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Abstract 

Stripping of metal cations from the anode of a Li- or Na-ion cell into a ceramic electrolyte 

results in the formation of voids on the electrolyte/electrode interface. Such voids have been 

observed to grow to sizes in excess of 100 μm. Dendrites can nucleate and grow in the 

electrolyte from the vicinity of the voids during the plating phase of cycling of the cell, and 

lead to short-circuiting of the cell. Current theoretical understanding of the formation of these 

voids is in its infancy:  the prevailing qualitative notion is that voids form within the metal 

anode when the stripping current density removes metal from the interface faster than it can be 

replenished. We review models that employ the Onsager formalism to develop a variational 

approach to model void growth by coupling power-law creep of the metal electrode and the 

flux of metal cations through a single-ion conductor solid electrolyte. These models, based on 

standard Butler-Volmer kinetics for the interfacial flux, predict that voids will shrink for 

realistic combinations of interfacial ionic resistance and electrolyte conductivity. Additional 

physics in the form of modified kinetics, such that the interfacial resistance is decreased by the 

presence of dislocations within the creeping metal electrode, are shown to give rise to initial 

growth of voids around impurity particles on the electrolyte/electrode interface. However, these 

voids ultimately collapse under the imposed stripping fluxes and no conditions have been 

identified for which isolated voids grow to more than 10 μm in size. This is in contrast to the 

experimentally observed sizes of ~100 μm. The physical processes by which large voids form 

remain unclear but the current state-of-the-art understanding does provide clues of possible 

mechanisms that have not as yet been considered. 
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1. Introduction 

Ceramic electrolytes show promise for widespread use in Lithium (Li) and Sodium (Na) ion 

batteries. Upon combining with Li or Na metal anodes they have the potential to deliver higher 

energy densities with enhanced safety compared to liquid electrolyte batteries (Takada, 2013; 

Wang et al., 2021). However, upon charging such cells at current densities greater than a critical 

value, fissures commonly termed as “dendrites” nucleate and grow from the metal electrode 

and result in short-circuiting the cell. Dendrites can adopt a range of morphologies from planar 

filaments that involve fracture of the ceramic electrolyte to a 3D ‘mossy’ form that is thought 

to originate from the filling of interconnected porosity. Several aspects of this failure 

mechanism are established through the recent work of Bruce and co-workers (Kazemchainan 

et al., 2019, Jolly et al., 2020), and Sakamoto and co-workers (Schmidt and Sakamoto, 2016; 

Kazyak et al., 2020; Chang et al., 2021). These include the fact that the critical current required 

to short-circuit the cell increases with decreasing interfacial ionic resistance to the flux of metal 

ions across the electrolyte/electrode interface (Sharafi et al., 2017a) and that, unlike dendrites 

in liquid electrolytes, cracks in solid electrolytes are only partially filled with metal (Hao et al., 

2020; Ning et al., 2021). 

 

Bruce and co-workers (Kazemchainan et al., 2019; Jolly et al., 2020) have suggested that there 

are two relevant critical current densities: the critical current on stripping (CCS) that results in 

void formation at the electrolyte/electrode interface, and the critical current on plating (CCP) 

at which dendrites grow into the ceramic electrolyte from the plating metal electrode. 

Typically, CCS is less than CCP and it has been shown both experimentally (Kazemchainan et 

al., 2019; Raj et al. 2022) and via recent theoretical predictions (Shishvan et al., 2020a, b) that 

Li filaments preferentially grow from the vicinity of the voids at the electrolyte/electrode 

interfaces. Thus, an understanding of the mechanics of void growth at the electrolyte/electrode 

interface is essential to address the dendrite problem. Void growth in Li electrodes have been 

experimentally observed at interfaces with both LLZO (Li7La3Zr2O12) (Krauskopf et al., 

2019a; Wang et al., 2019) and Argyrodite (Li6PS5Cl) electrolytes (Kazemchainan et al., 2019; 

Lu et al., 2022); see Fig. 1a. Similarly, interfacial void formation has been reported for Na/Na-

𝛽′′-alumina/Na cells (Jolly et al., 2020); see Fig. 1b. For the Li/LLZO system, void growth, or 

rather the formation of instabilities at the interface, was observed at currents as low as 

0.1 mA cm−2 when no stack pressure was applied (Krauskopf et al., 2019a). Application of a 

stack pressure increased the CCS for both the Li/Argyrodite (Kazemchainan et al., 2019) and 

Li/LLZO (Wang et al., 2019) systems. After cycling at 1.0 mA cm−2 to an areal capacity 

1 mA h cm−2, voids of size > 100 μm typically form (Kazemchainan et al., 2019) though the 

size of these voids at initiation is typically less than 1 μm (Lu et al., 2022). Changing the 

composition of the Li electrode by alloying with 10 at.% Mg (Krauskopf et al., 2019b) has been 

suggested as a route to reduce the propensity for void formation. 

 

Recent observations have shown that cell failure due to void formation is not only dependent 

upon the stripping current but also on the stripping time and electrode thickness (Lee et al., 

2022). These observations suggest that the mechanics governing the formation and growth of 

voids in the metal electrode is a complex combination of (i) the electrochemical kinetics of the 

electrolyte/electrode interface and (ii) creep/plastic deformation and vacancy diffusion within 

the metal electrode as well as along the surface/interface. While some simplistic models 

(Krauskopf et al., 2019a; Wang et al., 2019; Chen et al., 2020; Zhang et al., 2020; Yan et al., 

2021; Lu et al., 2022) suggest that vacancy diffusion plays a dominant role, some other models 

(Shishvan et al., 2021; Roy et al., 2021; Agier et al., 2022) suggest an alternative mechanism 

of void growth by flux focussing. Despite intensive research, a fundamental understanding of 

the mechanism of void growth has remained elusive. 
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Figure 1: (a) Cross-sectional SEM images of the LPS electrolyte/Li electrode interface during 

continuous Li stripping at a current density of 0.5 mA cm−2 showing void initiation and growth. 

Adapted from Lu et al. (2022). (b) X-ray tomography images of the Na/Na-β″-alumina cell interfaces 

when pristine and after the 4th stripping and the 4th plating showing that voids only partially close on 

plating. Blue indicates voids in the Na metal anode (transparent) and orange indicates the solid 

electrolyte. The cell was cycled at a current density of 1.5 mA cm−2. Adapted from Jolly et al. (2020). 
 

The aim of this article is primarily to present a broad overview of the mechanisms proposed 

for void growth in metal electrodes during stripping and thereby demonstrate the gaps on our 

understanding. In Section 2, we first provide a critical overview of the two main void growth 

mechanisms proposed in the literature and thereby argue that the flux focussing mechanism is 

most plausible. However, the flux focussing models presented to-date neglect diffusion along 

the electrolyte/electrode interface and we therefore extend the model of Agier et al. (2022) in 

Section 3 to account for this mechanism. Critically, we show that including interface diffusion 

is unlikely to change the flux focussing predictions presented to-date. Therefore, in Section 4 

we focus on numerical results mainly from the existing literature to reveal the state-of-the-art. 

These predictions illustrate the limitations of the current models to explain experimental 

observations. Finally in Section 5, possible directions of future investigations are outlined in 

order to close the gap between models and observations. While the formulation and qualitative 

results are applicable to both Na- and Li-ion cells, we shall give results only for Li-ion cells as 

they have been the focus of the literature. 

 

 

2. A critical review of two commonly proposed mechanisms of void growth 

Two mechanisms have been most commonly proposed in the literature for void formation at 

the electrolyte/electrode interface: 

(i) Void formation and growth by vacancy generation and coalescence at the 

electrolyte/electrode interface (Fig. 2a). 

