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Abstract 

Single crystal, Ni-rich layered lithium metal oxides are promising candidates for next-

generation cathodes in lithium-ion batteries. However, these Ni-rich materials display 

anisotropic swelling and contraction during cycling, and this may lead to the generation of 

internal stresses and thereby to fracture and capacity loss. In this work, the spatio-temporal 

evolution of lithium concentration and stress state within a LiNi0.8Mn0.1Co0.1O2 (NMC811) 

single crystal are predicted using a fully coupled chemo-mechanical model. The stress state in 

the crystal arises from a non-uniform radial distribution of Li concentration, and from a non-

linear dependence of intercalation strain upon lithium concentration. The peak tensile stress is 

greatest near top-of-charge, due to the high sensitivity of intercalation strain upon lithium 

occupancy at low concentrations, and the peak tensile stress increases with both cycling rate 

and particle dimension. Significantly, the predicted peak tensile stress is insufficient to cause 

basal plane fracture of single crystals when their diameter is below 2.5 μm and the charging 

and discharging rates are below 5C. This suggests that intraparticle fracture is not a significant 

degradation mode for well-designed NMC811 single crystals. 
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Introduction 

In recent years, there has been an increasing global need to replace internal combustion 

engines by an electric motor/generator in order to reduce both vehicle emissions and the 

dependence upon fossil fuels. The rapid advance in Lithium-Ion Battery (LIB) technology 

makes the LIB viable for energy storage in automobiles. 1 Candidate next-generation cathodes 

for electric vehicle (EV) batteries contain layered, nickel-rich manganese cobalt oxide (NMC) 

materials. Compared to the more traditional Lithium Cobalt Oxide (LiCoO2, LCO), nickel-rich 

NMC (LiNi𝑝Mn𝑞Co𝑟O2, where 𝑝 + 𝑞 + 𝑟 = 1, 𝑝 ≥  0.5) contains less cobalt; this is 

advantageous as cobalt is a rare and expensive element. Additionally, the mining and use of 

cobalt brings environmental, economic, and humanitarian risks. 2,3 The alloy 

LiNi0.8Mn0.1Co0.1O2 (known as NMC811) is one such candidate due to its high specific 

capacity. 4 However, LIBs that utilise Ni-rich cathode materials have shorter practical lifetimes, 

an issue that has been described as “an unavoidable challenge”. 5 

Polycrystalline agglomerates (termed secondary particles) of single crystals (termed 

primary particles) are commonly used for Li storage in the cathode of a LIB. However, 

lithiation and delithiation lead to anisotropic swelling and shrinkage, respectively, of each 

primary particle within the secondary particle and in order to achieve compatibility of adjacent 

primary particles, a varying elastic strain field (and associated stress state) is generated from 

particle to particle. These stresses can be of sufficient tensile magnitude that they induce 

intergranular cracking and fragmentation of the secondary particles. It has been widely 

proposed that this mechanism is more significant in Ni-rich cathode materials on account of 

the greater anisotropic expansions and contractions of the crystallographic unit cell than in 

lower-Ni-content materials. 6 Recent experimental results have shown considerable 

improvement in electrochemical performance of the cathode upon replacing polycrystalline 

agglomerates of NMC primary particles by micron-sized primary particles. 7 This raises the 

question of whether Ni-rich cathode materials with large primary particle size are prone to 

mechanical fracture during cycling. For this reason, the present paper focuses on large single 

crystal particles, and predicts the sensitivity of stress generation within the single crystals to 

the rate of charge/discharge (as quantified by the so-called C-rate) and to the crystal size. 

Most theoretical predictions of cracking in Ni-rich storage materials consider secondary 

particles. For example, Li et al.8 performed finite element simulations on spherical NMC811 

polycrystalline agglomerates and used cohesive zones to idealise the grain boundaries between 
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primary particles of random size and shape. They demonstrated that the tensile tractions acting 

on the grain boundaries are sufficient to induce tensile intergranular fracture. 

The absence of grain boundaries in single crystal NMC alleviates the problem of self-

stress development associated with grain-to-grain anisotropy. But micro-cracking and glide 

along crystallographic planes can still occur within each grain, as observed by Bi et al.9 for 

NMC76 single crystals. Intragranular cracks have also been observed in single crystal 

NMC622. 10,11 Currently, it is unclear whether these cracks are generated by internal stresses 

associated with repeated delithiation and relithiation during cell charging and discharge, 

respectively. Alternatively, cracks may arise from other processes such as mechanical 

calendaring during electrode processing, 12 thereby motivating the present study. 

Several theoretical models have emerged recently to predict the distribution of lithium 

concentration and stress state in single crystal storage particles. For example, studies on spinel-

structured Lithium Manganese Oxide (LiMn2O4, LMO) have considered the sensitivity of 

lithium distribution to particle shape. 13-15 Zhao et al.16 predicted the stress state and likelihood 

of particle cracking in single crystal LCO, while Nadkarni et al.17 analysed the metal-insulator 

phase transition observed in LCO at a Li occupancy above 50%. Phase-field models were 

developed to study phase separation of lithium-rich LiFePO4 and lithium-poor FePO4 in 

olivine-structured lithium iron phosphate (LFP). 18,19 Bi et al.9 predicted the evolution of stress 

state within single crystal NMC76 due to lithiation and delithiation; to do so, they assumed a 

concentration-dependent Young's modulus but ignored the influence of stress upon diffusion.  

A numerical investigation is now presented on the lithiation/delithiation response of a 

single crystal NMC811 particle with realistic material properties and particle sizes (i.e., 

particles with diameter on the order of a few μm), with the effect of lithiation-induced stresses 

taken into account, and a diffusion coefficient that depends upon the current degree of 

lithiation. The required level of complexity is assessed by comparing the predictions of the 

model with those of classical stress-independent Fickian diffusion and constant diffusivity, as 

used extensively in the literature (see for example Bi et al.9). The objective of the present study 

is two-fold: (1) predict the stress state and lithium occupancy in a single storage particle during 

its lithiation and delithiation; and (2) generate a design map to estimate the propensity for 

particle fracture as a function of particle size and rate of delithiation/lithiation of the cathode. 

Since our study is concerned with cathodes, we will employ the terminology of 

‘delithiation/lithiation of the cathode’ and refrain from using ‘charging/discharging of the 

battery’ to avoid possible confusion.  
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The outline of the remainder of the paper is as follows. After briefly discussing the 

governing equations and the numerical method, we present and discuss the simulation results, 

including the effect of charging rate and crystal size upon level of stress generation. Concluding 

remarks and a summary of the key results are then given. A list of mathematical symbols used 

in the model is provided in Table 1. 

 

Table 1 A summary of the parameters of the model 

Symbol Description 

𝐻 height of the right circular cylindrical particle 

𝑑 diameter of the right circular cylindrical particle 

𝑟 radial coordinate 

𝜔 angular coordinate 

𝑧 axial coordinate 

𝑡 time 

𝐞𝑟 radial unit vector 

𝐞𝜔 tangential unit vector 

𝐞𝑧 axial unit vector 

𝒙 position vector  

𝐎 geometric centre of the cylinder 

Ω domain of the circular cylindrical particle 

𝐚 crystallographic 𝐚 axis 

𝐛 crystallographic 𝐛 axis 

𝐜 crystallographic 𝐜 axis 

𝒮 curved boundary of the circular cylindrical particle 

𝑁L molar density of lattice sites 

𝑁Li molar density of Li+ 

𝜃 lithium occupancy fraction 

〈⋅〉 volume averaged quantity 

𝑄 nominal capacity of NMC particle 

ℱ Helmholtz free energy density 

𝛆 strain tensor 

𝑇 temperature 
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𝑊𝜃 compositional free energy per unit volume of stress-free homogeneous NMC crystal 

