 𝜔1, the inclination 𝜔3 increases again until the 

collapse mechanism locks-up at the limiting value of 𝜔3 = 90°; this occurs at (1 + sin 𝜔1) cos 𝜔1 =

(1 + sin 𝜔0) cos 𝜔0 from (2.8), giving 𝜔1 = 19.64°. We note in passing that this mechanism is 

reversible and also exists when the non-cavitating filled honeycomb is subjected to macroscopic tensile 

straining. For example, assume that the hexagonal honeycomb exists in an initial state such that 
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(𝜔1=19.64°, 𝜔3 = 90°); increase 𝜔1 in monotonic fashion and the trajectory of Fig. 5 is reversed. The 

honeycomb stretches in the axial x2-direction until it locks up at (𝜔1=40°, 𝜔3 = 90°). The non-

cavitating honeycomb of 𝜔0 = 20° deforms in tension by closely following this reverse path. 

The collapse of a single horizontal row of hexagonal cells by this mode generates a non-monotonic 

finite macroscopic shear strain 𝜀12
∞  within this band of cells; the shear strain attains a maximum value 

and then drops to zero at lock-up. If instead, the collapse mode involves a repeating stack of such rows 

of hexagons, with the collapse of each layer alternating in a twinning mode, then 𝜀12
∞  vanishes at all 

stages of collapse of the overall stack. This alternating mode of collapse is observed in the FE 

simulations, see Fig. 4(d). However, the essential kinematics of (2.8) and (2.9) are preserved in the 

twinning mode. 

Now equate the macroscopic work rate to the plastic dissipation associated with hinge rotation of 

the non-cavitating hexagonal lattice in the above shear mode. First, recall that the minimum plastic 

dissipation rate at any joint between 3 bars of rotation rate (𝜔̇1, 𝜔̇2, 𝜔̇3) is obtained when the rotation 

rate 𝜔̇J of the joint J equals that of the bar of intermediate rotation rate. We proceed by considering a 

representative joint of the hexagonal lattice of Fig. 1. Then, upon noting that the plastic moment 𝑀𝑃 

for a bar of thickness 𝑡 is 𝑀𝑃 = 𝜎0𝑡2/2√3 in plane strain, the plastic dissipation rate at the 

representative joint is  

𝑊𝐽̇  =
𝜎0𝑡2

2√3
(|𝜔̇1 − 𝜔̇J| + |𝜔̇2 − 𝜔̇J| + |𝜔̇3 − 𝜔̇J|) . (2.10) 

Each hexagon has 6 joints, and each joint is shared by 3 neighbouring hexagons. Consequently, the 

macroscopic plastic work rate 𝑊𝑃̇  within 1 hexagonal cell equals 2𝑊𝐽̇ , and (2.10) gives 

𝑊𝑃̇ = 𝜎∞ 𝜀̇∞ 𝑉0 =
𝜎0𝑡2

√3
(|𝜔̇1 − 𝜔̇J| + |𝜔̇2 − 𝜔̇J| + |𝜔̇3 − 𝜔̇J|) . (2.11) 

For the collapse mechanism under consideration, the bar of intermediate rotation rate (that dictates 

the joint rotation rate 𝜔̇J) evolves with axial strain 𝜀∞, as follows. The ratio 𝜔̇3 𝜔̇1⁄  is given by the 

slope of the plot of 𝜔3 versus 𝜔1 in Fig. 5. Initially, when 𝜔1 is less than 𝜔0, we have 𝜔̇3 𝜔̇1⁄ >1 and 

so 𝜔̇J = 𝜔̇1. Upon substituting 𝜔̇J = 𝜔̇1 into (2.11), and making use of 𝜔̇2 = −𝜔̇1, along with the 

expression for 𝜔̇3 𝜔̇1⁄  as given by (2.8) in rate form, 𝜎∞ is obtained from (2.11) as a function of the 

tracking parameter 𝜔1. Simultaneously, the nominal strain 𝜀∞ is determined as a function of 𝜔1 from 
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(2.9), upon making use of (2.8). The initial segment of the 𝜎∞ versus 𝜀∞ curve is thereby obtained, 

with 𝜔1 serving as a tracking parameter.  

It is useful to obtain an analytical asymptotic expression for the initial response of 𝜎∞ versus 𝜀∞ 

by expanding 𝜔3 about its initial value of 𝜋 2⁄ , such that 𝜔3 = (𝜋 2⁄ )+Δ𝜔3, and likewise 

expanding 𝜔1 about its initial value of  𝜔0 such that  𝜔1 =  𝜔0 +  Δ𝜔1. Then, upon making suitable 

use of (2.8), (2.9) and (2.11) we obtain 

−𝜎∞

𝜌̅2𝜎0
=

2

9√3
(1 + sin 𝜔0)cos 𝜔0 (

sin 𝜔0 − cos 2𝜔0

sin 𝜔0
)

1
2

(−𝜀∞)−
1
2 , (2.12) 

which is unbounded at 𝜀∞ = 0 and is strongly softening under increasing compressive strain. As 

mentioned above, Tankasala et al (2021) showed that initial plastic collapse by their ‘mode B’ involves 

axial yield of the vertical bars 3 and either inclined bars 1 or 2, with a collapse strength given by (2.6). 

Thus, we can use (2.6) as a cut-off for the collapse response (2.12) at a small value of compressive 

strain. 

