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Abstract 

The growth of Li dendrites in a solid electrolyte is commonly idealised by a pressure filled 

crack. Recent observations in both garnet and sulphide electrolytes show that sparsely filled 

cracks exist prior to shorting of the cell thereby invalidating this assumption. Here we develop 

a variational principle that uses the Onsager formalism to couple Li deposition into the crack, 

elastic deformation of the electrolyte and cracking of the electrolyte with the electrochemical 

driving forces and dissipation within the electrolyte and interfaces. Consistent with 

observations we show that Li ingress and cracking occur together for garnet electrolytes, but 

the cracks are sparsely-filled. This sparse filling is a direct consequence of the mismatch 

between the elastic opening of the cracks and the deposition of Li into the cracks across the 

crack flanks. An increase in the resistance of Li ingress into the tips of Li filaments results in 

the crack propagating ahead of the Li filaments, as observed for sulphide electrolytes. In such 

cases the cracks are largely dry. Our results provide a framework to model Li ingress into solid 

electrolytes and explain why the observations are qualitatively so different from dendrites in 

liquid electrolytes. 
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1. Introduction 

Solid-state batteries with lithium (Li) metal anodes offer the possibility of enhanced energy 

density and enhanced safety. These solid-state batteries typically employ ceramic electrolytes 

such as the Li stuffed garnet Li7La3Zr2O12 (LLZO) or sulphides such as Argyrodite (Li6PS5Cl) 
or LPS (Li2𝑆 − P2S5) [1-3]. However, fully dense ceramic electrolytes can suffer from short-

circuits due to Li filament/dendrite penetration from the Li metal anode when the current 

density of the anode exceeds a critical current density (CCD) [1,4-6]. It is desirable to enhance 

the CCD of a solid-state battery (SSB) in order to allow for faster charging of electric vehicles, 

for example.  

 

Several factors influence the CCD. For example, the CCD decreases with increasing grain size 

of the ceramic electrolyte [7-9] and also decreases with increasing electrolyte/electrode 

interface ionic resistance [9-12]. Recent observations [13-16] suggest that dendrites grow in 

the vicinity of voids in Li anodes at the electrode/electrolyte interface. These voids form during 

the stripping phase, and the required current to grow these voids is typically much less than the 

CCD for dendrite propagation. These observations of void formation in the metal electrode and 

associated Li metal penetration are very general and qualitatively similar observations have 

also been reported for Na+/beta-alumina systems [17]. 

 

The assessment of dendrite propagation in ceramic electrolytes has, to-date, been restricted to 

modelling them as pressurised cracks [18-23]. This concept was first used to explain dendrite 

formation in Na+/beta-alumina systems [24] and has been extended more recently to Li 

dendrite formation in garnet electrolytes [18,20-21]. While details of the models differ all 

assume that the Na or Li have a sufficiently low shear strength that they behave as a fluid, and 

consequently crack propagation is driven by the high fluid pressure generated by the electric 

overpotential across the crack flanks [22,25-26]. In a slightly different vein, Shishvan et al. 

[27-28] assumed that dendrites possess the same geometry as parallel sided-edge dislocations, 

with penetrating Li metal forming the “extra half-plane” of the edge dislocation. A defining 

feature of all these models is that the crack advance and Li/Na metal deposition within the 

crack proceed in unison: the metal completely fills the crack and the plating out of metal at the 

crack tip drives crack propagation. 

 

The idealisation of a dendrite as a pressurised crack or a macro-dislocation is called into 

question by recent X-ray computed tomographic (X-ray CT) observations and associated 

measurements. Bruce and co-workers [29] reported X-ray CT observations which clearly show 

that cracks propagate in Argyrodite-type LPS (Li6PS5Cl) electrolytes as empty, dry cracks: Li 

metal is only present at the crack mouth near the plating electrode. They reported that a 

through-crack develops after 25 minutes in an electrolyte of thickness 1 mm when the imposed 

current is 𝑖∞ = 1.5 mAcm
−2, but the cell does not immediately short. This was subsequently 

confirmed for LPS electrolytes by the X-ray CT observations of Shearing and co-workers [30] 

reproduced in Fig. 1a: the electrolyte has cracked through its thickness, but Li (shaded in red) 

is present only near the plating electrode. In fact, at the time of through-cracking of the 

electrolyte, only about 20% of the volume of the crack is occupied by Li. In contrast, for the 

case of an LLZO electrolyte, through-cracking and shorting occur almost simultaneously (and 

at a shorting time on the order for 2-10 mins which is much less than that for LPS [10]). This 

suggests that the above-described pressurised crack models are applicable for LLZO. However, 

using nano X-ray CT methods Shearing and co-workers [31] observed that, while Li 

penetration and cracking occur approximately in unison for LLZO, the cracks within LLZO 

are only sparsely filled (Fig. 1b). Collectively, these observations suggest that there remains a 
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lack of understanding of the mechanisms by which dendrites propagate into solid electrolytes; 

current modelling frameworks are not reconciled with experimental observations. 