𝑊𝐸𝐿 elastic free energy density 

𝛔 Cauchy stress tensor 

ℂ fourth order elasticity tensor 

𝒖 displacement vector 

𝛆𝐸𝐿 elastic strain tensor 

𝛆𝜃 lattice strain tensor 

𝑙𝑎
𝜃 lattice parameter at occupancy 𝜃 along 𝐚 axis 

𝑙𝑏
𝜃 lattice parameter at occupancy 𝜃 along 𝐛 axis 

𝑙𝑐
𝜃 lattice parameter at occupancy 𝜃 along 𝐜 axis 

𝜀𝑎
𝜃 lattice strain at occupancy 𝜃 along 𝐚 axis 

𝜀𝑏
𝜃 lattice strain at occupancy 𝜃 along 𝐛 axis 

𝜀𝑐
𝜃 lattice strain at occupancy 𝜃 along 𝐜 axis 

𝜇Li
𝑐  chemical potential of Li atoms in the cathode 

𝜇Li
𝜃  compositional chemical potential of stress-free homogeneous NMC crystal 

𝜇Li
𝐸𝐿 chemical potential associated with the elastic free energy density 

𝜇Li+
𝑐  chemical potential of Li+ ions in the cathode 

𝑁𝑒− molar density of electrons 

𝜇𝑒−
𝑐  chemical potential of electrons 

𝜙𝑐 electric potential of the cathode particle 

𝐹 Faraday constant 

𝜇Li
𝑎  chemical potential of Li atoms in the anode 

𝜇Li+
𝑎  chemical potential of Li+ ions in the anode 

𝜙𝑎 electric potential of the anode particle 

𝑉𝑜𝑐 open circuit voltage 

𝐟 driving force for the migration of Li+ in the cathode particle 

𝛁 spatial gradient operator 

𝐌 mobility tensor 

𝐯𝑑 drift velocity of Li+ ions in the cathode particle 

𝐃 diffusivity tensor 

𝑅 Universal gas constant 

𝐷Li occupancy-dependent diffusivity in the 𝐚𝐛-plane 
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𝜈 hop rate of Li+ in the NMC lattice 

〈𝑟2〉 mean-square distance 

𝐉 flux of Li+ in the NMC particle 

𝐼𝒮 electronic current density per unit lateral surface area of the circular cylindrical 

particle 

𝐧 unit normal to 𝒮 

𝜃 test function for the diffusion equation written in weak form 

𝑣 test function for the equation of chemical potential associated with the elastic free 

energy written in weak form 

𝑑𝑉 elemental volume of Ω 

𝑑𝑆 elemental area of 𝒮 

𝜅 constant which equals +1 for delithiation and -1 for lithiation 

𝜌 mass density of NMC crystal 

𝜎𝑐 axial stress 

𝜎𝑐
max maximum axial stress 

𝜀𝑧𝑧 axial strain 

𝜀0 spatially uniform axial strain for the generalized plane strain case 

𝐹𝑐 axial force 

𝜎𝑟𝑟 radial stress 

𝜎𝜔𝜔 tangential stress 

𝑎0 depth of surface thumbnail crack and the radius of a penny-shaped crack 

𝑐0 width of the surface thumbnail crack 

𝐾IC mode I fracture toughness of NMC 

𝐷0 constant diffusion coefficient in Fickian diffusion 

𝐸𝑧 Young’s modulus in 𝑧 direction 

𝜈𝑟𝑧 Poisson’s ratio in the 𝑟𝑧-plane 

 

 

Governing equations and solution methodology 

Model description and constitutive assumptions.− Consider an isolated NMC811 single 

crystal surrounded by a liquid electrolyte. The crystal remains electrically neutral as it is 

connected to the current collector via the carbon binder of the composite cathode. The 

electrolyte is not considered explicitly as we only model delithiation/lithiation at constant 
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current. The storage particles are each idealised by a right-circular cylinder of height 𝐻 and 

diameter 𝑑, see Fig. 1(a); this is an idealised model of the crystal habit of many NMC811 

crystals. 20  

(a)                                                                  (b) 

 

 

 

 

 

(c)                                                                  (d)  

Figure 1. (a) Sketch of the problem analysed. A circular cylindrical particle of height 𝐻 and 

diameter 𝑑 has a surface thumbnail crack of depth 𝑎0 and width 𝑐0 and a penny-shaped centre-

crack of radius 𝑎0. (b) lattice strain components 𝜀𝑎
𝜃 = 𝜀𝑏

𝜃 and 𝜀𝑐
𝜃, (c) open-circuit voltage 𝑉𝑜𝑐

21 

and (d) 𝐚𝐛- plane diffusivity 𝐷Li each as a function of Li occupancy 𝜃. The data in (b)-(d) are 

taken from Refs. 21, 24, 27 as indicated. 

Cylindrical coordinates (𝑟, 𝜔, 𝑧) and orthonormal base vectors (𝐞𝑟, 𝐞𝜔, 𝐞𝑧) are introduced 

such that (𝐞𝑟 , 𝐞𝜔) lie in the crystallographic basal 𝐚𝐛-plane of the NMC crystal and the axial 

direction 𝒆𝑧 of the cylinder is along the crystallographic 𝐜-axis of the NMC crystal. The origin 

𝐎 of the co-ordinate system is at the geometric centre of the cylinder. The domain of the particle 

is denoted by Ω and its curved side boundary by 𝒮. The layered structure of NMC limits 

diffusion of lithium ions to occur within the 𝐚𝐛-plane but not along the 𝐜-axis. Consequently, 
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lithium ions enter the particle only over 𝒮 during lithiation and vice versa for delithiation. The 

analysis is simplified by assuming an axisymmetric particle shape and axisymmetric boundary 

conditions, such that we only need to consider the (𝑟, 𝑧) plane. 

The unit cell of NMC811 contains three (crystallographically-related) lattice sites for 

lithium ions that can be simultaneously occupied and is of volume 101 Å3 in the fully lithiated 

state.21 The molar density of lattice sites is 𝑁L = 49,200 mols m−3. Write 𝑁Li(𝒙, 𝑡) as the molar 

density of Li+ at a spatial position 𝒙 = 𝑟𝐞𝑟 + 𝑧𝐞𝑧 at any given time 𝑡; then, the lithium 

occupancy fraction 𝜃(𝒙, 𝑡) is  

𝜃 =
𝑁Li

𝑁L
. 

 

 [1] 

Lithium ions diffuse from the particle core to its lateral boundary during delithiation and in the 

opposite direction during lithiation. At any instant of delithiation/lithiation, the distribution of 

occupancy within the particle is non-uniform. The state of charge (SOC) at time 𝑡 is quantified 

by the average value of lithium occupancy over the volume 𝑉 of the particle, denoted by ⟨𝜃(𝑡)⟩, 

where 

⟨𝜃(𝑡)⟩ =
1

V
∫ 𝜃

Ω

 𝑑𝑉.  
[2] 

Assume that the particle is fully lithiated when ⟨𝜃⟩ = 0.95. The nominal capacity of the 

NMC811 storage particle is 𝑄 = 210 mAh g−1 (assuming that the NMC particle is of density 

= 4.78 g cm−3)22. This implies that the particle is nominally delithiated when the average 

occupancy ⟨𝜃⟩ = 0.2 

A thermodynamic framework is now introduced for lithium diffusion. Following 

Onsager23, the rate of drop of free energy of the system drives dissipation, and so the first step 

is to determine an expression for the free energy in terms of the strain field and lithium 

occupancy throughout the crystal. The Helmholtz free energy per unit macroscopic volume of 

the NMC crystal is written as ℱ(𝛆, 𝑁Li, 𝑇) at a temperature 𝑇 and subjected to a strain 𝛆. 

Partition the free energy into the compositional free energy per unit volume of a stress-free 

homogeneous NMC crystal 𝑊𝜃 and into the elastic free energy density 𝑊𝐸𝐿 such that 

 ℱ(𝛆, 𝑁Li, 𝑇) = 𝑊𝜃(𝜃) + 𝑊𝐸𝐿(𝜃, 𝛆).  [3] 
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Assume a linear elastic response† and write the elastic free energy density 𝑊𝐸𝐿 as 

𝑊𝐸𝐿 =
1

2
𝛔: 𝛆𝐸𝐿 , 

[4] 

where the Cauchy stress tensor 𝛔 is related to the elastic strain tensor 𝛆𝐸𝐿 through the usual 

Hooke's law, 

𝛔 = ℂ: 𝛆𝐸𝐿 [5] 

and the fourth order elasticity tensor ℂ denotes the stiffness of the NMC811 crystal. This 

elasticity tensor possesses the transversely isotropic symmetry of the crystal and is described 

by five independent components that can, in general, depend upon 𝜃. However, for simplicity, 

we shall assume that the components of ℂ are independent of occupancy and employ the values 

given by Li et al.8 and are provided in Table 2. 