The relations (2.9) and (2.11) can also be used to obtain the dependence of 𝜎∞ upon 𝜀∞ at values 

of 𝜀∞ for which 𝜔̇3 𝜔̇1⁄ <1. Within the regime −1 < 𝜔̇3 𝜔̇1⁄ <1, the minimum dissipation rate of the 

unit cell in (2.11) is attained by the choice 𝜔̇J = 𝜔̇3. The corresponding segment of the 𝜎∞ versus 𝜀∞ 

response is obtained by making use of (2.8), (2.9) and (2.11), and following the same procedure as that 

described above for the regime 𝜔̇3 𝜔̇1⁄ >1. Likewise, consider the case 𝜔̇3 𝜔̇1⁄ < −1.  Then, 𝜔̇J = 𝜔̇2 

and (2.8), (2.9) and (2.11) give a third segment of the 𝜎∞ versus 𝜀∞ response up to the point of lock-

up at (𝜔1=19.64°, 𝜔3 = 90°). The full 𝜎∞ versus 𝜀∞ response is included in Fig. 6 and agrees with 

the finite element predictions for a wide range of values of 𝑡/ℓ. We emphasise that this collapse mode 

requires the inextensional rotation of plastic hinges, and gives rise to a progressively increasing strain 

component 𝜀11
∞  in the transverse direction and to shortening in the axial direction (negative value of 

𝜀∞). Consequently, this mode cannot exist in the form of a localised shear band despite the fact that it 

gives rise to pronounced geometric softening.  

 

2.6 Analytical model of compressive collapse of unit cell of honeycomb and a cavitating core 

A relaxation of the non-cavitation constraint, such that collapse can be accompanied by dilatation 

of the honeycomb core, gives an additional degree of freedom for collapse of the unit cell. We continue 

to consider uniaxial compression of a honeycomb of inclination 𝜔0 exceeding 30°, with a focus on the 



15 

 

choice 𝜔0 = 40°. Assume that plastic collapse occurs by the formation of plastic hinges associated 

with 𝜔̇3 < 0 and −𝜔̇2 = 𝜔̇1 < 0. The 𝜎∞ versus 𝜀∞ response is again given by (2.9) and (2.11), but 

enforcement of 𝑉 = 𝑉0 is now relaxed by adopting the inequality 𝑉 ≥ 𝑉0, to allow for cavitation of the 

core. The joint rotation rate 𝜔̇J minimises 𝜎∞, and is obtained by considering all possibilities in turn: 

𝜔̇1 < 𝜔̇2 ≤ 𝜔̇3, 𝜔̇1 < 𝜔̇3 < 𝜔̇2 and 𝜔̇3 ≤ 𝜔̇1 < 𝜔̇2. Upon making use of (2.11), we find that the 

choice 𝜔̇3 = 𝜔̇1 = 𝜔̇J minimises 𝜎∞; the associated algebra is straightforward but tedious, and is 

omitted here for the sake of brevity. The honeycomb collapses with a single degree of freedom 𝜔̇1 

when the core is allowed to cavitate, and (2.11) reduces to 

−𝜎∞𝜀̇∞𝑉0 = (2/√3)𝜔̇1𝜎0𝑡2 . (2.13) 

The dependence of 𝜎∞ upon 𝜔1 follows directly from (2.13) and (1.1) as 

𝜎∞ 

𝜌̅2𝜎𝑌𝑆
=

4

9√3

(1 + sin 𝜔0)2 cos 𝜔0

(cos 𝜔1 + cos 𝜔3)
 , (2.14) 

along with 

𝜔3 − 𝜋 2⁄ = 𝜔1 − 𝜔0 , (2.15) 

from the identity 𝜔̇3 = 𝜔̇1; simultaneously, 𝜀∞ is prescribed as a function of 𝜔1 via (2.9). The initial 

yield strength follows directly from (2.14) as 

𝜎∞ 

𝜌̅2𝜎𝑌𝑆
=

4

9√3
(1 + sin 𝜔0)2 , (2.16) 

This collapse mode has been identified previously by Papka and Kyriakides (1994) for an empty 

honeycomb. They performed a combined experimental and numerical study on an aluminium alloy 

honeycomb with vertical cell walls of double thickness, as a result of the manufacturing process. Papka 

and Kyriakides (1994) noted that the yield strength for this mode is identical to that of a symmetric 

mode of collapse (𝜔̇3 = 0, 𝜔̇2 = −𝜔̇1) of the empty honeycomb as given by Gibson and Ashby (1997), 

but the subsequent response has a steeper softening curve than that of the symmetric mode, and is 

consequently the dominant mode. Consistent with these findings, the yield strength stated in (2.16) is 

identical to that given by Gibson and Ashby (1997) for the symmetric mode of collapse. 

The asymmetric collapse mode (2.11), as plotted in Fig. 5, involves an initial dilatation of the 

honeycomb before the volume decreases again to the initial value 𝑉0. The value of 𝜔1 at which 𝑉 = 𝑉0 

is determined from (2.7) and (2.15), giving 𝜔1 = 24.99° for 𝜔0 = 40∘. Subsequent deformation 



16 

 

occurs in an incompressible manner which is identical to that of the honeycomb that does not undergo 

cavitation.  

The analytic model for the post-yield 𝜎∞  versus 𝜀∞ response of the cavitating 𝜔0 = 40∘ 

honeycomb agrees well with the stress versus strain curve obtained from unit cell finite element 

simulations, see Figs. 6(a) and (b). A comparison of the kinematics from the finite element simulations 

of the cavitating honeycomb and empty honeycomb is included in Fig 5; both the cavitating and empty 

honeycombs initially follow the prediction  𝜔̇1 = 𝜔̇3. At a strain of 𝜀∞ ≈ 0.15, the volume of each 

hexagon has returned to its initial value and volumetric lock-up intervenes.  