(ii) Void growth due to flux focussing at the periphery of initial imperfections on the 

electrolyte/electrode interface (Fig. 3a). 
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Both mechanisms are based on the notion that the metal is stripped from the electrode at the 

interface faster than it is replenished. We shall briefly discuss both mechanisms and their 

inherent shortcomings. 

 

 
Figure 2: (a) Sketch illustrating the mechanism of void formation at the electrolyte/electrode interface 

by vacancy generation and coalescence during stripping of metal ions (m+). Vacancies are generated at 

the interface during stripping and their diffusion away from the interface is slower than the rate at which 

metal atoms are stripped. (b) Sketch of the boundary value problem solved (see for example Yan et al., 

2021) to model this mechanism. (c) The thinning of the electrode by drift or rigid body motion is 

illustrated here. The analysis shown in (b) neglects this drift by fixing the current collector end of the 

electrode. 

 

First, consider the mechanism of void formation via vacancy generation and coalescence. The 

basic idea is that as metal ions (m+) are stripped from the electrode at the interface, vacancies 

are generated (Fig. 2a) and these vacancies then diffuse into the electrode thereby replenishing 

the interface with metal atoms. If the stripping fluxes exceed the rate at which the metal atoms 

can be replenished by vacancy diffusion, vacancies accumulate and coalesce at the interface 

resulting in void formation and growth (see Fig. 2a). Several calculations have been reported 

to quantify this assumed mechanism (Krauskopf et al., 2019a; Yan et al., 2021; Zhao et al. 

2022; Lu et al., 2022). While there are a few differences in the details of these calculations, the 

boundary value problem that is solved in all cases is essentially the same and is sketched in 

Fig. 2b. Importantly, a zero displacement or equivalently zero flux boundary condition is 

imposed on the current collector end of the electrode. As a consequence, the overall electrode 

volume remains unchanged and, as the metal is stripped from the electrode, the electrode 

becomes increasingly porous. In reality, stripping of the metal from the electrolyte/electrode 

interface results in drift or rigid body motion of the electrode (Fig. 2c) with the electrode losing 

metal (and volume). The convective motion of lithium in the electrode compensates for the 

stripping at the interface and there is minimal or no vacancy generation or flux within the 

electrode due to the stripping current. Translation of the electrode is also consistent with the 

observation that the metal electrode thins upon stripping. Thus, void generation as predicted 
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by these models is an artifact of the assumption of an unrealistic boundary condition1. This is 

also clear from thermodynamic perspective. Vacancies in Li have a large enthalpy of formation 

of approximately 50 kJ mol−1 making large concentrations of vacancies highly unfavourable 

(coalescence of vacancies is even more unfavourable as the enthalpies of di- and tri-vacancies 

are in excess of 100 kJ mol−1). While diffusion is slow and may not be able to annihilate 

vacancies formed by stripping, there is no such speed restriction on drift which acts to prevent 

the electrode from attaining a very highly unfavourable thermodynamic state. 

 

A recent investigation by Lewis et al. (2023) has attempted to account for drift of the electrode 

using a phase-field formulation. This study predicts some void growth after stripping of nearly 

the full electrode but void growth in the majority of the literature occurs much earlier; see for 

example Kazemchainan et al. (2019). While the reasons for this discrepancy are unclear, it 

could be due to two reasons: (i) in Lewis et al. (2023) the authors impose a spatially constant 

drift velocity at the current collector end which essentially makes the numerical problem ill-

posed and (ii) they use an unrealistic interface resistance of zero but employing a Dirichlet 

boundary condition at the electrolyte/electrode interface. Nonetheless the study shows that the 

literature is recognising the need to account for the drift of the electrode. 

 

 
Figure 3: (a) Sketch illustrating the idea of flux focussing at the periphery of initial imperfections on 

the electrolyte/electrode interface. (b) Predictions of the flux focussing factor 𝐾𝐽 around the periphery 

of the imperfection as a function of the normalised imperfection size �̅�0 ≡ 𝑎0/(𝜅𝑍0) using standard 

Butler-Volmer kinetics; adapted from Roy et al. (2021). The inset shows the problem analysed with a 

pre-existing void of diameter 2𝑎0 at the interface. Flux focussing tends to sweep the Li metal over the 

void surface via diffusion/creep and grow the void while the drift of the electrode due to the stripping 

flux tends to close the void. 
 

Second, consider the alternative mechanism of void growth by flux focussing. There is a large 

literature (see Roy et al. (2021) and references therein) that assumes that focusing of the ionic 

flux occurs at the periphery of initial imperfections on the electrolyte/electrode interface, and 

the flux focussing drives void initiation and growth (Fig. 3a). The basic hypothesis is shown in 

the inset of Fig. 3b and is explained as follows. Loss of contact between the electrolyte and the 

electrode due to surface roughness (Fig. 3a) and/or imperfections along the interface give rise 

 
1 A common, everyday example to illustrate this point is the grating of cheese. As the cheese is grated, fresh 

cheese arrives by translation of the residual block of cheese. The effect of grating does not make the cheese block 

porous. 
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to regions over the electrolyte/electrode interface where flux of the metallic cations is blocked. 

These regions are idealised as circular disks of diameter 2𝑎0 in the inset of Fig. 3b. The 

resulting spatially inhomogeneous electric field within the electrolyte focuses the flux around 

the periphery of the imperfection. This flux focussing results in growth of the void due to the 

creep deformation of electrode. However, Roy et al. (2021) has addressed that this simple 

explanation, based on Butler-Volmer kinetics for the interfacial flux, has a flaw as summarized 

here. The ratio of maximum interfacial flux at the periphery of the imperfection, max(𝑗), to the 

far-field interfacial flux 𝑗∞ is defined as the flux focussing factor 𝐾𝐽. Figure 3b replots the 

predictions of Roy et al. (2021) of 𝐾𝐽 as a function of �̅�0 ≡ 𝑎0/(𝜅𝑍0) using the usual Butler-

Volmer kinetics; here, 𝑍0 is the interfacial resistance and 𝜅 is the ionic conductivity of the 

electrolyte. We note that a material length scale is defined by the product 𝜅𝑍0 and this length 

scale for typical Li-ion cells is 𝜅𝑍0 ≈ 20 μm (using 𝜅 = 0.4 mS cm−1 and 𝑍0 = 5 Ω cm2 as 

reported by Sharafi et al. (2017b)). The predictions of Roy et al. (2021) suggest that the flux 

focussing factor 𝐾𝐽 is < 3 for �̅�0 < 10 (Fig. 3b) and consequently this analysis suggests that 

flux focussing is small for imperfections of size 𝑎0 < 200 μm. Roy et al. (2021) considered in 

detail the case of 𝜅𝑍0 = 20 μm, and predicted that no void growth will occur from 

imperfections less than 1 mm in size (and initial interfacial imperfections > 1 mm are 

unrealistically large)2. They comment that convection of the electrode due to the stripping flux 

tends to close the voids and overpowers the effect of flux focussing. While voids do grow to 

> 100 μm in size (Kazemchainan et al., 2019; Lu et al., 2022), they typically have sub-micron 

sizes in the early stages of growth (Lu et al., 2022). 

 

Shishvan et al. (2021) have argued that flux focussing must occur, and the insufficient flux 

focussing seen in Fig. 3b is because standard Butler-Volmer kinetics are inappropriate for an 

electrode that deforms by power-law creep. Recall that Butler-Volmer kinetics, as employed 

in most of the literature, including the work of Roy et al. (2021), assumes that the electrode is 

not deforming. This implies spatially uniform stripping/plating over the interface with the metal 

electrode maintaining full contact with a rigid ceramic electrolyte. But void growth is 

accompanied by power-law creep deformation of the metal electrode and associated non-

uniform stripping of the electrode. Recall that climb-mediated glide of dislocations is the 

mechanics of power-law creep (Sargent and Ashby, 1984). The consequent nucleation and 

multiplication of dislocations that accompanies power-law creep reduces the interfacial 

resistance which in turn enhances flux focussing (Shishvan et al., 2021). Consequently, void 

growth can initiate from sub-micron impurity particles. The work of Shishvan et al. (2021) has 

recently been extended to predict the growth of voids within Li metal electrodes (Agier et al., 

2022). 