 

Table 2 Components of ℂ for the transversely isotropic NMC811 crystal 

Component Value (GPa) 

C𝑟𝑟𝑟𝑟 = C𝜔𝜔𝜔𝜔 259 

C𝑟𝑟𝜔𝜔 107 

C𝑟𝑟𝑧𝑧 = C𝜔𝜔𝑧𝑧 75 

C𝑧𝑧𝑧𝑧 194 

C𝑟𝑧𝑟𝑧 = C𝜔𝑧𝜔𝑧 59 

 

The total strain 𝛆 is derived from the displacement vector field 𝒖(𝒙, 𝑡) = (𝑢𝑟 , 𝑢𝜔 , 𝑢𝑧) 

by 

𝛆 =
1

2
[∇𝒖 + ∇𝒖T]. 

[6] 

In the context of a small strain theory, the total strain 𝛆 is decomposed into the sum of the 

elastic strain 𝛆𝐸𝐿  and the lattice strain 𝛆𝜃  due to intercalation of lithium ions in the NMC811 

unit cell such that 

𝛆 = 𝛆𝐸𝐿 + 𝛆𝜃. [7] 

Now express the components of  𝛆𝜃 in the crystal's coordinate system: 

 
† Our formulation neglects plasticity and this is justified a posteriori. 
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𝛆𝜃 = [

𝜀𝑎
𝜃 0 0

0 𝜀𝑏
𝜃 0

0 0 𝜀𝑐
𝜃

]. 

[8] 

The components of lithiation strain 𝛆𝜃 are determined as a function of lithium occupancy via 

the experimentally obtained lattice parameters 𝑙𝑎
𝜃 = 𝑙𝑏

𝜃 and 𝑙𝑐
𝜃 along the three crystallographic 

directions. For NMC811, the lattice parameters are taken from Märker et al.21 and Biasi et al.24. 

Assume that the lattice parameters at an occupancy of 𝜃 = 0.1 are the reference values such 

that all components of 𝛆𝜃 vanish at this value of occupancy; consequently, 𝛆𝜃 is given by 

𝜀𝑎
𝜃 =

Δ𝑙𝑎
𝜃

𝑙𝑎
𝜃=0.1

=
𝑙𝑎

𝜃 − 𝑙𝑎
𝜃=0.1

𝑙𝑎
𝜃=0.1

, 𝜀𝑏
𝜃 = 𝜀𝑎

𝜃  , 𝜀𝑐
𝜃 =

Δ𝑙𝑐
𝜃

𝑙𝑐
𝜃=0.1

=
𝑙𝑐

𝜃 − 𝑙𝑐
𝜃=0.1

𝑙𝑐
𝜃=0.1

. 
[9] 

A polynomial regression is used to obtain the functional dependence of 𝛆𝜃 upon 𝜃, as shown 

in Fig. 1(b) for the measured components21,24 of lattice strain  𝜀𝑏
𝜃 = 𝜀𝑎

𝜃 and 𝜀𝑐
𝜃. The lithiation 

strain components in the 𝐚𝐛- plane increase monotonically with increasing occupancy and the 

measurements of Märker et al.21 and Biasi et al.24 are in good agreement. The strain component 

along the 𝐜-axis first increases steeply up to an occupancy of 𝜃 = 0.37 and then decreases as 

the crystal approaches the fully lithiated state. However, the measurements from the two 

references are in poor agreement, and this is particularly the case for the peak value of 𝜀𝑐
𝜃 and 

the strain at high occupancy. Unless otherwise stated, all calculations below use the data of 

Märker et al.21 in preference to that of Biasi et al.24. 

We proceed to obtain the governing equations for lithium occupancy as a function of 

space and time by rewriting the Helmholtz free energy Eq. [3] as 

ℱ(𝛆, 𝑁Li, 𝑇) = 𝑊𝜃(𝜃) +
1

2
[ℂ: (𝛆 − 𝛆𝜃)]: (𝛆 − 𝛆𝜃) 

 [10] 

upon making suitable use of Eqs. [4], [5] and [7]. The chemical potential of Li atoms in the 

cathode 𝜇Li
𝑐  (where the superscript 𝑐 denotes cathode) is obtained by taking the partial 

derivative of ℱ with respect to 𝑁Li while holding 𝛆 and 𝑇 constant, to give 

𝜇Li
𝑐 =

1

𝑁L

𝜕ℱ

𝜕𝜃
= 𝜇Li

𝜃 (𝜃) + 𝜇Li
𝐸𝐿(𝜃, 𝛆), 

[11] 

where 𝜇Li
𝜃 (𝜃) is 

𝜇Li
𝜃 (𝜃) ≡

1

𝑁L

𝜕𝑊𝜃

𝜕𝜃
 

[12] 

and 𝜇Li
𝐸𝐿(𝜃, 𝛆) is 
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𝜇Li
𝐸𝐿(𝜃, 𝛆) ≡ −

1

𝑁𝐿
[ℂ: (𝛆 − 𝛆𝜃)]:

𝜕𝛆𝜃

𝜕𝜃
. 

[13] 

 Delithiation/lithiation is associated with the flux of Li+ ions but the crystal remains 

neutral due to a counter flux of electrons from the current collector. The chemical potential 

𝜇Li+
𝑐  of Li+ ions in the electroneutral NMC811 crystal is obtained by taking the partial 

derivative of ℱ with respect to 𝑁Li+  at constant 𝛆 and 𝑇. To do so, first recall that the addition 

of a neutral Li atom is equivalent to adding an Li+ ion and an electron such that 

 

𝜇Li
𝑐 =

𝜕ℱ

𝜕𝑁Li
=

𝜕ℱ

𝜕𝑁Li+

𝜕𝑁Li+

𝜕𝑁Li
+

𝜕ℱ

𝜕𝑁e−

𝜕𝑁e−

𝜕𝑁Li
. 

[14] 

where 𝑁𝑒−  denotes the moles of electrons. Electroneutrality of NMC811 requires that the 

differentiation in Eq. [14] is carried out under the constraint 𝑁Li = 𝑁Li+ = 𝑁e− . Upon defining 

the chemical potential of electrons (Fermi level) by 𝜇𝑒−
𝑐 ≡ 𝜕ℱ/𝜕𝑁𝑒− , Eq. [14] can be simplified 

to 

𝜇Li+
𝑐 = 𝜇Li

𝑐 −  𝜇𝑒−
𝑐 . [15] 

Assume that the Fermi level 𝜇𝑒−
𝑐  of the NMC811 particle is independent of 𝜃 and depends only 

on the electric potential 𝜙𝑐 of the cathode particle such that 𝜇𝑒−
𝑐 = −𝐹𝜙𝑐, where 𝐹 is the 

Faraday constant. Then, the chemical potential for Li+ ions is determined from Eqs. [11] and 

[15] to give 

𝜇Li+
𝑐 = 𝜇Li

𝜃 (𝜃) + 𝜇Li
𝐸𝐿(𝜃, 𝛆) + 𝐹𝜙𝑐 . [16] 

 The chemical potential 𝜇Li
𝜃 (𝜃) is deduced from the open-circuit voltage 𝑉𝑜𝑐 versus 

occupancy profile as measured in a Galvanostatic intermittent titration technique (GITT) 

experiment21 (see Fig. 1(c)). The GITT experiment is performed on a cell having an NMC 

cathode and lithium metal anode. The chemical potential of the lithium metal in the stress-free 

anode is given by a relation analogous to Eq. [16] but with the compositional chemical potential 

𝜇Li
𝑎  now a constant since the occupancy of Li in the metal anode is fixed. We thus write the 

chemical potential of the Li ions in the anode as  

𝜇Li+
𝑎 = 𝜇Li

𝑎 + 𝐹𝜙𝑎 [17] 

where the superscript 𝑎 denotes anode and 𝜙𝑎 is the electrical potential of the anode. In the 