 

3.  Finite specimen response  

The periodic unit cell simulations of the 𝜔0 = 40° honeycomb with a non-cavitating core is 

strongly softening in uniaxial compression, recall Fig. 4(a). Despite this feature, the periodic unit cell 

mode of axial shortening and transverse stretching shown in Fig. 4(d) cannot give rise to a localisation 

band due to the finite straining parallel to the band. Inclined shear bands may exist provided they 

possess the property that extensional strain vanishes along the correlation direction of the band. The 

first step is to analyse the compressive response of a finite specimen of a 𝜔0 = 40° honeycomb to 

search for such modes.  

 

3.1 Finite element simulations 

Explicit finite element simulations were used to predict the compressive response of finite 

specimens made from 12 x 27 unit cells of hexagons of inclination 𝜔0 = 40°; consequently, the 

rectangular specimen is of size 18ℓ x 89ℓ as shown in Fig. 7(a). The cells are empty or contain cores 

that are cavitating or non-cavitating; both the honeycomb and core are meshed using the same element 

types and sizes as detailed above for the periodic unit cell calculations. A single cell (edges and core) 

is removed at half-height on one side of the specimen in order to define an imperfection from which 

crush bands or shear bands can initiate, see Fig. 7(a). The sides of the specimen are traction-free, while 

the top and bottom faces are frictionless. The top face is subjected to a downward velocity −𝑢̇∞/2, 

while the bottom face is subjected to an upward velocity  𝑢̇∞/2, where 𝑢̇∞is sufficiently small for 

inertial effects to be negligible. Thus, the end shortening rate equals  𝑢̇∞. 
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Representative solutions for the average compressive traction −〈𝜎∞〉 versus non-dimensional end 

shortening 𝑢∞/ℓ are given in suitably normalised form in Fig. 7(b) for the non-cavitating core, and in 

Fig. 7(c) for the cavitating core and empty core. A pronounced peak load exists for the honeycomb 

with non-cavitating core followed by a load plateau. In contrast, only mild softening follows the peak 

load for the honeycombs with a cavitating or empty core, Fig. 7(c). These contrasting collapse 

responses are indicative of very different collapse modes as follows.  

The evolution of crush/shear bands in the finite specimen is shown in Fig. 8 for the three choices 

of core: (a) non-cavitating, (b) cavitating and (c) empty. The empty honeycomb both crushes and 

shears until it locks up when opposing cell walls interfere. However, the degree of axial shortening in 

Figs. 7(c) and 8(c) has not attained the required value for lock-up to occur and for the crush band to 

have fully formed; the structural collapse response of the finite specimen resembles that of the periodic 

unit cell, compare Figs. 2(a) and 7(c). This crush mode resembles that detailed previously by Papka 

and Kyriakides (1994), although its inclination of 𝛽 = 45° exceeds that observed by Papka and 

Kyriakides (1994); the inclination of the crush band in the empty honeycomb is sensitive to a number 

of factors including the width of the specimen, the relative density of the honeycomb and the yield 

strain of the cell walls. These details are beyond the scope of the present study. 

The peak strength of the finite specimen made from a honeycomb with a cavitating core slightly 

exceeds that of the empty honeycomb due to the small contribution to macroscopic strength from the 

core, see Fig. 7(c). Volumetric lock-up of the cavitating core initiates in cells adjacent to the 

imperfection, at a load close to peak load of the filled, cavitating honeycomb. A shear band of 

inclination 𝛽 = 45° propagates across the net section of the specimen, and it contains cells which have 

locked-up to an incompressible state. After the shear band has propagated across the specimen, it 

spreads with continued end shortening of the specimen. However, the absence of a pronounced peak 

load at initiation of the shear band signifies that the collapse response resembles shear yielding with 

negligible strain hardening or softening, rather than a pronounced localisation event associated with a 

material instability. 

The snap-back instability of the finite specimen containing a hexagonal lattice and a non-

cavitating core is associated with the initiation of a shear band at an orientation of 𝛽 = 40°. The shear 

band propagates across the width of the specimen, and then band-broadens at a constant macroscopic 

stress, as shown in Fig. 8(a). This behaviour is reminiscent of the behaviour of a microbuckle in a long 

fibre composite under axial compression, see for example Fleck (1997). The compressive strength of 

the finite specimen lies somewhat below that of the unit cell response, in part due to the presence of 
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the side-defect in the finite specimen, compare Figs. 6(b) and 7(b). However, the modes are very 

different: in the finite specimen a shear band develops, of inclination 𝛽 = 40° equal to that of the 

inclination 𝜔0 of the honeycomb.  

 

3.2 Steady state propagation of a shear band 

The nature of the shear band in the honeycomb with a non-cavitating core is now analysed. Recall 

from Fig. 8(a) that a shear band originates from the side-defect and propagates at almost constant net 

section stress which we shall denote by 𝜎𝑃. The uniaxial compressive stress required to propagate an 

inclined shear band is estimated by a straightforward work calculation using the so-called Maxwell 

construction. The same approach has been used by Papka and Kyriakides (1994) to estimate the 

compressive stress to propagate a crush band in the transverse direction of an empty honeycomb. The 

classical Maxwell construction has also been used to calculate the steady state internal pressure 

required to inflate a cylindrical party balloon (Chater and Hutchinson, 1984), the external pressure on 

a cylindrical pipe to crush it along its axis (Kyriakides and Lee, 2021) and the propagation stress for 

a kink band in a long fibre composite (Fleck, 1997; Budiansky et al., 1998).  