 

All models to-date employ a quasi-equilibrium approximation which governs the pressure/state 

of the Li within the crack. This assumption inherently results in the pressurised and filled crack 

prediction which seems inconsistent with observations. Here we shall use the Onsager 

formalism to develop a non-equilibrium, kinetic framework for the penetration of Li into 

ceramic electrolytes. The shape, filling and propagation of the crack by Li filaments/deposits 

are natural outcomes of the solution of the variational principle. We shall show that, unlike in 

liquid electrolytes where elasticity of the electrolyte plays no role, sparsely filled cracks are to 

be expected due to the mismatch between the elastic opening of the crack and the 

electrochemical forces that govern the filling of cracks. 

 

 

2. Problem definition and a variational principle for crack growth 

The penetration of Li into Li stuffed ceramic single-ion conductor electrolytes occurs from the 

Li metal electrode that is being plated. There exists significant controversy in the literature on 

the geometry of the dendrite/Li filament (is it a crack or a dislocation-like defect?) and whether 

the fractured electrolyte is fully filled with Li or not. Here, we shall develop a variational 

principle where the geometry of the dendrite/crack and the extent of filling are outcomes of the 

coupled electro-mechanical kinetics. The key outcomes of the analysis will include: (i) the 

conditions under which dendrites/cracks grow and (ii) the mode of growth of the 

dendrites/cracks. For consistency of terminology throughout this study we shall refer to the 

defect within the electrolyte as a crack and the Li within this crack as the Li filament. We do 

this to avoid confusion with the term dendrite which typically has been used to describe a defect 

that is fully filled with Li. 

 

In line with many experiments that investigate crack growth in solid electrolytes, we consider 

a symmetric cell as shown in Fig. 2a with an external power source imposing a voltage 

difference Φp between the two electrodes. A pre-existing crack of length 𝑎0 in the single-ion 

conductor electrolyte is assumed to emanate from the interface of the plating Li electrode (inset 

of Fig. 2a) and we develop a kinetic framework for investigating the response of this cell in 

terms of the growth of this pre-existing crack. We shall make two simplifying assumptions that 

are commonly employed for problems of this type: 

(i) The electrolyte remains electroneutral such that every Li+ cation is paired with an 

immobile anion within the single-ion conductor electrolyte. Thus, the Li+ 

occupancy in the electrolyte is spatially uniform and flux is driven purely by the 

electric potential gradient. 

(ii) The molar volume Ωe of Li within the electrolyte is assumed to be zero [22, 27] 

because the Li in Li-stuffed ceramic electrolytes lies within a rigid ceramic skeleton 

that does not deform upon removal/addition of a Li atom. 

In addition, it will be shown that the Li filaments within the cracks are less than 100 nm in 

thickness. Recent micro-pillar compression tests [32-34] suggest that Li pillars in the micron 

length-scale have a uniaxial yield strength 𝜎𝑌 above 100 MPa. Direct measurements [35] of 

stresses in the electrolytes around cracks also suggest stresses on the order of 150 MPa. Taken 

together, this strongly suggests that Li within the crack is much stronger than bulk Li that creeps 

at a stress on the order of 1 MPa at room temperature [33]. Given the high stresses that Li 

filaments can sustain within cracks, we shall idealise the Li within the filaments as rigid.  
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Our aim is to analyse the growth of cracks and Li filaments within the electrolyte and to do so 

we define a system that occupies a domain 𝒱, see Fig. 2a. This system excludes the external 

power supply but encompasses the entire electrolyte volume 𝒱SE and an infinitesimal layer of 

each electrode. Both metal electrodes are maintained at fixed electrical potentials by the 

external power supply and this sets known boundary conditions for the system being analysed. 

While this is the simplest system that can be analysed for investigating the growth of cracks, it 

is nevertheless a complex open system with fluxes of Li+ ions across left and right boundaries 

of the system that are adjacent to the stripping and plating electrolyte/electrode interfaces 𝒮𝑆 

and 𝒮𝑃, respectively, a change in the total Li content in the system as the Li filaments grows 

due to Li+ ions being deposited into the crack, a net flux of electrons from the plating electrode 

to neutralize the Li+ ions being deposited into the crack, and storage of elastic energy within 

the electrolyte associated with opening of the crack. 