GITT experiments, open-circuit conditions for the cell are achieved by switching off the 

external current supply and allowing the lithium ions in the cell to attain electrochemical 
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equilibrium. In this state, the chemical potentials of the Li ions in the cathode and the anode 

are equal: 

𝜇Li+
𝑐 = 𝜇Li+

𝑎  ⇒ 𝜇Li
𝜃 (𝜃) = −𝐹𝑉𝑜𝑐(𝜃) + 𝜇Li

𝑎 , [18] 

where 𝑉𝑜𝑐(𝜃) ≡ 𝜙𝑐 − 𝜙𝑎 is the cathode occupancy-dependent open-circuit voltage. The 

chemical potential 𝜇Li
𝜃 (𝜃) obtained using Eq. [18] implicitly accounts for the enthalpic and 

entropic contributions associated with mixing of Li+ in the NMC lattice. Upon making use of 

Eqs. [16] and [18] the chemical potential of Li+ ions in the cathode reads 

𝜇Li+
𝑐 = −𝐹𝑉𝑜𝑐(𝜃) + 𝜇Li

𝐸𝐿(𝜃, 𝛆) + 𝜇Li
𝑎 + 𝐹𝜙𝑐 . [19] 

 The driving force for migration of the Li+ ions is obtained from the spatial gradient of 

the chemical potential, 𝐟 = −𝛁𝜇Li+
𝑐 . Assume that the drift velocity is proportional to the driving 

force with a proportionality constant given by the mobility tensor 𝐌, i.e., 𝐯𝑑 = 𝐌 ⋅ 𝐟. To ensure 

positive dissipation, we require that 𝐌 is positive definite and symmetric25 𝐌 = 𝐌T. The 

diffusivity tensor 𝐃 is related to 𝐌 in the usual manner by the Stokes-Einstein relation 𝐃 =

𝑅𝑇𝐌, where 𝑅 is the gas constant. The layered structure of NMC allows lithium diffusion only 

within the basal plane, and the diffusivity is treated as isotropic within the basal plane. Upon 

denoting the occupancy-dependent diffusivity within the basal plane by 𝐷Li, the transversely 

isotropic 𝐃 in the crystallographic basis is given by 

𝐃 = [
𝐷Li 0 0

0 𝐷Li 0
0 0 0

] . [20] 

We proceed to deduce the magnitude of 𝐷Li(𝜃)  from two separate types of measurements, as 

follows. First, deduce 𝐷Li(𝜃)  from the occupancy-dependent hop rate 𝜈(𝜃) of Li+ ions in the 

NMC lattice as obtained by NMR.21 Isotropic diffusion in the two dimensional (2D) basal plane 

implies that  

𝐷Li = 0.25𝜈〈𝑟2〉 , [21] 

where 〈𝑟2〉 is the mean-square distance that the Li+ ion travels per hop. See for example 

Böhmer et al.26 which links NMR measured hop rate to the diffusion coefficient. Now write 

〈𝑟2〉 = (𝑙𝑎
𝜃)

2
 where 𝑙𝑎

𝜃 is the occupancy-dependent lattice parameter in the 𝐚𝐛-plane. The 

NMR-derived hopping rate and the lithiation strains (Fig. 1(b)) give a discrete set of diffusivity 

data as shown in Fig. 1(d), and piecewise cubic interpolation functions are used to curve-fit to 
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the measured data points. Note that, in the absence of additional data, the diffusivity for 0 ≤

𝜃 ≤ 0.25 and 0.9 ≤ 𝜃 ≤ 1 are taken to be constant, with values 0.64 × 10−15  m2 s-1 and 

0.036 ×  10−15   m2 s-1, respectively. 

Second, use the Galvanostatic polarization and relaxation measurements from 

Trevisanello et al.27 to infer the occupancy dependent 𝐷Li(𝜃); these data are included in Fig. 

1(d) where piecewise cubic interpolation functions are used to curve-fit to the measured data 

points. Moreover, similar to the first method, we have assumed that the diffusion coefficient is 

constant over the ranges 0 ≤ 𝜃 ≤ 0.2 and 0.9 ≤ 𝜃 ≤ 1. Unless otherwise stated, all 

calculations below make use of the data of Märker et al.21 in preference to the inferred values 

from Trevisanello et al.27. 

 

The flux of Li+ in the particle is given by 𝐉 = 𝑁Li+𝐯𝑑 = −𝜃𝑁L𝐌 ⋅ 𝛁𝜇Li+
𝑐  so that 

𝐉 =
𝑁L

𝑅𝑇
𝜃𝐃 ⋅ [𝐹

𝜕𝑉𝑜𝑐

𝜕𝜃
𝛁𝜃 − 𝛁𝜇Li

𝐸𝐿],   
[22] 

where we have used the fact that 𝜇Li
𝑎  is constant and the spatial gradient of 𝜙𝑐 vanishes as we 

assume that NMC811 is a good electronic conductor. An additional outcome of this feature is 

that lithium-ion mobility is not significantly inhibited by Coulombic interactions with what 

otherwise would be sluggish paired electrons. 

 Now complete the formulation of the model by rewriting the balance laws in the form 

of partial differential equations with initial and boundary conditions. Mass balance for the 

lithium ions demands that the rate of change of Li+ ions with time 𝑡 within the particle is given 

by 

𝜕𝑁Li+

𝜕𝑡
= −𝛁 ⋅ 𝐉 = −

𝑁L

𝑅𝑇
𝛁 ⋅ [𝐹

𝜕𝑉𝑜𝑐

𝜕𝜃
𝜃𝐃 ⋅ 𝛁𝜃 − 𝜃𝐃 ⋅ 𝛁𝜇Li

𝐸𝐿]   in Ω. 
[23] 

This formulation correctly gives Fickian diffusion in the dilute limit of small 𝜃 and vanishing 

𝛆𝛉.  

Each storage particle is treated as independent and surrounded by electrolyte. 

Consequently, a constant ionic flux 𝐉 is imposed normal to the lateral surface 𝒮 of the particle 

and is directly related to the electronic current density per unit area 𝐼𝒮 by  

𝐉 ⋅  𝐧 =
𝐼𝒮

𝐹
 on 𝒮, 𝑡 ≥ 0, 

[24] 

where 𝐧(𝒙) is the unit normal to 𝒮 at a spatial position 𝒙. 
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Assume that the occupancy of the particle is spatially uniform at the beginning of 

delithiation or lithiation, such that 

𝜃(𝒙, 𝑡 = 0) = { 
0.95
0.2

    
prior to delithiation
prior to lithiation.

   
[25] 

Quasi-static conditions for mechanical equilibrium prevail so that 

𝛁 ⋅ 𝛔 = 𝟎 in Ω.  [26] 

The external surface of the particle is taken to be free of mechanical tractions, and so 

𝛔 ⋅  𝐧 = 𝟎 on 𝒮, 𝑡 ≥ 0.  [27] 

The physical interpretation is that the particle is free of mechanical constraints arising from 

neighbouring particles and from the binder. The initial displacement field is such that, at the 

start of delithiation/lithiation, the particle is stress-free. 

 We emphasise that the above coupled model treats the NMC particle as a non-ideal 

mixture of lithium and NMC. Preliminary calculations were performed by assuming an ideal 

mixture in the coupled model, but with the nonlinear properties of Figs. 1(b) and 1(d). It was 

discovered that, for realistic values of C-rate and particle size, diffusion arrested prematurely 

prior to achieving equilibrium. This is unphysical, and emphasises the need for using the above 

non-ideal mixture theory with a non-linear 𝑉𝑜𝑐 curve of the type shown in Fig. 1(c). 

Numerical Method.− The governing equations are solved by first writing them in weak 

form and then by making use of the finite element method. Rewrite the mass balance law Eq. 