We emphasise that imposition of the constraint of no-cavitation of the core implies that the filled 

honeycomb behaves in an incompressible manner and localisation can only occur in the form of an 

inclined shear band, as sketched in Fig. 9(a). In steady state, the material upstream of the band is in a 

state A and possesses a shear strain 𝛾A while material within the shear band downstream from the tip 

is in a final, locked-up state B and possesses a shear strain 𝛾B. The steady state propagation stress 𝜏𝑃 

is calculated by assuming that the work done in advancing the shear band, of width w, by a length 𝛿𝑎 

is  

𝛿𝑊 = 𝜏𝑃(𝛾B − 𝛾A)𝑤𝛿𝑎 . (3.1) 

Equate this work to the plastic work done in shearing a volume 𝑤𝛿𝑎 of shear band material, in a shear 

band of width w and infinite length, from state A to state B, as sketched in Fig. 9(b): 

𝛿𝑊 = (𝛿𝑎)𝑤 ∫ 𝜏𝑑𝛾
𝛾B

𝛾A

 . (3.2) 

A geometric construction for the propagation stress 𝜏𝑃 follows immediately: the area mapped out by 

𝜏𝑃(𝛾B − 𝛾A) equals the area mapped out by ∫ 𝜏𝑑𝛾
𝛾B

𝛾A
. Equivalently, the area I in Fig. 9(b) equals the 

area II. The axial propagation stress 𝜎𝑃 is directly related to the shear traction 𝜏𝑃 by 𝜏𝑃 =
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0.5𝜎𝑃 sin 2𝛽 via rotation of axes by . By simple kinematics, the propagation of the shear band across 

the width of the specimen gives rise to an axial shortening by 𝑢∞= (𝛾B − 𝛾A)𝑤 sin 𝛽. 

 

3.3 Infinite band calculation  

A periodic unit cell calculation is performed on the filled honeycomb with a non-cavitating core, 

as sketched in Fig. 10(a). Imagine that the shear band, of infinite length, contains many such unit cells 

across the width w of the shear band (as defined in Fig. 9(a)). The unit cell is subjected to a macroscopic 

simple shear strain on a plane inclined at 𝛽 = 𝜔0. Each unit cell contains two hexagons and is of height 

𝐻𝐶 and of width 𝑊𝐶, as shown in Fig 1(c). Corresponding locations on the left and right sides of the 

unit cell are denoted by points A and B, respectively, while corresponding locations on the bottom and 

top faces of the unit cell are again denoted by points C and D, respectively. The correlation direction 

of displacement is along the inclined direction of the shear band, and periodic displacement boundary 

conditions are applied whereby 

(𝑢̇𝑖
B − 𝑢̇𝑖

A) = 𝛾̇𝑠𝑖𝑊𝐶 sin 𝛽 , (𝑢̇𝑖
D − 𝑢̇𝑖

C) = 𝛾̇𝑠𝑖𝐻𝐶 cos 𝛽 , 𝑖 = 1,2.  (3.3) 

Here, 𝒔 = 𝒆1 cos 𝛽 − 𝒆2 sin 𝛽 is the unit vector parallel to the shear band, such that the direct 

component of macroscopic strain vanishes along the direction of 𝒔.  

The shear strain rate 𝛾̇ is imposed and the finite element solution delivers the work conjugate shear 

traction 𝜏. Representative finite element results for 𝜏(𝛾) are shown in Fig. 10(c) for the unit cell 

constrained to deform by simple shear along the direction of inclination 𝛽 = 𝜔0 = 40∘. Numerical 

experimentation reveals that the peak stress is 𝜏𝑌 = 0.14 𝜌̅𝜎0, and this is confirmed by an analytical 

beam analysis of the initial collapse response in Appendix A, with the main result presented in (A.17) 

for the small-strain collapse strength. For the sake of clarity, the analytical prediction (A.17) is 

compared with the early stages of finite element response in Fig. 10(d). Plastic bifurcation into a 

strongly softening bending mode occurs immediately at peak load, with inextensional plastic hinge 

formation as shown in Fig. 10(b). Finally, at a large value of shear strain 𝛾 ≈ 0.3, the shear stress rises 

sharply again, see Fig 10(c). Collapse is bending-dominated as confirmed by the observation that the 

macroscopic shear stress 𝜏( 𝛾) scales with relative density squared in Fig. 10(c), upon assuming a 

range of values for the slenderness ratio of the bars. The propagation stress 𝜏𝑃 is obtained from 𝜏(𝛾) 

for 𝜌̅ in the range of 0.02 to 0.12, and an excellent fit gives 𝜏𝑃 = 0.44𝜌̅ 2𝜎0; consequently, 𝜎𝑃 equals 

0.9𝜌̅ 2𝜎0 via traction equilibrium 𝜏𝑃 = 0.5𝜎𝑃 sin 2𝛽 where 𝛽 = 𝜔0 = 40∘. This estimate for 𝜎𝑃 is in 
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excellent agreement with the observed value of axial propagation stress in Fig. 7(b) for the finite 

specimen. 

 

3.4 Finite specimen responses for tension and compression of filled honeycombs 

For completeness, FE simulations were also performed on the compressive response of core-

filled finite specimens of inclination 𝜔0 = 20∘ and 𝜔0 = 30∘, and on the tensile response of finite 

specimens of inclination 𝜔0 = 20∘, 30∘ and 40∘. The geometry and other details are the same as stated 

above in section 3.1. The results are consistent with the expectations from Figs. 2 and 3: a stable 

response with no localisation of deformation was observed except for (i) the case of section 3.1 that 

considered compressive loading of a finite specimen made from a honeycomb of inclination 𝜔0 = 40∘ 

and a cavitating or non-cavitating core, and (ii) tensile loading of a finite specimen made from a 

honeycomb of inclination 𝜔0 = 20∘ and a non-cavitating core. The results for the stable response of a 

finite specimen are not shown here, as they add little to the periodic unit cell responses already reported 

in Figs. 2 and 3. An initial study of the tensile response of the 𝜔0 = 20∘ honeycomb with a non-

cavitating core is given in Appendix B. It is again demonstrated that a Maxwell construction can again 

be used to estimate the propagation stress of the shear band. 