 

 

3.  Analysis of void growth in the metal electrode 

We consider the axisymmetric problem shown in Fig. 4, with the interface between electrode 

and electrolyte defined as 𝑧 = 0. Cations of Li+ are stripped from the electrode by an ionic flux 

across the electrolyte/electrode interface. The presence of a void or impurity particle on the 

interface eliminates the flux over a small region on the interface. We envision that this 

inhomogeneity in interfacial flux results in the growth of a void in the Li electrode at the 

electrolyte/electrode interface. This problem has recently been analysed by Agier et al. (2022) 

but they neglected the effect of diffusion along the electrolyte/electrode interface that is often 

cited as being an important mechanism to drive void growth. Thus, here we extend the 

 
2 A corollary to this prediction is that atomic scale inhomogeneities caused by the formation of vacancies during 

stripping will also result in negligible flux focussing. 
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variational principle developed by Agier et al. (2022) to include the effect of interface diffusion 

on void growth by using the Onsager (1931a, b) formalism for non-equilibrium processes. We 

shall show that the usual form of linearized Butler-Volmer interfacial flux relation holds in the 

presence of a void growing within the creeping electrode with interface diffusion also present. 

 

We model the initial interface heterogeneity as either a hemispherical void, or a small 

hemispherical impurity particle, of radius 𝑎0 such that flux across the interface over a circular 

area of radius 𝑎0 is prevented. While contact between the Li electrode and the rigid ceramic 

electrolyte is maintained, the growth of the void involves creep deformation of the Li electrode 

as well as diffusion of Li along the electrolyte/electrode interface.  

 

3.1 Variational principle for interfacial flux 

Consider the symmetric cell as shown in Fig. 4a that comprises two Li electrodes and the 

electrolyte. We focus on the Li anode that is subjected to a stack pressure 𝑝0 and is maintained 

at a uniform electric potential 𝜙p. We analyse a spatially fixed portion of the Li cell as sketched 

in Fig. 4b: within this portion is a spatially fixed volume 𝑉 of the electrode (Fig. 4c). The 

volume V is assumed to be large and deformation of the Li primarily occurs within a local 

volume (indicated by hatched marking in Fig. 4c) at the location where void growth may occur 

near the electrolyte/electrode interface. A region 𝑉Li ≤ 𝑉 is occupied by the Li in 𝑉 with the 

remainder occupied by the impurity and/or void (Fig. 4d). We use the symbol 𝑆 to denote the 

surface of 𝑉 with 𝑆m denoting the top surface and 𝑆I denoting the bottom surface along the 

electrolyte/electrode surface at 𝑧 = 0− (Fig. 4c). Note that the bottom surface of 𝑉 and 𝑉Li do 

not coincide with the bottom surface of 𝑉Li denoted by 𝑆b (Fig. 4d). We partition 𝑆b into two 

portions such that 𝑆b ≡ 𝑆e ∪ 𝑆v with 𝑆e being along 𝑧 = 0− where the Li is in contact with the 

electrolyte (i.e., 𝑆e is common to 𝑆b and 𝑆I) and 𝑆v is the impurity particle surface or void 

surface. (If the Li is in contact with the impurity, 𝑆v is the impurity particle surface while it is 

the traction-free void surface if the Li is detached from the impurity.) Note that while 𝑆e and 

𝑆v are not spatially fixed boundaries during the void growth, the top and lateral boundaries of 

𝑉Li are spatially fixed. Thus, the region 𝑉Li (Fig. 4d) is a mixed Lagrangian/Eulerian domain. 

Since the region 𝑉 (Fig. 4c) is a spatially fixed region, it is convenient to define 𝑉 as the system 

in developing a variational principle and consider the rate of potential energy change and 

dissipation within this system. 
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Figure 4: (a) Sketch of the axisymmetric problem with an isolated hemispherical void/impurity on the 

interface of the solid electrolyte/stripping electrode. An external power source maintains an electrical 

potential difference between the electrodes of the symmetric cell. (b) Zoom-in of the small region that 

is analysed and shown by the dashed rectangular box in (a). The (𝑟, 𝑧) co-ordinate system is included 

with the electrolyte/electrode interface along 𝑧 = 0. (c) Sketch to show the system 𝑉 (dashed red line), 

and its upper and lower boundaries 𝑆m and 𝑆I, respectively. Deformation of the Li primarily occurs 

within a local volume as indicated by hatched marking. (d) The volume 𝑉Li that the Li occupies within 

𝑉. The lower boundary of 𝑉Li is 𝑆b ≡ 𝑆e ∪ 𝑆v as depicted by the dashed black line. The pink region is 

the interface region 𝑉δ (with boundary 𝑆δ) over which diffusion of Li occurs. 

 

The Onsager formalism requires that the kinetic path followed by the system is such that 

arbitrary variations in rate kinematic degrees of freedom give a rate of change of potential 

energy that is balanced by the variation in the dissipation rate. First consider the rate of change 

of potential energy Π̇ within the system. While the stack pressure 𝑝0 and Li flux on the top 

surface 𝑆m of 𝑉 are spatially uniform and normal to the surface, the Li fluxes across the lateral 

boundaries of 𝑉 vanish. With 𝜇0 denoting the reference chemical potential of Li, the chemical 

potential of the Li in 𝑉 is 𝜇Li = 𝜇0 + 𝑝ΩLi, where ΩLi is the molar volume of Li and the pressure 

𝑝 can vary spatially within V. Thus, 𝜇Li = 𝜇0 + 𝑝0ΩLi represents the chemical potential of Li 

entering 𝑉 via the top surface 𝑆m. The Li ions in the electrolyte (with the reference chemical 

potential 𝜇0
e) cause neither swelling nor shrinkage of the single ion conductor electrolyte and 

the concentration of Li+ within the electrolyte balances the fixed and uniform distribution of 

anions in order to maintain electroneutrality. Thus, along the portion 𝑆e of the bottom surface 

of 𝑉, the chemical potential of Li+ exiting the system is 𝜇Li+
e = 𝜇0

e + 𝐹𝜙, where 𝐹 is the 

Faraday constant and 𝜙 is the electric potential in the electrolyte evaluated at the interface. 

Assuming (i) isothermal conditions for the volume 𝑉 and (ii) an equilibrium vacancy 
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concentration, the rate of change of the Helmholtz free energy of 𝑉 is �̇� = �̇�Li𝜇0, where the 

rate of change of Li molar content 𝑁Li in 𝑉 is denoted by �̇�Li. Write the chemical potential of 

the electrons within the electrode as 𝜇el− = −𝐹𝜙p. For an isothermal process, the second law 

of thermodynamics requires that the rate of change of potential energy Π̇ for the volume 𝑉 

satisfies the inequality 

Π̇ ≡ �̇� + ∫ 𝜇Li𝑓𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

−
1

𝐹
∫ 𝜇el−𝑗𝑖

el−
𝑛𝑖𝑑𝑆

𝑆m

+
1

𝐹
∫ 𝜇Li+

e 𝑗𝑖
Li+

𝑛𝑖𝑑𝑆
𝑆e

≤ 0, (1) 

where 𝑓𝑖
Li is the molar flux of Li, 𝑗𝑖

el−
 is the current density vector accounting for the flux of 

electrons across 𝑆m, 𝑗𝑖
Li+

 is the current density vector accounting for the Li+ flux across 𝑆e 

(upon noting that the only flux leaving 𝑉 over 𝑆I is across 𝑆e) and 𝑛𝑖 denotes the outward unit 

normal to the respective surfaces. 