[23] by multiplying it with a test function 𝜃 and integrating over the particle volume to give 

∫ (𝑁L

𝜕𝜃

𝜕𝑡
+ 𝛁 ⋅ 𝐉 ) 𝜃 𝑑𝑉

Ω

= 0.  
[28] 

Then integrate by parts and use the divergence theorem to obtain  

∫ (𝑁L

𝜕𝜃

𝜕𝑡
𝜃 − 𝐉 ⋅ 𝛁𝜃 ) 𝑑𝑉 

Ω

+ ∫𝐉 ⋅ 𝐧
𝒮

 𝜃 𝑑𝑆 = 0.  
[29] 

Upon substituting Eq. [22] into [29], the weak form for the mass balance equation reduces to 

∫ (𝑁L

𝜕𝜃

𝜕𝑡
𝜃 −

𝑁L

𝑅𝑇
𝜃𝐃 ⋅ [𝐹

𝜕𝑉𝑜𝑐

𝜕𝜃
𝛁𝜃 − 𝛁𝜇Li

𝐸𝐿] ⋅ 𝛁𝜃 ) 𝑑𝑉 
Ω

+ ∫
𝐼𝒮

𝐹𝒮

 𝜃 𝑑𝑆 = 0,  
[30] 

where 𝐼𝒮/𝐹 = 𝐉 ⋅  𝐧 is the current flux on 𝒮. Note that direct substitution of Eq. [13] for 𝜇Li
𝐸𝐿 

into Eq. [30] gives rise to gradients of stress, and consequently to the presence of a second 

gradient in displacement field 𝒖. To avoid working with C1 (continuously differentiable) 

interpolation functions for 𝒖, we follow the approach of Guduru and Bower28 and adopt a 
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mixed finite element formulation by treating 𝜇Li
𝐸𝐿 as an additional degree of freedom which 

satisfies Eq. [13]. The relevant weak form is obtained by multiplying Eq. [13] by a test function 

𝑣 and by integrating the resulting equation over the domain Ω: 

∫ (𝜇Li
𝐸𝐿 +

1

𝑁L
[ℂ: (

1

2
(∇𝒖 + ∇𝒖T) − 𝛆𝜃)] :

𝜕𝛆𝜃

𝜕𝜃
 ) 𝑣 𝑑𝑉 

Ω

= 0.  
[31] 

 

Throughout this study attention is limited to circular cylindrical particles with the 𝐚𝐛 

crystallographic plane perpendicular to the axis of the cylinder. Since axisymmetric boundary 

conditions are imposed the solution is rotationally symmetric within the 𝐚𝐛-plane such that 

𝑢𝜔 = 0 and the derivatives of all field variables with respect to 𝜔 vanish. The governing 

equations Eqs. [30] and [31] are written in axisymmetric form and are implemented using the 

‘Weak form PDE’ module in COMSOL Multiphysics® (v5.6) coupled with the ‘Solid 

Mechanics’ module for the solution of Eqs. [26] and [27]. Built-in solvers for Newton's method 

are employed, along with a Backward Differentiation Formula (BDF) for the time-stepping 

algorithm. 

Note that the above formulation gives the possibility of 𝜃 laying outside the physical range 

0 to 1. However, for realistic choice of particle sizes and C-rates we find that the numerical 

formulation gives 0 ≤ 𝜃 ≤ 1. 

Results 

Before we report and discuss the results it is appropriate to relate the electronic current 

density per unit surface area 𝐼𝒮 to the common definition of charging and discharging rate of a 

battery, known as the C-rate. By definition, a C-rate of 𝑛C indicates that a current is applied to 

the electrode – or here a cathode particle – such that it nominally delithiates (or fully lithiates) 

in (1/𝑛) hours. The value of 𝐼𝒮 required to delithiate (or lithiate) a circular cylindrical particle 

of diameter 𝑑 at a 𝑛C-rate is given by 

𝐼𝒮 = 𝜅𝜌𝑛𝑑𝑄/4, [32] 

where 𝜅 = +1  for delithiation, 𝜅 = −1 for lithiation, 𝜌 = 4.78 g cm−3  is the density of NMC 

and 𝑄 = 210 mAh g−1 is the nominal practical capacity of NMC811. Thus, to simulate 

lithiation or delithiation at a 𝑛C-rate we impose a constant finite current Eq. [32] over the time 

interval 0 ≤ 𝑡 ≤ 1/𝑛, followed by 𝐼𝒮 = 0 for 𝑡 > 1/𝑛. We emphasise that, at 𝑡 > 1/𝑛, lithium 

continues to diffuse within the particle until equilibrium is reached such that the particle attains 

a spatially uniform Li occupancy 𝜃 and becomes both stress-free. 
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 The remainder of this section is as follows. We begin by discussing the results for 

delithiation and lithiation of a particle of diameter 2 μm with a fast charging rate of 4C. We 

consider first a particle of height 𝐻 = 𝑑 with 𝑑 = 2 μm, and then consider two limiting values 

of cylinder aspect ratio  𝐻/𝑑 : (i) a long cylindrical particle, 𝐻/𝑑 → ∞, and (ii) a disc shaped 

particle, 𝐻/𝑑 → 0. Contours of maximum tensile stress are plotted as a function of C-rate and 

particle diameter, where the maximum values have been obtained over both time and space. 

Variability exists in the diffusivity and lithiation strain data, recall Fig. 1 where the data of 

Märker et al.21 are compared with that of Refs. 24, 27. The effects of this variability upon the 

predicted time-evolution of occupancy and stress are discussed in the subsection entitled 

‘Effect of the uncertainty of the non-linear parameters’. Finally, we investigate the importance 

of using the fully-coupled nonlinear diffusion model by comparing it with the linear Fickian 

diffusion model (commonly used in the existing literature, see for example in Bi et. al.9). 

 

Delithiation and Lithiation of a particle of diameter 𝟐 𝝁𝒎 and at a rate of 

4C.−Delithiation for 𝐻/𝑑 = 1. −We start by exploring the effect of fast charging on the stress 

state. At the start of delithiation the cylindrical particle is assumed to have a uniform occupancy 

of 0.95. This value is chosen because in practice it is difficult to lithiate NMC particles fully 

unless they are held for long periods of time at low voltages, largely because Li transport is 

extremely sluggish at higher Li contents.20,29,30 A fixed value of 𝐼𝒮 was used corresponding to 

a delithiation rate of 4C and the current was switched off at 𝑡 = 15 min. At this instant the 

particle is ‘nominally delithiated’ such that ⟨𝜃⟩ = 0.2, but the distribution of lithium is non-

uniform (Fig. 2a). Lithium diffusion continues within the particle until it attains a uniform state 

of 𝜃 = 0.2 as 𝑡 → ∞. We emphasize that positive values of the axial stress 𝜎𝑐 indicate tensile 

stresses. 

 Contours of lithium occupancy 𝜃 and of axial stress 𝜎𝑐 are shown side-by-side in Figs. 

2(a) and 2(b), respectively. Recall that the particle is isolated with no mechanical constraint, 

and hence is free of external traction; the current is applied only on the curved surface of the 

particle at 𝑟 = 1 μm. As a result of stress coupling, the occupancy close to the top and bottom 

free surfaces is altered by the traction-free boundary condition, see Fig. 2(a). The axial stress 

𝜎𝑐 attains its extremum on the horizontal mid-plane of the particle at 𝑧 = 0 and vanishes on the 

free surfaces 𝑧 = ±1 μm, as demanded by the traction-free boundary condition, see Fig. 2(b). 

The main focus of the present study is to examine the possibility of tensile cracking in the 
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particle. The maximum values of circumferential and radial stresses are significantly smaller 

than the maximum values of axial stresses and hence not discussed here in detail. Moreover, 

plasticity can only occur due to slip on the 𝐚𝐛-plane when the resolved shear stress 𝜎𝑟𝑧 on that 

plane exceeds the shear strength of the NMC811 crystal. This strength has been reported to be 

80 MPa31. Contours of shear stress 𝜎𝑟𝑧 are given in Fig. 2(c) and are only non-vanishing near 

the upper and lower free surfaces. The peak stress of 100 MPa is localized in a small region 

while the shear stresses in the bulk of the crystal are well below the shear yield strength. 