 

4.  Concluding remarks 

The current study highlights the major effect of cavitation upon the tensile and compressive 

response of a filled hexagonal honeycomb. Cavitation results from either the spontaneous growth of 

voids in a weak core of the lattice when the hydrostatic stress in the core becomes positive, or by 

peeling of the core from the hexagonal lattice2. When cavitation can occur, the macroscopic tensile 

and compressive responses of the filled hexagonal honeycomb differ significantly. Consider, by way 

of example, the case where the inclination 𝜔0 equals 40∘. If allowed to do so, the core will cavitate 

under uniaxial compression (recall Fig. 4(a)) but not under uniaxial tension (Fig. 3(a)): mild softening 

occurs in compression but geometric hardening occurs in tension. When the filled honeycomb is 

constrained against cavitation (for example by the superposition of a sufficiently large macroscopic 

pressure) a pronounced instability develops in a finite specimen under macroscopic compressive 

straining (recall Fig. 7(b)). Inclined shear bands initiate and propagate, first across the specimen and 

 
2 In the present study we assume that no resistance to cavitation exists in the form of a finite peel strength or a finite 

interfacial toughness.   
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then by band-broadening. The propagation stress is adequately predicted by analysing the simpler 

problem of an infinite shear band and by making use of the Maxwell construction. The mode of 

deformation within the shear band is bending-dominated and has a wavelength of two hexagons. In 

contrast, the non-cavitating honeycomb of inclination 𝜔0 = 40∘ displays a stretching-dominated stable 

response under macroscopic tension, see Fig. 3(a). Geometric hardening precludes the possibility of a 

material instability. 

The tension-compression asymmetry is reversed for the honeycomb whose inclined walls are 

initially at 20°. When this filled honeycomb is constrained against cavitation, it geometrically hardens 

in compression but undergoes severe softening in tension, associated with a switch in behaviour from 

stretching-governed deformation under macroscopic compression to bending-dominated shear band 

formation in macroscopic tension.  

The above study has demonstrated that the filling of a cellular solid with a low-strength solid has 

a major effect upon its macroscopic response. Consequently, this opens up the possibility of a new 

class of multi-material micro-architectured solids that can be manufactured by additive or other 

methods. Additionally, the study raises important issues in the mechanics of biological tissues. For 

example, plant tissues are such cellular solids comprising stiff and strong cell walls made of cellulose 

that are filled with a fluid (the intracellular material). We have shown that cavitation is a distinct 

possibility when such materials are subjected to mechanical loads. The turgor pressure in plant cells 

will inhibit cavitation, although the analysis of the mechanical properties of plant tissues from such a 

perspective has received little attention. 
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Appendix A:  Initial collapse mode of inclined shear band 

Finite element simulations of the uniaxial compression of a finite specimen, with an imperfection 

in the form of a single broken and empty cell at the side face, reveal that the isochoric, non-cavitating 

honeycomb undergoes simple shear within a parallel-sided shear band. Deformation within the shear 

band is idealised by an infinite band finite element calculation, with the direction of shear parallel to 

one set of inclined bars of the honeycomb, see Fig. 10(a) for the initial, undeformed state and Fig. 

10(b) for the deformed configuration. A finite shear strain develops within the band but with vanishing 

stretch along the band. The initial stage of this collapse mode entails the formation of an extensional 

plastic hinge in bar 3, and inextensional plastic hinges in bar 2, as sketched in Fig. A1. This is the same 

as ‘mode B’ in Tankasala et al (2021). 

The initial, small strain, collapse mode of the shear band is now analysed using simple beam 

theory, along the same lines as that of Tankasala et al (2021), but now specialised to the case of simple 

shear along a band inclined at an angle 𝛽 = 𝜔0. First, the time rate of change of (𝜔1, 𝜔2, 𝜔3) and of 

length ℓ3 are determined as a function of the time rate of change of macroscopic shear strain 𝛾 in the 

band. The unit normal n to the band boundary and the unit vector along the band boundary s, as defined 

in Fig. 10(a) and repeated in Fig. A1, are invariant with increasing deformation within the band, and 

are given by  

𝒏 = 𝒆1 sin 𝜔0 + 𝒆2 cos 𝜔0 ,    𝒔 = 𝒆1 cos 𝜔0 − 𝒆2 sin 𝜔0.   (A.1) 

Four representative joints A-D are defined in Fig. A1. Note that the joints A and C are similarly 

situated within the hexagonal lattice, as are joints B and D. Joints A and C, with position vectors 𝑥𝑖
A 

and 𝑥𝑖
C, respectively, move to locations A’ and C’ in the deformed configuration with position vectors 