 

The volume 𝑉 remains charge neutral so as conservation of charge requires 

∫ 𝑗𝑖
el−

𝑛𝑖𝑑𝑆
𝑆m

+  ∫ 𝑗𝑖
Li+

𝑛𝑖𝑑𝑆
𝑆e

= 0, (2) 

 

while conservation of Li demands 

∫ 𝑓𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

+ 
1

𝐹
∫ 𝑗𝑖

Li+
𝑛𝑖𝑑𝑆

𝑆e

= −�̇�Li . (3) 

Upon substituting for the chemical potentials, viz. 𝜇Li+
e = 𝜇0

e + 𝐹𝜙,  𝜇el− = −𝐹𝜙p and 𝜇Li =

𝜇0 + 𝑝ΩLi, as well as recalling that 𝑝 = 𝑝0 is spatially uniform over 𝑆m, it follows from (3) 

that the rate of change of potential energy Π̇ given by (1) can be rephrased as 

Π̇ =
1

𝐹
∫ (𝜇0

e − 𝜇0 + 𝐹𝜙)𝑗𝑖
Li+

𝑛𝑖𝑑𝑆
𝑆e

+ 𝜙p ∫ 𝑗𝑖
el−

𝑛𝑖𝑑𝑆
𝑆m

+ 𝑝0ΩLi ∫ 𝑓𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

. (4) 

With the open circuit potential given by 𝒰 ≡ (𝜇0
e − 𝜇0)/𝐹, the overpotential across the 

electrolyte/electrode interface is defined as 𝜂 ≡ 𝜙p − (𝜙 + 𝒰). Now make use of (2) to give 

Π̇ = − ∫ 𝜂𝑗𝑖
Li+

𝑛𝑖𝑑𝑆
𝑆e

+ 𝑝0ΩLi ∫ 𝑓𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

. (5) 

 

The decrease in Π̇ is associated with the following dissipation mechanisms in 𝑉: (i) dissipation 

by creep of the bulk electrode; (ii) dissipation by diffusion of Li along 𝑆b and (iii) dissipation 

associated with the flux of Li+ across the electrolyte/electrode interface. Consider each of these 

dissipation mechanisms in turn. First, dissipation in the bulk of the Li electrode is due to 

incompressible creep flow of the Li, driven by the deviatoric stress 𝑠𝑖𝑗 ≡ 𝜎𝑖𝑗 − (𝜎𝑘𝑘/3)𝛿𝑖𝑗, 

where 𝜎𝑖𝑗 is stress and 𝛿𝑖𝑗 is the usual Kronecker delta symbol. A dissipation potential Φm is 

introduced in terms of the incompressible creep strain rate 휀�̇�𝑗
C , such that 

𝑠𝑖𝑗 ≡
𝜕Φm

𝜕휀�̇�𝑗
C . (6) 

The dissipation rate per unit volume in the bulk electrode is directly related to Φm by �̇�m =

(𝜕Φm/𝜕휀�̇�𝑗
C )휀�̇�𝑗

C . Note that Φm = 0 in the void and/or impurity particle. 

 

Second, consider surface/interfacial dissipation within a thin strip on the electrode side of the 

boundary 𝑆b ≡ 𝑆e ∪ 𝑆v. The strip is an inter-phase rather than an interface and has a thickness 

𝛿 of atomic dimension in which diffusional flow of Li plays a significant role. Denote the 

volume of this thin strip by 𝑉δ and its entire boundary by 𝑆δ (Fig. 4d) and note that 𝑉δ is 
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bounded on one side by 𝑆b as already stated. The volumetric flux 𝑞𝑖 of Li in 𝑉δ is given by 

(Needleman and Rice, 1980) 

𝑞𝑖 = −𝑚
𝜕𝜇Li

𝜕𝑥𝑖
= −𝑚ΩLi

𝜕𝑝

𝜕𝑥𝑖
, (7) 

where 𝑚 is the mobility of Li in 𝑉𝛿 (note that 𝑚 → 0 outside 𝑉δ). Upon writing a dissipation 

potential associated with this linear diffusion process as 

ΦD ≡
1

2

𝑞𝑖𝑞𝑖

𝑚ΩLi
, (8) 

the dissipation rate is given by �̇�D = (∂ΦD/𝜕𝑞𝑖)𝑞𝑖.  

 

Third, following Shishvan et al. (2021), define an electrolyte/electrode interface dissipation 

potential ΦI ≡ 𝑗2𝑍/2 (where 𝑗 = 𝑗𝑖
Li+

𝑛𝑖 and 𝑛𝑖, the unit normal to 𝑆e, points into the 

electrolyte) in terms the interfacial resistance 𝑍 which in general need not be spatially uniform. 

The dissipation rate per unit area of the interface is then �̇�I = 𝑗(𝜕ΦI/𝜕𝑗). 

 

To proceed with the variational principle, introduce the functional 

Ψ(휀�̇�𝑗
C , 𝑞𝑖, 𝑗𝑖

Li+
) ≡ Π̇ + ∫ ΦI𝑑𝑆 + ∫ Φm𝑑𝑉

𝑉𝑆e

+ ∫ ΦD𝑑𝑉
𝑉𝛿

, (9) 

with the kinematic solution satisfying 𝛿Ψ = 0. Upon substituting for the various terms in (9), 

we write the variation of Ψ as 

δΨ = − ∫ 𝜂𝛿𝑗𝑖
Li+

𝑛𝑖𝑑𝑆
𝑆e

+ 𝑝0ΩLi ∫ 𝛿𝑓𝑖
Li𝑛𝑖𝑑𝑆

𝑆m

 

+ ∫
𝜕ΦI

𝜕𝑗
𝛿𝑗𝑖

Li+
𝑛𝑖𝑑𝑆

𝑆e

+ ∫
𝜕Φm

𝜕휀�̇�𝑗
C 𝛿휀�̇�𝑗

C 𝑑𝑉
𝑉Li

+ ∫
𝜕ΦD

𝜕𝑞𝑖
𝛿𝑞𝑖𝑑𝑉

𝑉𝛿

 

= 𝛿Π̇ + ∫ 𝛿�̇�I 𝑑𝑆 + ∫ 𝛿�̇�m 𝑑𝑉
𝑉Li𝑆e

+ ∫ 𝛿�̇�D 𝑑𝑉
𝑉𝛿

, 

(10) 

where 𝛿�̇�m = 𝑠𝑖𝑗𝛿휀�̇�𝑗
C = 𝜎𝑖𝑗𝛿휀�̇�𝑗

C  since 휀�̇�𝑘
C = 0 and Φm = 0 in the void and/or impurity particle 

and therefore we have replaced the integral over 𝑉 by the integral over 𝑉Li. 

 

The term associated with diffusional dissipation can be rephrased as 

∫
𝜕ΦD

𝜕𝑞𝑖
𝛿𝑞𝑖𝑑𝑉

𝑉𝛿

= − ∫
𝜕𝑝

𝜕𝑥𝑖
𝛿𝑞𝑖𝑑𝑉

𝑉𝛿

= − ∫ 𝑝𝛿휀Ḋ𝑑𝑉
𝑉𝛿

− ∫ 𝑝𝑛𝑖𝛿𝑞𝑖𝑑𝑆
𝑆𝛿

, (11) 

where the volumetric strain rate 휀Ḋ satisfies 휀Ḋ = −𝑞𝑖,𝑖. The normal flux 𝑞𝑖𝑛𝑖 = 0 over all 

portions of 𝑆δ by the following arguments: 

(i) Symmetry requires that 𝑞𝑖𝑛𝑖 = 0 along the left boundary of 𝑆δ  

(ii) Along the right boundary of 𝑆δ also 𝑞𝑖𝑛𝑖 vanishes since Li does not leave the 

domain along that boundary.  