Consequently, we do not expect plastic deformation of the crystal justifying our assumption of 

neglecting plasticity. This observation holds true throughout the simulation; accordingly, we 

focus attention on the mid-plane 𝑧 = 0 and evaluate the radial variation of 𝜃 and 𝜎𝑐 at selected 

times, see Figs. 3(a) and 3(b). 

(a)                                                                  (b) 

 

 

 

 

 

(c)                                                                 

 

 

 

 

 

 

Figure 2. (a)-(c) predictions for a particle of diameter 𝑑 = 2 μm delithiated at 4C. Contours 

of (a) 𝜃, (b) 𝜎𝑐 and (c) 𝜎𝑟𝑧 are plotted at 𝑡 = 15 min.  
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At 𝑡 = 0, the particle has a uniform occupancy and is stress-free. The low initial value of 

diffusivity in the vicinity of the fully lithiated state (recall Fig. 1(d)) limits diffusion inside the 

particle and a significant radial drop in 𝜃 is evident only near the surface of the particle at 𝑡 =

2 min. The reduced occupancy near the surface leads to a larger lithiation strain 𝜀𝑐
𝜃 and to a 

compressive axial stress near the surface. Since the diffusivity increases by two orders when 𝜃 

approaches 0.6 a nearly uniform particle occupancy exists at 𝑡 = 12 min, and consequently a 

low level of stress exists in the particle. Subsequently, 𝜃 drops to below 0.37 at the surface, 𝜀𝑐
𝜃 

decreases, and a tensile axial stress develops near the surface of the particle. The tensile axial 

stress 𝜎𝑐 achieves a maximum value on the mid-plane and either at the particle centre or at its 

surface (see Fig. 3(b)). The temporal variation of the mid-plane stress 𝜎𝑐, at the particle centre 

(𝑟 = 0) and at the surface (𝑟 = 𝑑/2), are plotted in Fig. 3(c). This mid-plane stress attains a 

maximum value of 350 MPa at the surface when the delithiation current is switched-off. This 

peak value is associated with a highly nonlinear distribution of lithiation strain 𝜀𝑐
𝜃(𝜃) at the 

end of delithiation (15 min): recall from the characteristic of Fig. 1(b) that 𝜀𝑐
𝜃 decreases sharply 

from 3.5% to 0 when 𝜃 decreases from 0.3 to 0.1. 

So far, results have been presented for the fully coupled chemo-mechanical model. In 

this formulation, the occupancy and state of stress are coupled through Eq. [22]. Despite the 

fact that the fully coupled formulation is a realistic representation of the evolution processes 

occurring in the cathode particle, additional insight into the influence of stress upon diffusion 

is achieved by considering the uncoupled problem where the stress coupling term in Eq. [22] 

is neglected. The evolution of lithium occupancy and axial component of stress are included as 

dashed lines in Figs. 3(a), 3(b) and 3(c). Until 𝑡 = 12 min, the profiles of 𝜃 and 𝜎𝑐 as predicted 

by the uncoupled formulation, are indistinguishable from those of the fully-coupled 

formulation. In contrast, at 𝑡 = 15 min, the difference in stress predictions is significant but not 

that of 𝜃. In particular, at 𝑡 = 15 min, the axial stress 𝜎𝑐 = 900 MPa is large at the particle 

surface for the uncoupled case, see Fig. 3(c). Note that, this stress is significantly higher than 

the coupled case. A minor difference (Δ𝜃 ≈ 0.02) in the predictions of surface occupancies 

between the two formulations correspondingly leads to lithiation strain difference of 0.3%. The 

high sensitivity of lithiation strains to the occupancy combined with a large elastic modulus 

𝐸𝑧 = 164 GPa (calculated from Table 2) gives rise to the additional 550 MPa for the uncoupled 

case. 
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We explain this behaviour as follows. The occupancy at 𝑡 = 12 min is almost uniform 

in the radial direction on the mid-plane and is positioned at the peak of the lithiation 

characteristic for 𝜀𝑐
𝜃 in Fig. 1(b). A small drop in occupancy leads to a major change in 𝜀𝑐

𝜃, and 

if this major drop in 𝜀𝑐
𝜃 varies radially then it is accompanied by a large change in axial stress. 

This is the case for the uncoupled model, as evidenced by the axial stress profile at 𝑡 = 15 min 

in Fig. 3(b). When stress coupling is activated in the model, the compressive stress at the 

particle centre drives the lithium ions towards the surface as demanded by the flux law Eq. 

[22], thereby reducing the gradient 𝜕𝜃/𝜕𝑟. We conclude that an attempt to simplify the model 

by eliminating the stress contribution can lead to an over-prediction of the maximum stresses 

generated in the particle. 

(a)                                                                  (b) 

 

(c)                                                                  (d) 

 

 

 

 

 

Figure 3. (a)-(c) predictions for a particle of diameter 𝑑 = 2 μm delithiated at 4C. The radial 

variation of (a) 𝜃 and (b) 𝜎𝑐 are plotted on the mid-plane (𝑧 = 0) at selected times; (c) time 

evolution of 𝜎𝑐 at the centre 𝑟 =  0 and at the surface 𝑟 =  𝑑/2. (d) time evolution of 𝜎𝑐 at the 
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centre  𝑟 =  0 and at the surface 𝑟 =  𝑑/2, for a particle of diameter  𝑑 = 2 μm lithiated at 

4C. 

 

Lithiation for 𝐻/𝑑 = 1.−Lithiation at an imposed rate of 4C for 15 min takes the particle 

from a uniform state of 𝜃 = 0.2 to a ‘fully lithiated’ state of ⟨𝜃⟩ = 0.95, and after the current 

has been switched off, diffusion continues until equilibrium is reached and the occupancy 

becomes uniform at 𝜃 = 0.95. 

A set of predictions for lithiation of a finite cylinder with 𝐻/𝑑 = 1 is given in Fig. A1 of 

Appendix A for both the coupled and uncoupled models. A side-by-side comparison of the 

delithiation and lithiation cases is given in Figs. 3(c) and (d), respectively: the axial stress on 

the mid-plane at the particle centre and surface is plotted as a function of time. The peak tensile 

axial stress generated by lithiation occurs at the centre of the particle for both the coupled and 

uncoupled models; the peak value equals 333 MPa for the uncoupled model, and 230 MPa for 

the coupled model. These values are somewhat lower than those generated by delithiation, 

compare Figs. 3(c) and 3(d).  

Why is the peak stress for lithiation achieved much sooner (after 1 min) than the peak 

stress for delithiation (after 15 min)? The answer lies in the fact that the maximum slope of the 

𝜀𝑐
𝜃(𝜃) characteristic occurs in the regime 0.1 ≤ 𝜃 ≤ 0.3. Values of occupancy in this regime 

occur early in lithiation, and late in delithiation. 

 

Effect of particle aspect ratio 𝐻/𝑑 upon axial stress during lithiation and 

delithiation.−For the particle of diameter 2 μm, the maximum tensile stress 𝜎𝑐
max on the 

particle mid-plane is plotted as a function of aspect ratio in the range 𝐻/𝑑 = 0.5 to 2.5, see 

Fig. 4(a) for delithiation and Fig. 4(b) for lithiation. The peak axial stress increases with 

increasing aspect ratio 𝐻/𝑑 for both lithiation and delithiation. Delithiation of a long particle 

generates the highest value of axial stress (361 MPa), and this occurs at the surface of the 

particle. 