𝑥𝑖
A′

 and 𝑥𝑖
C′

, respectively. The displacement of joints A and C are 𝑢𝑖
A = 𝑥𝑖

A′
− 𝑥𝑖

A  and 𝑢𝑖
C = 𝑥𝑖

C′
− 𝑥𝑖

C, 

respectively. The kinematics of the infinite band demand that (𝑥𝑖
C′

− 𝑥𝑖
A′

) is related to (𝑥𝑖
C − 𝑥𝑖

A) by 

the macroscopic shear strain 𝛾 parallel to the band according to 

(𝑥𝑖
C′

− 𝑥𝑖
A′

)𝑛𝑖 = (𝑥𝑖
C − 𝑥𝑖

A)𝑛𝑖  , (A.2) 

and 

(𝑢𝑖
C′

− 𝑢𝑖
A′

)𝑠𝑖 = 𝛾(𝑥𝑖
C − 𝑥𝑖

A)𝑛𝑖  , (A.3) 
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where 

𝒙C′
− 𝒙A′

= ℓ1(𝒆1 cos 𝜔1 + 𝒆2 sin 𝜔1) + ℓ3(𝒆1 cos 𝜔3 + 𝒆2 sin 𝜔3) , (A.4) 

and 

𝒙C − 𝒙A = ℓ(𝒆1 cos 𝜔0 + 𝒆2 sin 𝜔0) + ℓ𝒆2 . (A.5) 

In similar fashion, the relative position of joints B’ and D’ in the deformed configuration is related to 

the initial relative position of B and D according to 

(𝑥𝑖
D′

− 𝑥𝑖
B′

)𝑛𝑖 = (𝑥𝑖
D − 𝑥𝑖

B)𝑛𝑖  , (A.6) 

and 

(𝑢𝑖
D′

− 𝑢𝑖
B′

)𝑠𝑖 = 𝛾(𝑥𝑖
D − 𝑥𝑖

B)𝑛𝑖  , (A.7) 

where 

𝒙D′
− 𝒙B′

= ℓ1(𝒆1 cos 𝜔1 + 𝒆2 sin 𝜔1) − ℓ2(𝒆1 cos 𝜔2 + 𝒆2 sin 𝜔2) , (A.8) 

and 

𝒙D − 𝒙B = 2𝒆1ℓ cos 𝜔0. (A.9) 

The 4 relations (A.2), (A.3), (A.6) and (A.7) are used to solve for (𝜔1, 𝜔2, 𝜔3) and the length 

ℓ3 as a function of the macroscopic shear strain 𝛾, upon assuming that bars 1 and 2 do not stretch, 

ℓ1 = ℓ2 = ℓ. Substitution of (A.1), (A.4) and (A.5) into (A.2) gives 

ℓ sin(𝜔0 + 𝜔1) + ℓ3 sin(𝜔0 + 𝜔3) = ℓ cos 𝜔0 (1 + 2 sin 𝜔0) , (A.10) 

while insertion of (A.1), (A.4) and (A.5) into (A.3) gives 

ℓ cos(𝜔0 + 𝜔1) + ℓ3 cos(𝜔0 + 𝜔3)

= 𝛾ℓ cos 𝜔0 (1 + 2 sin 𝜔0) + ℓ cos 2𝜔0 − ℓ sin 𝜔0 .  
(A.11) 

In similar fashion, insertion of (A.1), (A.8) and (A.9) into (A.6) and (A.7), respectively, gives  
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sin(𝜔0 + 𝜔1) − sin(𝜔0 + 𝜔2) = sin 2𝜔0 , (A.12) 

and 

cos(𝜔0 + 𝜔1) − cos(𝜔0 + 𝜔2) = 𝛾 sin 2𝜔0 + 2 cos2 𝜔0. (A.13) 

Equations (A.10) – (A.13) are used to determine (𝜔1, 𝜔2, 𝜔3, ℓ3 ) as a function of 𝛾. We seek a small 

strain solution for the rigid, ideally plastic collapse state, and so (A.10) – (A.13) are linearised by 

writing them in rate form. Routine algebraic manipulation gives 

𝜔̇1 = −𝛾̇,   𝜔̇2 = 𝛾̇ cos 2𝜔0 ,   𝜔̇3 = −𝛾̇(cos2 𝜔0 + sin 𝜔0 cos 2𝜔0), (A.14) 

and 

ℓ̇3 = 𝛾̇ℓ cos 𝜔0 (cos 2𝜔0 − sin 𝜔0). (A.15) 

The shear traction 𝜏 on the shear band is obtained by equating the macroscopic work rate in the 

shear band for a single hexagonal cell, 𝑊𝑃̇ = 𝑉0𝜏𝛾̇, to the plastic work rate for the hexagonal cell. First 

note that the vertical bar 3 shortens plastically, and the yield surface for the bar contains a vertex (with 

zero plastic moment) when the axial force in the bar equals the yield load.  The plastic work rate for 

the shortening bar is (2/√3)𝜎0𝑡|ℓ3̇|, and the plastic work rate for the unit cell of a single hexagon (of 

volume 𝑉0) is 

𝑊𝑃̇ = 𝑉0𝜏𝛾̇  = (𝑡2|𝜔̇2 − 𝜔̇1| + 2𝑡|ℓ3̇|)𝜎0/√3. (A.16) 

Now make use of (A.14)-(A.16), and the expression (1.1) to obtain the macroscopic shear strength as 

𝜏
𝜌̅ 𝜎0

≈
2

3√3
cos 𝜔0 (sin 𝜔0 − cos 2𝜔0), (A.17) 

to leading order. 

 

Appendix B:  Response of 𝝎𝟎 = 𝟐𝟎° honeycomb in tension 

 The strongly softening tensile response of the non-cavitating filled honeycomb of inclination 𝜔0 =

20° resembles the compressive response of the non-cavitating filled honeycomb of inclination 𝜔0 =

40°, compare Figs. 3(a) and 4(a); both figures relate to the primal periodic unit cell response. 
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Consequently, inclined shear bands are anticipated in the tensile response of a finite specimen of non-

cavitating honeycomb of inclination 𝜔0 = 20°. This case is reported below. 