 

2.1 Brief description of the variational principle 

Here we briefly describe the salient features of the variational principle with full details and 

mathematical derivations provided in Supplementary section S1. The kinetic variational 

principle makes use of the Onsager [36-37] formalism wherein the rate of loss of potential 

energy Π̇ of the system drives the dissipation within the system. We treat the electroneutral 

single-ion conductor electrolyte as an isotropic linear dielectric with permittivity ℇSE and a 

conductivity 𝜅 for Li+ ions. The electrolyte is also an isotropic linear elastic solid with shear 

modulus 𝐺 and Poisson’s ratio 𝜈 such that the stiffness tensor is ℂ𝑖𝑗𝑘𝑙 = 2𝐺𝜈𝛿𝑖𝑗𝛿𝑘𝑙/(1 −

2𝜈)  + 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), where 𝛿𝑖𝑗 is the Kronecker delta and the stress 𝜎𝑖𝑗 is related to the 

strain 휀𝑖𝑗 ≡ (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)/2 via 𝜎𝑖𝑗 = ℂ𝑖𝑗𝑘𝑙휀𝑘𝑙 where 𝑢𝑖 is the displacement field within the 

electrolyte. While the formulation is general and can be employed for a three-dimensional (3D) 

system with an arbitrary crack shape, here for simplicity we shall describe the formulation in a 

two-dimensional (2D) plane strain setting in the 𝑥1 − 𝑥2 plane with a crack growing in the 

𝑥1 −direction constrained to remain straight. Consider the system at a general time 𝑡 such that 

a crack of length 𝑎 and Li filament of length 휁 exists within the electrolyte of thickness 𝐿 and 

width 𝑊, as shown in Fig. 2a. Initially, at 𝑡 = 0, the filament is of infinitesimal thickness and 

equal to the initial crack length 𝑎0, i.e., 휁 = 𝑎0. The voltage difference Φp is imposed at 𝑡 = 0. 

The origin of the co-ordinate system is located at the mouth of the crack on the 

electrolyte/plating electrode interface and the 𝑥1 −direction is perpendicular to the interface as 

shown in Fig. 2a. We shall assume that an electron-conducting pathway always exists over the 

entire length of the filament.  

 

Contributions to the rate of change Π̇ of a potential energy arise from: (i) the rate of change �̇�Li 
of Li content within the system; (ii) the rate of change of electrical energy associated with the 

electric field 𝐸𝑖 and electric displacement 𝐷𝑖 where 𝐷𝑖 = ℇSE𝐸𝑖, (iii) the current density 𝑗𝑖 of  

Li+ ions across the left and right system boundaries 𝒮L and 𝒮R shown in Fig. 2a and the current 

density 𝑗𝑖
el of electrons from the plating electrode; (iv) the rate of change �̇�elas of elastic energy 

of the electrolyte and (v) the changes in the surface energy due to fracture of the electrolyte in 

terms of the fracture energy 𝛾SE  and the adhesion energy 𝛾adh  associated with the formation 

of new Li/electrolyte interfaces on the crack flanks. Then Π̇ follows as (Supplementary section 

S1.3)  

Π̇ = �̇�Li𝜇0 − ∫𝐷𝑖�̇�𝑖𝑑𝒱
 

𝒱
− ∫ 𝐷𝑖𝑛𝑖�̇�𝑑𝒮

 

𝒮T∪𝒮B

+ �̇�elas −∫𝑇𝑖�̇�𝑖
 

𝒮
𝑑𝒮+

1

𝐹
∫ 𝜇Li+𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮L

 

+ 
1

𝐹
∫ 𝜇Li+𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮R

−
1

𝐹
∫ 𝜇𝑒𝑙𝑗𝑖

el𝑛𝑖 𝑑𝒮
 

𝒮L

− 2𝛾adh 휁̇ + 2𝛾SE �̇�, 

(1) 
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where 𝜇el and 𝜇Li+  are the chemical potentials of the electrons and Li+ ions, respectively that 

leave/enter the system at electrode/electrolyte interfaces with outward unit normal 𝑛𝑖, 𝜇0 is the 

chemical potential of Li metal and 𝐹 is the Faraday constant. Note that boundary integrals over 

the top and bottom free surfaces of the electrolyte 𝒮T and 𝒮B are included as 𝐷𝑖 is specified on 

these surfaces while tractions specified over the entire surface 𝒮 ≡ 𝒮L ∪ 𝒮B ∪ 𝒮R ∪ 𝒮T of the 

system. Mass conservation dictates that  

∫ 𝑗
𝑖
𝑛𝑖  𝑑𝒮

 

𝒮L

 +  ∫ 𝑗
𝑖
𝑛𝑖  𝑑𝒮

 

𝒮R

 =  − �̇�Li𝐹, (2) 

while the requirement that the system remains charge neutral relates �̇�Li to the electron flux 

via 

∫ 𝑗𝑖
el𝑛𝑖  𝑑𝒮

 