We proceed to predict upper-bound values of axial stress for selected values of particle 

diameter and C-rate by analysing the lithiation and delithiation responses of a circular cylinder 

of infinite length, 𝐻/𝑑 → ∞. The assumption of infinite length reduces the 2D axisymmetric 

problem for a finite particle to a 1D problem of a circular cylinder under generalised plane 
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strain in the axial direction. The axial strain 𝜀𝑧𝑧 is spatially uniform and is of magnitude 𝜀0(𝑡) 

such that the axial force 𝐹𝑐 vanishes. Consequently, the axial stress 𝜎𝑐 satisfies the condition 

𝐹𝑐 = 2𝜋 ∫ 𝜎𝑐(𝑟, 𝑡) 𝑟𝑑𝑟

𝑑
2

0

= 0, 
[33] 

and the work-conjugate axial strain 𝜀0(𝑡) becomes a solution variable to enforce Eq. [33]; see 

Appendix B where we demonstrate the uniqueness of 𝜀0. The problem reduces to a one-

dimensional (1D) analysis in the spatial variable 𝑟 and time 𝑡, and the boundary conditions 

reduce to: (i) the radial ionic flux 𝑗𝑟 = 𝐼𝒮/𝐹 on 𝑟 = 𝑑/2 and (ii) the radial component of stress 

𝜎𝑟𝑟 = 0 on 𝑟 = 𝑑/2. Similarly, in the other extreme of 𝐻/𝑑 → 0, the problem becomes one of 

plane stress and is 1D in 𝑟 such that 𝜎𝑐 = 0 for all 𝑟 (and all 𝑡). 

 Simulations have been performed using the coupled model for the case of plane stress, 

(𝐻/𝑑 → 0), and for generalised plane strain (𝐻/𝑑 → ∞), for both lithiation and delithiation at 

a rate of 4C. Remarkably, the distribution of occupancy in the limits of plane stress and 

generalised plane strain are the same as that observed for 𝐻/𝑑 = 1 (to within 1%); the 

occupancy for 𝐻/𝑑 = 1 has already been reported in Fig. 3(a) for delithiation, and in Fig. A1(c) 

for lithiation. The axial stress is sensitive to the radial distribution of 𝜀𝑐
𝜃 and there is a small 

dependence of the 𝜀𝑐
𝜃 profile upon the aspect ratio of the particle. Consequently, the axial stress 

distribution for the infinite cylinder is slightly different from that of the finite particle of 𝐻/𝑑 =

1, see Fig. 4(c) for delithiation and Fig. 4(d) for lithiation. The traction-free boundary 

conditions dictate that the axial stress vanishes in the plane stress limit. In broad terms, we 

conclude that the generalised plane strain solution for 𝐻/𝑑 → ∞ gives an accurate prediction 

for the axial stress distributions for 𝐻/𝑑 of unity and above. The above calculations also imply 

that the storage response is relatively insensitive to particle aspect ratio over the full range from 

zero to infinity. 
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(a)                                                                  (b) 

 

 

 

(c)                                                                  (d) 

 

 

 

 

 

Figure 4. Effect of particle aspect ratio 𝐻/𝑑 on 𝜎𝑐
max for (a) delithiation and (b) lithiation. 

Axial stress 𝜎𝑐 distribution on the mid-plane for 𝐻/𝑑 = 1, ∞ during (c) delithiation and (d) 

lithiation. In all cases, a rate of 4C is imposed on a particle of diameter 2 μm, and predictions 

are given by the coupled, nonlinear model. 

 

Assessment of particle cracking and safe operation regimes.−The possibility of tensile 

cracking due to an axial tensile stress is now explored in an approximate manner by assuming 

that a surface-breaking thumbnail-shaped crack of depth 𝑎0 and width 𝑐0 exists on a transverse 

section of the particle, recall Fig. 1(a). In addition, an embedded penny-shaped crack of radius 

𝑎0 exists at the centre of the particle, again on a transverse plane. 

We begin by plotting stress maps that give contours of maximum axial tensile stress 𝜎𝑐
max 

over all time, as a function of particle diameter 𝑑 and C-rate 𝑛 for the case 𝐻/𝑑 → ∞, see Fig. 

5. Predictions are given for the peak tensile axial stress 𝜎𝑐
max at the surface and at the centre 

for delithiation in Fig. 5(a) and for lithiation in Fig. 5(b). For all four cases of 
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delithiation/lithiation and surface/centre shown in Fig. 5, 𝜎𝑐
max increases with increasing 

particle size and increasing C-rates. For any combination of 𝑑 and 𝑛, 𝜎𝑐
max is greatest at the 

surface during delithiation and at the particle centre during lithiation.  

(a)                                                                  (b)  

 

(c)                                                                  (d) 

Figure 5. Contours of maximum tensile stress 𝜎𝑐
max (in the units of MPa) during (a) delithiation 

and (b) lithiation as a function of particle diameter 𝑑 and C-rate. The boundary between the 

no-fail region and the fail region is shown for (c) delithiation with 𝐾IC = 0.5 − 1.5 MPa m1/2. 

(d) For lithiation we show these results with 𝐾IC = 0.5 − 1.0 MPa m1/2. No failure is predicted 

over the full range of particle diameter 𝑑 and C-rate considered for the choice 𝐾IC =

1.5 MPa m1/2. A representative size of 𝑎0 = 𝑑/8 and 𝑐0 ≈ 𝑎0 (see Figure 1(a)) has been 

assumed for a pre-existing thumbnail crack in Figure (c). Similar, a representative size of 𝑎0 =

𝑑/8 has been assumed for the penny-shaped centre-crack in Figure (d). 

The above predictions of axial stress can be used to estimate the likelihood of cleavage 

fracture from defects aligned with the basal plane as shown in Fig. 1(a). Consider the worst-
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case aspect ratio of 𝐻 ≫ 𝑑 which gives an upper bound 𝜎𝑐
max. For a given particle diameter 𝑑 

and value 𝑛 of C-rate we explore whether the predicted value of 𝜎𝑐
max(𝑑, 𝑛) is sufficient to 

induce cleavage fracture from a pre-existing crack of size 𝑎0. 

Fracture mechanics teaches us that the mode I stress intensity factor 𝐾I for a plane strain 

crack of length 2𝑎 in an infinite solid under a uniform remote stress 𝜎 is 𝐾I = 𝜎√𝜋𝑎. In the 

present problem, the stress distribution is not uniform and the crack plane occupies a finite 

fraction of the cross-section. In the present study we assume a representative value of 𝑎0 =

𝑑/8. Additionally, the stress intensity factor varies along the periphery of the thumbnail crack 

and depends upon 𝑐0 in addition to 𝑎0. For the present purposes, we shall use the simplified 

formula 𝐾I = 𝜎max√𝜋𝑎0 and assume that 𝑐0 is comparable to 𝑎0 for the thumbnail crack case. 

Thus fracture occurs at a stress 𝜎𝑐
max that satisfies 𝐾IC = 𝜎𝑐

max√𝜋𝑎0, where 𝐾IC is the mode I 

fracture toughness of the solid. Then, a region of safe operation can be demarcated over the 

variables 𝑛 and 𝑑 as shown in Figs. 5(c) and 5(d) for selected values of 𝐾IC  in the range of 

0.5 MPa m1/2 to 1.5 MPa m1/2, which are typical for cathodic materials. The above simple 

estimates suggest that single-crystals of diameter up to 2.5 μm (and pre-existing flaws of 

dimension 𝑎0 = 𝑑/8) are not prone to cracking up to fast C-rates of 5C. The operating regime 

to avoid fracture is more restricted with diminishing fracture toughness. Larger particles will 

crack, particularly at high C-rates. 

 

Effect of the uncertainty of the non-linear parameters.−There is considerable uncertainty 

in the measured lithiation strains and the occupancy-dependent diffusion coefficients, recall 

Figs. 1(b) and 1(d). To investigate the effect of this uncertainty on our predictions consider, by 

way of example, delithiation of a single crystal in the form of a circular cylinder of diameter 2 

μm and infinite height. A rate of 4C is imposed such that 〈𝜃〉 drops from 0.95 to 0.2 in 15 min. 

The resulting occupancies at the centre and surface of the particle are plotted as a function of 

time in Figs. 6(a) and 6(b), respectively, for the coupled, nonlinear model using the parameters 

taken from Refs. 24,27. The predictions of occupancy are not strongly affected by the 

uncertainty in the data.  

Next, consider additional predictions of axial stress at the centre and surface of the particle 

on the basis of Refs. 24,27, see Figs. 6(c) and 6(d). The difference between two sets of 

predictions is greater for axial stress than it is for occupancy. This discrepancy arises primarily 
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because the stress-state is strongly dependent upon the intercalation strain and the differences 

between the intercalation strain measurements in Märker et al.21 and Biasi et al.24 are 

substantial, as shown in Fig. 1(b). 