(iii) Over the top surface of 𝑆δ the diffusive flux normal to 𝑆δ vanishes since 𝑚 = 0 in 

the bulk of 𝑉Li.  

(iv) The flux again vanishes across the bottom surface 𝑆δ (i.e., 𝑆b) as there is no 

diffusive flux neither across the void surface 𝑆v nor across the electrolyte/electrode 

interface 𝑆e. 

Thus, 

∫
𝜕ΦD

𝜕𝑞𝑖
𝛿𝑞𝑖𝑑𝑉

𝑉𝛿

= − ∫ 𝑝𝛿휀Ḋ𝑑𝑉
𝑉𝛿

, (12) 

and it follows that 



11 

 

 

∫
𝜕Φm

𝜕휀�̇�𝑗
C 𝛿휀�̇�𝑗

C 𝑑𝑉
𝑉Li

+ ∫
𝜕ΦD

𝜕𝑞𝑖
𝛿𝑞𝑖𝑑𝑉

𝑉𝛿

= ∫ 𝜎𝑖𝑗𝛿휀�̇�𝑗𝑑𝑉
𝑉Li

, (13) 

where the total strain rate is related to the material velocity of the Li in the electrode via 휀�̇�𝑗 =

0.5(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) such that 휀�̇�𝑗 = 휀�̇�𝑗
C  at a location 𝑥𝑖 in 𝑉Li ∉ 𝑉𝛿 and 휀�̇�𝑗 = 휀�̇�𝑗

C + 𝛿𝑖𝑗휀Ḋ/3 for 𝑥𝑖 in 

𝑉δ. Then, application of the stress equilibrium relation 𝜎𝑖𝑗,𝑗 = 0 along with the divergence 

theorem implies 

 

∫
𝜕Φm

𝜕휀�̇�𝑗
C 𝛿휀�̇�𝑗

C 𝑑𝑉
𝑉Li

+ ∫
𝜕ΦD

𝜕𝑞𝑖
𝛿𝑞𝑖𝑑𝑉

𝑉𝛿

= ∫ 𝑇𝑖𝛿𝑣𝑖𝑑𝑆
𝑆m

+ ∫ 𝑇𝑖𝛿𝑣𝑖𝑑𝑆
𝑆b

. (14) 

 

Now recall that if the Li is detached from the impurity, the traction 𝑇𝑖 vanishes and if it remains 

in contact with the impurity particle, the normal velocity 𝑣𝑖𝑛𝑖 = 0. Moreover, we assume that 

over both the impurity particle and the electrolyte surface 𝑆e the Li is free to slip such that 

𝑇𝑖𝑡𝑖 = 0 with 𝑡𝑖 as a unit vector along the interface 𝑆e. Then (14) reduces to 

 

∫
𝜕Φm

𝜕휀�̇�𝑗
C 𝛿휀�̇�𝑗

C 𝑑𝑉
𝑉Li

+ ∫
𝜕ΦD

𝜕𝑞𝑖
𝛿𝑞𝑖𝑑𝑉

𝑉𝛿

= −𝑝0 ∫ 𝑛𝑖𝛿𝑣𝑖𝑑𝑆
𝑆m

+ ∫ 𝑇𝑛𝛿𝑣𝑛𝑑𝑆
𝑆e

, (15) 

where 𝑇𝑛 = 𝑇𝑖𝑛𝑖 on 𝑆e and 𝑇𝑖 = −𝑝0𝛿𝑖𝑗𝑛𝑗  on 𝑆m while 𝑣𝑛 = 𝑣𝑖𝑛𝑖. Now substitute (15) into 

(10) and set δΨ = 0 to obtain 

 

∫ 𝜂𝛿𝑗𝑑𝑆
𝑆e

− ∫ 𝑍𝑗𝛿𝑗𝑑𝑆
𝑆e

=
ΩLi

𝐹
∫ 𝑇𝑛𝛿𝑗𝑑𝑆

𝑆e

, (16) 

where we have used the continuity relation 𝑣𝑖 = 𝑗𝑖
Li+

ΩLi/𝐹 over 𝑆e and an equivalent result on 

𝑆m along with the definition ΦI ≡ 𝑗2𝑍/2. Then, upon noting that this relation holds for 

arbitrary variations 𝛿𝑗, it follows that  

𝑗 =
𝜂 − 𝑇𝑛ΩLi/𝐹

𝑍
 . (17) 

The usual form of the linearized Butler-Volmer relation (see e.g., Monroe and Newman, 2005; 

Ahmad and Viswanathan, 2017; Barai et al., 2018; Mistry and Mukherjee, 2020) is thus 

reproduced but here we have shown that it applies for an electrode wherein deformation occurs 

by creep and diffusional flow might occur along the electrolyte/electrode interface. We note in 

passing that the stress (or traction) term in (17) is significantly smaller that the overpotential 𝜂 

and plays a negligible role for all realistic stripping currents as quantified by Shishvan et al. 

(2021). 

 

In the above treatment, we have assumed that the surface and interface energies of the lithium 

are negligible and set them to zero. As a consequence, surface curvature plays no role in driving 

diffusion at the boundary of the Lithium. Additionally, diffusional flux along the 

electrolyte/electrode interface does not affect the Butler-Volmer relation (17), and thus it is 

reasonable to assume that diffusional flux along the electrolyte/electrode interface will have a 

negligible influence on void growth. Roy et al. (2021) had reached a similar conclusion based 

on the argument that diffusional flow rates due to interface traction/pressure gradients are 

significantly slower than the fluxes due to the imposed electrical potential. Thus, in the 

remainder of this article we shall discuss numerical results where creep of the electrode is 

considered but diffusion along the electrolyte/electrode interface is neglected. Nevertheless, 

the formulation Eq. (1) to Eq. (17) has successfully incorporated surface and interface Li 
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diffusion and is being exploited in current research to explore the effects of surface and 

interface Li diffusion. 

 

3.2 Predictions of void growth during stripping 

Agier et al. (2022) predicted void growth during stripping of Li from a Li electrode into a 

LLZO electrolyte. Here we focus on summarising the key physical understanding from this 

study. All results are presented in terms of an imposed nominal cell current 𝑗∞ per unit 

electrolyte/electrode interface area. We shall first consider the case where the interface kinetics 

is described by standard Butler-Volmer kinetics with an interfacial resistance 𝑍 = 𝑍0 =
5 Ω cm2 that is taken to be spatially uniform and not dependent on the deformation of the 

electrode. The electrolyte is assumed to be LLZO of ionic conductivity 𝜅 = 0.46 mS cm−1; 

see Agier et al. (2022) for further details of the calculations including all material parameters. 