Finite specimen response 

 Explicit finite element simulations were performed using a specimen of dimension 12 x 27 unit 

cells of hexagons, of inclination 𝜔0 = 20° and a non-cavitating core; consequently, the rectangular 

specimen is of size 23ℓ x 72ℓ. Again, a single cell is removed at half height on one side to initiate 

shear bands. The boundary conditions are as given in section 3.1: the top face is subjected to an upward 

velocity  𝑢̇∞/2 and the bottom face to a downward velocity −𝑢̇∞/2. Consequently, the specimen is 

subjected to a constant extension rate  𝑢̇∞.  

 Representative solutions for the average tensile traction 〈𝜎∞〉 versus non-dimensional extension 

〈𝑢∞/ℓ〉 are given in Fig. B1(a) for 𝑡/ℓ equal to 0.05 and 0.1. A pronounced load peak is observed, 

followed by a plateau, similar to that observed for the finite specimen of inclination 𝜔0 = 40° and 

non-cavitating core in compression. The evolution of shear bands is shown in Fig. B1(b). The snap-

back instability of the specimen is associated with the initiation of a primary shear band at an 

orientation of 𝛽 = 55° from the imperfection on the left-hand side of the specimen. Thereafter, band 

broadening of the primary shear band occurs by the formation of additional shear bands of orientation 

𝛽 = 55° at the top and bottom faces of the primary shear band. Propagation of the primary shear band 

across the specimen and band broadening both occur at the same value of macroscopic tensile stress.  

 

Infinite band calculation 

 Periodic unit cell calculations are performed for the collapse response of an infinite shear band 

inclined at 𝛽 = 55°; the shear band comprises the non-cavitating filled honeycomb of inclination 𝜔0 =

20°.  This calculation closely resembles that reported in section 3.3 for the response of a honeycomb 

of inclination 𝜔0 = 40° in a shear band inclined at 𝛽 = 40°. The boundary conditions are as described 

in section 3.3, but the shear strain rate  𝛾̇ is now taken to be negative such that the unit cell experiences 

an extension in the global 𝑋2direction, as indicated in the insert in Fig. B1(c). 

 Representative results for the shear traction 𝜏 versus shear strain 𝛾 are shown in Fig. B1(c). The 

peak shear stress is 𝜏𝑌 = 0.14𝜌̅𝜎0. Bifurcation into a strongly softening bending mode occurs 

immediately after the peak load. At a value of shear strain 𝛾 ≈ 0.25, the load rises sharply again. A 

Maxwell construction gives 𝜎𝑃 = 1.0𝜌̅2𝜎0 which is only slightly above the observed axial propagation 

stress for the specimen in Fig. B1(a). 
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Figure Captions 

Figure 1.  Geometry and notation. (a) Initial geometry of honeycomb in terms of a Cartesian reference 

frame, with orthogonal base vectors (𝑒1, 𝑒2). (b) Deformed configuration. (c) Unit cell used in periodic 

cell finite element simulations. 

Figure 2.  (a) Tensile and compressive response of empty periodic unit cell, with inclined bars of 

inclination 𝜔0 = 20°, 30° and 40° and 𝑡/ℓ=0.05; (b) plastic collapse mechanism in tension and 

compression by rotation of inextensional hinges; the collapse mode for 𝜔0 = 40°, 𝑡/ℓ=0.05, and, 

contours of von Mises stress, are shown for (c) tension and (d) compression. 

Figure 3.  Periodic unit cell in uniaxial tension with an empty core, a core that can cavitate, or a core 

that cannot cavitate, 𝑡/ℓ = 0.05. (a) Nominal stress versus nominal strain for 𝜔0 = 20∘, 30∘, 40∘; 

Deformed configuration are shown for a honeycomb with non-cavitating core for (b) 𝜔0 = 20∘; (c) 

𝜔0 = 30∘ and (d) 𝜔0 = 40∘. In each case, the contours are of the von Mises stress. 

Figure 4.  Periodic unit cell in uniaxial compression, with an empty core, a core that can cavitate, or 

with a core that cannot cavitate, 𝑡/ℓ = 0.05. (a) Nominal stress versus nominal strain for 𝜔0 =

20∘, 30∘ and 40∘; deformed configurations are shown for a honeycomb with a non-cavitating core and 

(b) 𝜔0 = 20∘; (c) 𝜔0 = 30∘ and (d) 𝜔0 = 40∘.  

Figure 5.  Compressive collapse mechanisms of a hexagonal honeycomb of initial inclination 𝜔0 =

40∘ for an empty core, cavitating core and a non-cavitating core. The data points refer to finite element 

simulations for the choice 𝑡/ℓ = 0.05. Contours of 𝜀∞ are included in the plot. 

Figure 6.  Comparison of analytical and finite element predictions of the compressive response of a 

periodic unit cell of inclination 𝜔0 = 40°. (a) Cavitating and non-cavitating core for 𝑡/ℓ = 0.05; (b) 

magnified version of (a) to show early behaviour; (c) non-cavitating core and 3 selected values of 𝑡/ℓ; 

(d) magnified version of (c) to show early behaviour.  

Figure 7.  Compression of finite specimens with 𝜔0 = 40°. (a) Geometry of specimens and detail of 

the defect introduced in all specimens; (b) nominal stress versus nominal strain curve, no cavitation; 

(c) nominal stress versus nominal strain curves, cavitation allowed, and empty cells. The propagation 

stress for the no-cavitation specimen is included in (b). 

Figure 8.  Deformed configurations of finite specimens with 𝜔0 = 40° and 𝑡 ℓ⁄ = 0.1. (a) 

Noncavitating core; (b) cavitating core; (c) empty core. Contours in the full specimens represent 

equivalent plastic strain (von Mises strain) and contours in the close-ups represent normalised von 

Mises stress, with key as shown. 