(a)                                                                  (b)  

 

 

 

 (c)                                                                  (d) 

 

 

 

 

Figure 6. Comparison of linear and nonlinear models for delithiation of a particle of infinite 

length and diameter 2 μm at a rate of 4C. Time evolution of 𝜃 at (a) centre, 𝑟 = 0 and (b) 

surface, 𝑟 = 𝑑/2. Time evolution of 𝜎𝑐 at (c) centre, 𝑟 = 0  and (d) surface, = 𝑑/2 .  

 

Comparison with linear Fickian diffusion.−Commonly in the literature (for example 

Bi et al.9) the transient distribution of occupancy within a single crystal is predicted by 

assuming linear Fickian diffusion of the lithium, with stress playing no role. The Fickian 

diffusion equation for a circular cylindrical particle of infinite length reads 

𝜕𝑁Li+

𝜕𝑡
= 𝑁𝐿𝐷0 (

∂2𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝜃

𝜕𝑟
). 

[34] 
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in terms of a constant diffusion coefficient 𝐷0. Recall from Fig. 1(d) that the diffusivity varies 

with occupancy by more than 2 orders of magnitude, and so the use of linear Fickian diffusion 

theory is questionable. Additionally, lithium diffusion is driven by enthalpic forces (as 

evidenced by the strong dependence of open circuit voltage upon occupancy). It is concluded 

that traditional approaches neglect major nonlinearities in the diffusivity and in the driving 

force for diffusion. 

A direct comparison is now made between the full nonlinear model of the current study 

and linear Fickian diffusion. Predictions of the occupancy with Fickian diffusion for 𝐷0 =

2 × 10−15 m2s−1  are included in Figs. 6(a) and 6(b). The corresponding predictions of the 

axial stress using the occupancies predicted by the Fickian diffusion are given in Figs. 6(c) and 

6(d) using the intercalation strains from Märker et al.21. The overall conclusion is that a Fickian 

diffusion model with 𝐷0 ≈ 2 × 10−15 m2s−1 suffices to capture the occupancy within the 

particle although the stress predictions are prone to errors due to the strong sensitivity of 𝜀𝑐
𝜃 to 

the occupancy at low levels of occupancy. The error in stress prediction using the Fickian 

model is within the uncertainty associated with the non-linear parameters: compare stress 

predictions using the two sets of non-linear parameters in Figs. 6(c) and 6(d). The above 

conclusions for the accuracy of the linear Fickian model have been confirmed for a range of C-

rates and particle sizes. 

 

Concluding Remarks 

 Quantitative predictions are made for the peak stresses generated in storage particles of 

NMC811 single crystal during battery operating conditions. By making use of a chemo-

mechanical model for lithium diffusion and stress evolution in isolated single particles of 

realistic size, we have shown that the likelihood of particle fracture due to lithium diffusion is 

minimal. The current work suggests that the cracks reported in the literature may have resulted 

from external stress on the particles and that an unconstrained single crystal of diameter less 

than 2.5 μm will not crack at rates of up to 5C. The present work suggests that intraparticle 

fracture is not a significant degradation mode for well-designed NMC811 single crystals. 

Future work is needed to examine Ni-rich cathode materials of Ni content exceeding 80%, 

where a degradation mode has been proposed for the increased capacity fade rates of Ni-rich 

cathode materials, whether they are single crystal or polycrystalline.5 
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The present study has highlighted that lithium diffusion in single crystals involves the 

non-linear dependence of (i) diffusivity, (ii) open circuit voltage and (iii) lithiation strain upon 

lithium occupancy. Our study reveals that the cross-coupling between diffusion rate and stress 

state is minor. Consequently, an uncoupled, non-linear diffusion model suffices for prediction 

of the distribution of occupancy at any instant; the calculation of stress state can then be 

performed as a post-processing step provided the intercalation strain is not overly sensitive to 

occupancy. Moreover, we show that an appropriately calibrated Fickian diffusion model 

suffices to predict the occupancy within the particle. Predictions of stress by the Fickian model 

are within the errors associated with uncertainty in the measurements of intercalation strain. 
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Appendix A 

(a)                                                                   (b)  

 

 

 

 

 

 

(c)                                                                  (d) 

Figure A1. Contours of (a) 𝜃 and (b) 𝜎𝑐 at 𝑡 = 1 min for a particle of diameter 𝑑 = 2 μm 

lithiated at 4C. The radial variation of (c) 𝜃 and (d) 𝜎𝑐  on the mid-plane (𝑧 = 0) is plotted at 

selected times. 
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Appendix B 

Derivation of 𝜀0(𝑡) 

From the constitutive relation Eq. [5] we know that 𝜀0(𝑡) satisfies, 

𝜀0 = [
1

𝐸𝑧
𝜎𝑐 −

𝜈𝑟𝑧

𝐸𝑧

(𝜎𝑟𝑟 + 𝜎𝜔𝜔)] + 𝜀𝑐
𝜃. 

[B·1] 

On integrating Eq. [B·1] over the 𝐚𝐛-plane we get, 

∫ 𝜀0

𝑑
2

0

 𝑟𝑑𝑟 =
1

𝐸𝑧
∫ 𝜎𝑐

𝑑
2

0

 𝑟𝑑𝑟 −  
𝜈𝑟𝑧

𝐸𝑧
∫ (𝜎𝑟𝑟 + 𝜎𝜔𝜔)

𝑑
2

0

 𝑟𝑑𝑟 + ∫ 𝜀𝑐
𝜃

𝑑
2

0

 𝑟𝑑𝑟. 
[B·2] 

At any given instant 𝑡, 𝜀0 is spatially uniform and the first integral on the right-hand-side of 

Eq. [B·2] vanishes due to Eq. [33]. Equation [B·2] can then be written as, 

𝜀0  = − 
𝜈𝑟𝑧

𝐸𝑧

〈𝜎𝑟𝑟 + 𝜎𝜔𝜔〉 + 〈𝜀𝑐
𝜃〉. [B·3] 

where 〈⋅〉 denotes a volume-averaged quantity.  

 We will now show that 〈𝜎𝑟𝑟 + 𝜎𝜔𝜔〉 = 0. 

〈𝜎𝑟𝑟 + 𝜎𝜔𝜔〉 =
8

𝑑2
∫ (𝜎𝑟𝑟 + 𝜎𝜔𝜔)

𝑑
2

0

 𝑟𝑑𝑟. 
[B·4] 

The equilibrium equation Eq. [26] for axis-symmetric problem yields, 

𝑑𝜎𝑟𝑟

𝑑𝑟
+

(𝜎𝑟𝑟 − 𝜎𝜔𝜔)

𝑟
= 0 ⇒ 𝜎𝜔𝜔 = 𝑟

𝑑𝜎𝑟𝑟

𝑑𝑟
+ 𝜎𝑟𝑟 . 

[B·5] 

On substituting Eq. [B·5] into [B·4] we get, 

〈𝜎𝑟𝑟 + 𝜎𝜔𝜔〉 =
8

𝑑2
[∫ 𝑟2

𝑑𝜎𝑟𝑟

𝑑𝑟

𝑑
2

0

 𝑑𝑟 + ∫ 2𝑟𝜎𝑟𝑟

𝑑
2

0

 𝑑𝑟]. 

[B·6] 

Finally, on integrating the first integral by parts, the Eq. [B·6] can be written as  

〈𝜎𝑟𝑟 + 𝜎𝜔𝜔〉 =
8

𝑑2
(𝑟2𝜎𝑟𝑟)|0

𝑑/2
= 2𝜎𝑟𝑟(𝑑/2). 

[B·7] 

As the particle-surface is traction-free, 𝜎𝑟𝑟(𝑑/2) = 0. Therefore, 〈𝜎𝑟𝑟 + 𝜎𝜔𝜔〉 = 0. 

It can be concluded from Eq. [B·3] that there is a unique value of the total 𝐜- axis strain 𝜀0 

specified by 

𝜀0(𝑡)  = 〈𝜀𝑐
𝜃〉, [B·8] 

which satisfies the constraint Eq. [33] at any given time 𝑡. 