 

Envision that a pre-existing hemispherical void of radius 𝑎0 = 0.25 μm resides within the Li 

electrode, with its diametral base plane on the electrolyte/electrode interface. Predictions of the 

temporal evolution of the void for an imposed stripping current 𝑗∞ = 0.5 mA cm−2 are shown 

in Fig. 5 (where the time 𝑡 = 0 corresponds to the instant that 𝑗∞ is first imposed). In contrast 

to observations that stripping results in void growth (Kazemchainan et al., 2019; Lu et al., 

2022), void shrinkage is predicted. A qualitative explanation for the mechanisms of void 

growth/shrinkage has already been given in Section 2 but we reiterate it here with further 

details. Stripping results in flux focussing on the periphery of the initial void as sketched in the 

inset of Fig. 3b. The enhanced flux at the void periphery (due to this flux focussing) is thought 

to draw Li from the surface of the void thereby growing the void as sketched in the inset of 

Fig. 3b. However, what is commonly ignored is the fact that the overall imposed stripping flux 

results in the drift of the electrode towards the electrolyte (with the drift velocity of 𝑗∞ΩLi/𝐹) 

and this tends to close the void (inset of Fig. 3b). Thus, void growth will only occur if the flux 

focussing is sufficiently high to overcome the effect of the overall stripping/drift current closing 

the void. 

 

The simulations presented in Fig. 5 include contours of normalized flux 𝑗𝑧/𝑗∞ in the electrolyte 

(here 𝑗𝑧 is the flux in the electrolyte in the 𝑧 −direction) as well as contours of von Mises stress 

𝜎 in the Li electrode normalised by the reference strength 𝜎0 = 1 MPa of the Li. The stress 

state within the electrode is vanishingly small indicating negligible straining within the 

electrode and suggesting that the electrode is stripping via pure drift (that is, rigid body motion). 

To further illustrate this, contours of the Stokes stream function 𝜓 within the Li electrode are 

included. These surfaces represent a constant difference in value of the stream function, i.e., 

Δ�̅� ≡ Δ𝜓𝐹/(𝑗∞ΩLi𝑎0
2) = 0.5 for this case, so that the volumetric flow rate of the Li between 

consecutive surfaces equals 𝑄 = 2𝜋Δ𝜓 = 𝜋𝑎0
2𝑗∞ΩLi/𝐹. The contours are almost vertical. 

Recalling that the stream function contours are parallel to the material velocities, this further 

confirms that void shrinkage occurs with Li being uniformly stripped over the 

electrolyte/electrode interface 𝑆e. (Note that the contours of 𝑗𝑧 in the electrolyte also shown in 

Fig. 5 confirm that there is no/minimal flux focussing.) Thus, these coupled simulations clearly 

show that the flux focussing mechanism based on standard Butler-Volmer kinetics is 

insufficient to induce void growth, as previously suggested by the decoupled simulations of 

Roy et al. (2021). 
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Figure 5: Snapshots showing the temporal evolution of a hemispherical void of radius 𝑎0 = 0.25 μm 

within the electrode on the electrolyte/electrode interface. These predictions with a stripping current 

𝑗∞ = 0.5 mA cm−2 employ standard Butler-Volmer kinetics with an interfacial resistance 𝑍 = 𝑍0 =
5 Ω cm2. Contours of the normalised flux 𝑗𝑧/𝑗∞ in the electrolyte and the von-Mises stress 𝜎/𝜎0 in the 

Li are included. To indicate the flow of the Li and the associated velocity gradients, we superimpose 

contour surfaces �̅� of equally spaced Stokes stream functions (with Δ�̅� = 0.5). 

 

 

4. Effect of creep deformation on interfacial resistance 

Butler-Volmer kinetics provides a relation for the flux across the electrolyte/electrode interface 

as a function of voltage jump when the electrode is not deforming. This assumption is valid 

when plating/stripping of Li is spatially uniform over the interface. Void growth is associated 

with spatially non-uniform stripping and is consequently accompanied by creep deformation of 

the electrode. In these circumstances, Shishvan et al. (2021) hypothesized that key assumptions 

in deriving standard Butler-Volmer kinetics are violated and that the interfacial resistance 𝑍, 

instead of being constant, depends on the rate of deformation (creep) of the Li electrode. Here, 

we first summarize their hypothesis and then discuss the consequences. The presence of a finite 

stack pressure 𝑝0 will contribute to void collapse and so in the following discussion and analysis 

we shall continue to consider the case where no stack pressure is applied as we are primarily 

concerned with understanding the growth of voids. 

 

Creep deformation of the Li electrode under deviatoric stress is by the motion of dislocations 

with the dislocation density depending upon the level of deviatoric stress (Weertman, 1968; 

Sargent and Ashby, 1984). Shishvan et al. (2021) argued that dislocations influence interface 

kinetics in two ways:  

(i) Dislocations cause a small expansion of the metal lattice and this in turn increases the 

effective vacant space within the Li electrode. The effective fraction, 𝜃v , of vacant lattice sites 

is related to the density 𝜌d of dislocations of Burgers vector 𝑏 via 

𝜃v = exp (−
ℎv

𝑅𝑇
) + 𝛼

ΩLi(𝜌d𝑏2)

Ωv
, 

 

(18) 

where ℎv is the enthalpy of vacancy formation in Li, Ωv the molar volume of vacancies and 𝛼 

is a constant that depends on the metal crystal structure. For example, 𝛼 ≈ 0.25 for fcc Cu and 

≈ 2.7 for bcc Fe (Seeger and Haasen, 1958). The two terms in (18) are the fraction of vacancies 

at a temperature 𝑇 in the Li (first term) and the second term that models the extra space due to 

expansion of the lattice by dislocations. 

(ii) The elastic distortion of the lattice due to the dislocations that enhances the enthalpy of the 

Li atoms. 
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The Butler-Volmer assumption that the barrier is set by the weighted mean of the standard 

chemical potentials of the two end-states requires that the enthalpy and entropy of the electrode 

are known. Shishvan et al. (2021) assumed that 𝜃v  is such that it minimizes the free-energy 

(i.e., an equilibrium assumption) and this enabled them to calculate the enthalpy and entropy of 

the electrode as a function of the dislocation density and thereby evaluate the interfacial barrier 

for Li ions to cross the electrolyte/electrode interface. This weighted barrier is shown 

schematically in Fig. 6 and illustrates that an increase in the standard chemical potential of the 

electrode Li ions due to the presence of dislocations reduces the barrier for the crossing of Li 

ions from the electrode to the electrolyte. We emphasize here that consistent with the 

conventional creep theory, the dislocation density does not change the free-energy and therefore 

the chemical potential of Li. Rather, the enthalpy (or standard chemical potential) increases, 

and this is balanced out by a corresponding increase in the configurational entropy to keep the 

chemical potential unchanged in the presence of the dislocations. 

 

Shishvan et al. (2021) estimated the barrier illustrated in Fig. 6 and their analysis predicted that 

the interfacial resistance 𝑍 is related to the resistance 𝑍0 in the absence of dislocations via 

𝑍 = 𝑍0𝜃v 
𝛽−1

exp [−
(1 − 𝛽)ℎv

𝑅𝑇
]. (19) 

Here 0 ≤ 𝛽 ≤ 1 is the Butler-Volmer symmetry factor which is typically 𝛽 = 0.5. Combining 

(18) and (19) it is clear that the interfacial resistance 𝑍 decreases with increasing dislocation 

density 𝜌d. Recalling that the dislocation density in a creeping metal such as Li scales with the 

applied stress 𝜎 as 𝜌d ∝ (1/𝑏2)(𝜎/𝐺Li), where 𝐺Li is the shear modulus of Li (Weertman, 

1968), it follows that increasing the creep strain-rate (or equivalently increasing the stress) 

reduces the interfacial resistance in the vicinity of the imperfection. This thereby increases the 

flux focussing which in turn affects the creep of the electrode, resulting in a strong coupling 

between interface kinetics and creep deformation. 

 

 
Figure 6: Schematics from Shishvan et al. (2021) to illustrate the effect of dislocations on the interfacial 

flux. (a) The enthalpy/standard chemical potential of the Li-ions increases with dislocation density in 

the electrode and (b) the energy landscape for an elementary Li-ion to transition from the electrode to 

the electrolyte. Curves are shown for the cases where the electrode is dislocation-free (solid blue) and 

where dislocations are present (dashed red). 