29 

 

Figure 9.  Maxwell construction of shear band propagation stress. (a) Schematic; (b) geometric 

construction, the area of 𝐼 is equal to the area of 𝐼𝐼; (c) inclined shear band. 

Figure 10.  (a) Infinite shear band, inclined at 𝛽 = 40∘ for the 𝜔0 = 40° honeycomb and non-

cavitating core; (b) deformed state of unit cell; (c) response of unit cell in infinite shear band; (d) 

magnified portion of unit cell response.  

 

Figure A1. Schematic of the initial collapse mode of non-cavitating honeycomb deforming in a shear 

band. 

Figure B1.  Response of filled 𝜔0 = 20° honeycomb with non-cavitating core in tension. (a) Finite 

specimen response for two values of 𝑡/ℓ: (b) deformed configuration of the specimen for the choice 

of 𝑡/ℓ = 0.1; response of unit cell in infinite shear band, inclined at 𝛽 = 55°, for two different values 

of 𝑡/ℓ; (d) deformed configurations unit cell in infinite shear band for the choice 𝑡/ℓ = 0.05. Contours 

in full specimen represent equivalent plastic strain and contours in close-ups and unit cell represent 

normalised von Mises stress, with key as shown. 

 



30 

 

Figures 

 

Figure 1.  Geometry and notation. (a) Initial geometry of honeycomb in terms of a Cartesian reference 

frame, with orthogonal base vectors (𝑒1, 𝑒2). (b) Deformed configuration. (c) Unit cell used in periodic 

cell finite element simulations. 
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Figure 2.  (a) Tensile and compressive response of empty periodic unit cell, with inclined bars of 

inclination 𝜔0 = 20°, 30° and 40° and 𝑡/ℓ=0.05; (b) plastic collapse mechanism in tension and 

compression by rotation of inextensional hinges; the collapse mode for 𝜔0 = 40°, 𝑡/ℓ=0.05, and, 

contours of von Mises stress, are shown for (c) tension and (d) compression. 
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Figure 3.  Periodic unit cell in uniaxial tension with an empty core, a core that can cavitate, or a core 

that cannot cavitate, 𝑡/ℓ = 0.05. (a) Nominal stress versus nominal strain for 𝜔0 = 20∘, 30∘, 40∘; 

Deformed configuration are shown for a honeycomb with non-cavitating core for (b) 𝜔0 = 20∘; (c) 

𝜔0 = 30∘ and (d) 𝜔0 = 40∘. In each case, the contours are of the von Mises stress. 
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Figure 4.  Periodic unit cell in uniaxial compression, with an empty core, a core that can cavitate, or 

with a core that cannot cavitate, 𝑡/ℓ = 0.05. (a) Nominal stress versus nominal strain for 𝜔0 =

20∘, 30∘ and 40∘; deformed configurations are shown for a honeycomb with a non-cavitating core and 

(b) 𝜔0 = 20∘; (c) 𝜔0 = 30∘ and (d) 𝜔0 = 40∘.  
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Figure 5.  Compressive collapse mechanisms of a hexagonal honeycomb of initial inclination 𝜔0 =

40∘ for an empty core, cavitating core and a non-cavitating core. The data points refer to finite element 

simulations for the choice 𝑡/ℓ = 0.05. Contours of 𝜀∞ are included in the plot. 
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Figure 6.  Comparison of analytical and finite element predictions of the compressive response of a 

periodic unit cell of inclination 𝜔0 = 40°. (a) Cavitating and non-cavitating core for 𝑡/ℓ = 0.05; (b) 

magnified version of (a) to show early behaviour; (c) non-cavitating core and 3 selected values of 𝑡/ℓ; 

(d) magnified version of (c) to show early behaviour.  
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Figure 7.  Compression of finite specimens with 𝜔0 = 40°. (a) Geometry of specimens and detail of 

the defect introduced in all specimens; (b) nominal stress versus nominal strain curve, no cavitation; 

(c) nominal stress versus nominal strain curves, cavitation allowed, and empty cells. The propagation 

stress for the no-cavitation specimen is included in (b). 

 



37 

 

 

Figure 8.  Deformed configurations of finite specimens with 𝜔0 = 40° and 𝑡 ℓ⁄ = 0.1. (a) 

Noncavitating core; (b) cavitating core; (c) empty core. Contours in the full specimens represent 

equivalent plastic strain (von Mises strain) and contours in the close-ups represent normalised von 

Mises stress, with key as shown. 
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Figure 9.  Maxwell construction of shear band propagation stress. (a) Schematic; (b) geometric 

construction, the area of 𝐼 is equal to the area of 𝐼𝐼; (c) inclined shear band. 
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Figure 10.  (a) Infinite shear band, inclined at 𝛽 = 40∘ for the 𝜔0 = 40° honeycomb and non-

cavitating core; (b) deformed state of unit cell; (c) response of unit cell in infinite shear band; (d) 

magnified portion of unit cell response.  
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Figure A1. Schematic of the initial collapse mode of non-cavitating honeycomb deforming in a shear 

band. 
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Figure B1.  Response of filled 𝜔0 = 20° honeycomb with non-cavitating core in tension. (a) Finite 

specimen response for two values of 𝑡/ℓ: (b) deformed configuration of the specimen for the choice 

of 𝑡/ℓ = 0.1; response of unit cell in infinite shear band, inclined at 𝛽 = 55°, for two different values 

of 𝑡/ℓ; (d) deformed configurations unit cell in infinite shear band for the choice 𝑡/ℓ = 0.05. Contours 

in full specimen represent equivalent plastic strain and contours in close-ups and unit cell represent 

normalised von Mises stress, with key as shown. 