 

4.1 Flux focussing with modified Butler-Volmer kinetics 

Predictions of the normalised interfacial flux 𝑗/𝑗∞ as a function of the non-dimensional position 

𝑟/𝑎0 along the interface at time 𝑡 = 0+ are included in Fig. 7a for three choices of the radius 

𝑎0 of the initial hemispherical void. Use of the modified Butler-Volmer kinetics also predicts 
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only a small flux focussing at the periphery of the void (𝑟/𝑎0 = 1) with the flux dropping to 

its far-field value of 𝑗∞ for 𝑟/𝑎0 > 3. These predictions are independent of 𝑗∞ and, for realistic 

initial void sizes (𝑎0 ≤ 1 μm), the voids again shrink. To understand why the modified Butler-

Volmer kinetics does not change the results from Section 2.3, recall that stripping in the 

presence of a pre-existing void occurs by pure drift of the electrode without creep deformation. 

Therefore, there is no dislocation or stress generation within the Li electrode and 𝑍 ≈ 𝑍0, i.e., 

the modified Butler-Volmer kinetics reduces to standard Butler-Volmer kinetics with 

negligible flux focussing and the shrink of voids of all realistic sizes. 

 

When dislocations are present within the electrode, modified Butler-Volmer kinetics is 

expected to enhance flux focussing by reducing the interfacial resistance around the 

void/imperfection on the interface. However, generation of dislocations requires deformation, 

i.e., a spatially non-uniform velocity field. A spatially non-uniform velocity field is inevitable 

when an impurity particle is present on the interface as flux is prevented over a small patch of 

the interface and compatibility of deformation then means that Li flows over the impurity 

particle surface. This spatially inhomogeneous flow within the Li generates dislocations. We 

now proceed to consider the exemplar problem of a hemispherical solid impurity particle of 

radius 𝑎0 on the interface, with modified Butler-Volmer kinetics. 

    
Figure 7: (a) The spatial variation of the normalised flux 𝑗/𝑗∞ over the interface at time 𝑡 = 0+ for the 

cases of hemispherical voids (three void radii 𝑎0 are shown) and a hemispherical impurity of size 𝑎0 =
0.25 μm at the interface. (b) The growth rate �̇� of the void along the interface at time 𝑡 = 0+ as a 

function of the radius 𝑎0 of the hemispherical impurity. Results are shown for two choices of the 

stripping current 𝑗∞. Adapted from Agier et al. (2022) with predictions shown using the modified 

Butler-Volmer kinetics. 

 

The normalised flux 𝑗/𝑗∞ over the interface at the instant 𝑡 = 0+ when the current is first 

imposed are included in Fig. 7a for 𝑗∞ = 1 mA cm−2 and 0.6 mA cm−2 and impurity of radius 

𝑎0 = 0.25 μm. These results are in stark contrast to those for the pre-existing void: a flux 

focussing factor 𝐾𝐽 ≈ 8.5 is predicted for the impurity particle while 𝐾𝐽 ≈ 1 for the same size 

of a pre-existing void. Now recall that the low values of 𝐾𝐽 associated with a pre-existing void 

(Fig. 7a) result in void shrinking over the full range of realistic void initial sizes; see for 

example Fig. 5. On the other hand, we expect the high 𝐾𝐽 value around the impurity particle 

will initiate void growth. This was demonstrated by Agier et al. (2022) who showed that the 

initiation of void growth occurs at the periphery of the impurity along the electrolyte/electrode 

interface (i.e., at (𝑟, 𝑧) = (𝑎0, 0)). Their predictions of the void growth rate �̇� at 𝑡 = 0+ along 

𝑧 = 0 are included Fig. 7b as a function of the impurity radius 𝑎0 for the two values of 𝑗∞. 
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Note that a positive value of �̇� implies the detachment of Li from the impurity along the 

electrolyte/electrode interface with the results in Fig. 7b indicating that voids initiate over the 

whole range of impurity particle sizes and current densities considered here. Moreover, the 

growth rate of �̇� is sensitive to the value of 𝐾𝐽 such that a higher 𝐾𝐽 (at the higher value of 𝑗∞; 

see Fig. 7a) results in a higher initial growth rate of a void. 

 

4.2 Void growth around impurity particles 

The calculations of Agier et al. (2022) demonstrated two distinct regimes of void growth 

around impurity particles that depend upon both the current and impurity size. We proceed to 

summarise these regimes by discussing results for a high and low stripping current 𝑗∞ and an 

impurity of radius 𝑎0 = 0.25 μm. 

 

(a) High stripping current. Predictions of the temporal evolution of a void growing around the 

impurity with 𝑗∞ = 1 mA cm−2 are shown in Fig. 8a, along with spatial distributions of the 

normalised von-Mises stress 𝜎/𝜎0 in the Li electrode and normalised flux 𝑗𝑧/𝑗∞ in the 

electrolyte. Surfaces of the Stokes stream function 𝜓 (spaced at Δ�̅� ≡ Δ𝜓𝐹/(𝑗∞ΩLi𝑎0
2) = 10) 

are also included to illustrate the flow of Li within the electrode. The void growth is clearly 

divided into two phases. The void first grows along the electrolyte/electrode interface but 

without growing in height until 𝑡 ≈ 400 s. The contours 𝜓 curve over the surface of this 

growing void consistent with the void growing in the 𝑟 −direction. This results in a pancake-

like shaped void consistent with experimental observations (Kazemchainan et al., 2019; Lu et 

al., 2022). Subsequently, for 𝑡 > 400 s (and after the void has attained a radius 𝑎 ≈ 4 μm along 

the electrolyte/electrode interface) the void begins to collapse such that its height and volume 

reduces but its radius 𝑎 remains approximately constant (Fig. 8a). We can understand this by 

recalling that the high flux focussing on the periphery of the void (as evident in the contours of 

𝑗𝑧 in Fig. 8a) causes the void to grow while simultaneously the overall stripping flux 𝑗∞ (which 

induces a drift velocity of 𝑗∞ΩLi/𝐹 within the electrode) tends to close the void. When the void 

is small with respect to the impurity (𝑎/𝑎0 < 16 in this case), the structural support of the 

impurity and the high flux focussing are together sufficient to cause the void to grow. However, 

for 𝑎/𝑎0 ≥ 16, the support provided by the impurity is insufficient and the creep of the Li 

results in it beginning to collapse. 

 

(b) Low stripping current. The temporal evolution of the Li around the impurity for the lower 

current of 𝑗∞ = 0.4 mA cm−2 is illustrated in Fig. 8b in a manner analogous to Fig. 8a. A void 

again initiates from the surface of the impurity and grows along the interface resulting in a 

pancake-shaped void. However, the void now only attains a maximum radius 𝑎 ≈ 1.5 μm and 

more intriguingly this void stabilises at the state shown at 𝑡 = 1800 s in Fig. 8b and does not 

collapse. The smaller growth is because the lower current implies a lower 𝐾𝐽 and this limits the 

extent of void growth. Now the ratio of the void size to impurity size is lower and this implies 

more mechanical support from the impurity. In fact, in this case the flux focussing that tends 

to grow the void and the drift velocity of 𝑗∞ΩLi/𝐹 that tends to result in void collapse balance 

out. However, while voids in this case are stable, we emphasise they are much smaller than 

those observed in experiments (Kazemchainan et al., 2019; Lu et al., 2022). 
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Figure 8: Predictions of the growth of a void around an 𝑎0 = 0.25 μm impurity particle for the cases 

of stripping currents (a) 𝑗∞ = 1 mA cm−2 and (b) 𝑗∞ = 0.4 mA cm−2. The results are shown using 

modified Butler-Volmer kinetics along with spatial distributions of the von-Mises stress 𝜎/𝜎0 in the Li 

and the flux 𝑗𝑧/𝑗∞ in the electrolyte. Contours of equally spaced Stokes stream functions (with Δ�̅� =
10 for (a) and Δ�̅� = 4 for (b)) are also included to indicate the flow of the Li and the associated velocity 

gradients. Adapted from Agier et al. (2022). 
 

We define 𝑎max as either the maximum radius of the stable void or the radius that the void 

attains before it begins to collapse. Predictions of 𝑎max − 𝑎0 along the electrolyte/electrode 

interface as a function of 𝑗∞ are summarised in Fig. 9a for calculations over a range of 𝑗∞ and 

𝑎0 values. In Fig. 9a, the stable void cases are marked with filled symbols while an open symbol 

indicates that the void collapses. Whether the void is stable or collapses is dependent on both 

𝑎0 and 𝑗∞ and the map in Fig. 9b summarises these regimes. Briefly, at low currents voids are 

stable but they collapse at higher currents with the current density at which the behaviour 

transitions between the two regimes increasing with increasing 𝑎0. 
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Figure 9: (a) Predictions of 𝑎max − 𝑎0 along the electrolyte/electrode interface as a function of 𝑗∞ for 

a void growing around an impurity particle of radius 𝑎0. Here 𝑎max is either the radius of the stable void 

or maximum radius of that the void attains before it collapses. The open and filled symbols indicate 

collapsing and stable voids, respectively. (b) A map using axes of 𝑎0 and 𝑗∞ summarises the two 

regimes, viz. void collapse and stable voids. The predictions are adapted from Agier et al. (2022) and 

use the modified Butler-Volmer kinetics. 

 

 

5. Summary and need for further investigations 

There now exists substantial experimental evidence that stripping of a metal anode in Li- or 

Na-ion cells with a ceramic electrolyte results in the formation of voids on the 

electrolyte/electrode interface. Two mechanisms have been proposed to explain this 

phenomenon: 

(i) Void formation and growth by vacancy generation and coalescence at the 

electrolyte/electrode interface. 

(ii) Void growth due to flux focussing at the periphery of initial imperfections on the 

electrolyte/electrode interface. 

Both mechanisms are based on the idea that voids form because metal is stripped from the 

electrode at the interface faster than it is replenished. All models based on the notion that voids 

form due to vacancy generation and coalescence at the electrolyte/electrode interface have 

neglected the drift of the electrode that occurs during the stripping. This drift is directly 

observed in the form of thinning of the electrode; thereby, metal that is stripped from the 

electrode is replaced without the need for vacancy generation. Once electrode drift is properly 

accounted for in the models, the vacancy generation and coalescence mechanism will predict 

no void growth and can be discounted. We have therefore focussed our review on the flux 

focussing mechanisms. 

 

A thermodynamically consistent numerical framework has been presented to predict the growth 

of voids at the electrolyte/electrode interface via a flux focussing mechanism. The framework 

employs the Onsager formalism to couple power-law creep deformation of the Li electrode, 

diffusion at the electrolyte/electrode interface and flux of Li+ through a single-ion conductor 

solid electrolyte. Flux focussing, as predicted by standard Butler-Volmer interface kinetics, is 

negligible for all realistic sizes of initial voids on the electrolyte/electrode interface and 

consequently the stripping flux shrinks pre-existing voids. This is contrary to experimental 
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observations and suggests that it is necessary to revisit some of the key assumptions of the flux 

focussing mechanism. Some initial attempts in this direction are as follows. 

 

Shishvan et al. (2021) have hypothesised that creep of the Li electrode associated with 

dislocation motion reduces the interfacial resistance and thereby enhances flux focussing. They 

developed a modified Butler-Volmer kinetics to include the effect of dislocation density within 

the electrode upon the interfacial resistance. However, stripping of an electrode with an initial 

void present on the electrolyte/electrode interface occurs with no deformation of the electrode. 

Since there is no creep within the electrode, the modified Butler-Volmer kinetics reduces to 

the standard case and the interfacial resistance is unaffected. Thus, again initial voids are 

predicted to shrink upon stripping of the electrode despite the assumption of modified Butler-

Volmer kinetics. In contrast, an impurity on the electrolyte/electrode interface blocks 

interfacial Li flux and causes creep deformation of the electrode. In this case the modified 

Butler-Volmer kinetics predicts a significant flux focussing around the periphery of the 

impurity particle due to the high dislocation density associated with the creep of Li. This flux 

focussing induces growth of a void around the impurity particle. However, for realistic impurity 

particles sizes (i.e., on the order of a micron or less) voids no greater than 10 μm in size are 

predicted to form. This is significantly smaller than the experimentally observed voids which 

are on the order of 100 μm. 

 

 
Figure 10: Sketches illustrating impurity particles dispersed in the Li electrode. These particles that are 

deposited on the electrolyte/electrode interface as Li is stripped from the electrode. Agier et al. (2022) 

hypothesized that the coalescence of voids that form around these deposited impurity particles can result 

in the formation of large voids with the impurity particles providing the structural support to prevent 

their collapse.   

 

The underlying physics that promotes void growth to large sizes (e.g., > 100 μm) remains 

unclear. The model predictions discussed in Section 4 fulfil continuum balance laws and 

thermodynamic considerations but neglect atomic scale phenomena such as formation of 

Debye layers at the electrolyte/electrode interface. These charged layers are typically no more 

than 1 nm in thickness and their effect is accounted for in continuum models by parameters 

such as the interface resistance. The growth of voids on the order of  few microns is expected 

to be largely governed by continuum balance laws and hence it is unlikely that neglecting the 

effect of these atomic scale effects of charged layers is a serious drawback of the current models 

in terms of predicting void growth. Nevertheless, the recent calculations summarised here 

suggest possible mechanisms that have been neglected in models developed to-date. In 

particular:  
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(i) The plastic/creep deformation of Li metal is size dependent with the strength of Li 

increasing when deformations are on the micron length scale (Xu et al., 2017). The 

enhanced micron-scale strength of Li metal might be sufficient to prevent the 

structural collapse of voids on the 100 μm length scale. Calculations using creep 

plasticity models (Geers et al., 2014) that allow for such plasticity size effects are 

needed to test this hypothesis.  

(ii) Another possibility is the three-dimensional (3D) dispersion of impurity particles 

that are present inside a Li electrode and accumulate on the two-dimensional (2D) 

planar interface as stripping proceeds (Fig. 10). These impurities might provide 

structural support for the growing voids as sketched in Fig. 10 and thereby allowing 

for large voids to form by coalescence. This hypothesis implies that the total amount 

of Li that is stripped from the electrode governs void formation in addition to the 

stripping current. Agier et al. (2022) employed this hypothesis to suggest that the 

critical stripping capacity is given by3 

 𝐶crit ≈
𝐹𝑎0

3

4ΩLi𝑓𝑎max
2

, (20) 

where 𝑓 is the volume fraction of spherical impurity particles of radius 𝑎0 dispersed 

within the stripping electrode. Recent experimental data (Lee et al., 2022) suggests 

that both stripping current and stripping time (or capacity) dictate failure by void 

formation at the electrolyte/electrode interface. While the critical capacity (20) 

predicted by Agier et al. (2022) is qualitatively consistent with these recent 

experimental findings, the use of 𝑎max from Fig. 9a significantly overpredicts 𝐶crit 

compared to the measurements. The combined effect of stack pressure, stripping 

capacity and current on the failure of solid-state Li-ion cells by void growth 

represents a rich area for future experimental and theoretical work. 
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