𝒮𝐿

  =  �̇�Li𝐹. (3) 

 

In order to set up the Onsager principle, we also need to consider the sources of dissipation in 

the system and thereby define a dissipation potential 𝒟. The four sources of dissipation within 

the system are: (i) Li+ flux through the solid electrolyte of conductivity 𝜅, (ii) the resistance 𝑍0 

for the Li+ flux across the electrode/electrolyte interfaces, (iii) the resistance 𝑍𝑓 for the Li+ flux 

across the crack flank and (iv) the resistance 𝑅Tip for Li+ to acquire an electron at the tip of the 

Li filament as it forms a new Li/electrolyte interface on the crack flanks; see Fig. 2b. 

Consequently, the dissipation potential is defined by (Supplementary section S1.3)  

𝒟 =
1

2
[
1

𝜅
∫ 𝑗

𝑖
𝑗
𝑖
 𝑑𝒱

 

𝒱SE

 +  𝑍0∫ 𝑗2𝑑𝒮
 

𝒮P

+ 𝑍0∫ 𝑗2𝑑𝒮
 

𝒮S

+ 𝑍𝑓∫ 𝑗2𝑑𝒮
 

𝒮Γ

+ 2𝑅Tip𝐽Tip
2  ], (4) 

where 𝑗 = 𝑗𝑖𝑛𝑖 and 𝒮Γ is the portion of the crack flanks over which the Li filament is present 

(inset of Fig. 2a) with 𝑛𝑖 the outward unit normal to the electrolyte. In addition, 𝐽Tip is the Li+ 

current to the tip of the Li filament through each of the two crack flanks (symmetry dictates 

that the currents across the two flanks are equal) while conservation of Li dictates that the 

filament extends by a rate 휁̇ = 2𝐽Tip/(𝐹𝜌m𝛿Tip) where 𝜌m is the molar density of Li and 𝛿Tip 

is the crack opening at the tip of the filament (inset of Fig. 2a). Note that 𝑍0 and  𝑍𝑓 are assumed 

to be constants, implying a linearized form of Butler-Volmer kinetics across the 

electrode/electrolyte interfaces and the crack flanks. 

 

The rate of change of potential energy (1) is combined with the dissipation potential (4) to 

define an augmented potential Ψ̇ = Π̇  + 𝒟 in terms of the independent field variables (�̌�𝑖, �̇�, 

𝑗𝑖, 𝐽Tip, �̇�) where 𝜑 is the electric potential and, �̌�𝑖 is the time derivative of the displacement 

field at constant crack length as  defined in Supplementary section S1.3. The Onsager principle 

[36] demands that the system evolves such that the fields satisfy 𝛿Ψ̇ = 0 at every instant. This 

requirement delivers the strongly coupled electro-mechanical governing partial differential 

equations and associated boundary conditions for the problem as derived in Supplementary 

section S1.3. 

 

The governing equation for the electric field within the electrolyte 𝒱SE is the electroneutral 

Gauss law given by �̂�,𝑖𝑖 = 0 where �̂� = 𝜑 + 𝒰 and 𝒰 is the open circuit potential between the 

electrolyte and Li metal. The boundary conditions associated with this Laplace equation are 

𝐷𝑖𝑛𝑖 = 𝑗𝑖𝑛𝑖 = 0 on the lateral boundaries 𝒮T and 𝒮B (Fig. 2a) where 𝑗𝑖 = −𝜅�̂�,𝑖 while the flux 

of Li+ through the electrode/electrolyte interfaces satisfies 

𝑗𝑖𝑛𝑖  =  
�̂� − ΦP

𝑍0
  on    𝒮S       and           𝑗𝑖𝑛𝑖  =  

�̂�

𝑍0
  on    𝒮P . (5) 
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By contrast, on the crack flank 𝒮Γ where the Li filament is present, the flux boundary conditions 

involve the tensile stress 𝜎𝑛 across the interface via 

𝑗
𝑓
≡ 𝑗

𝑖
𝑛𝑖  =  

1

𝑍𝑓
(�̂� +

𝜎𝑛
𝐹𝜌

m

), (6) 

where 𝑛𝑖 is the unit normal to the crack flank pointing into the crack. This boundary condition 

couples the solution of the electric field within the electrolyte to the mechanical problem. In 

addition, the electric field/potential within the electrolyte needs to admit a current sink of 

magnitude 

𝐽Tip  =  
1

𝑅Tip
[�̂�

Tip
+ (

2𝛾adh 
𝐹𝜌m𝛿Tip 

)] , (7) 

at the Li filament tip of thickness 𝛿Tip  located at 휁 (Fig. 2b): this current sink lengthens the Li 

filament. Here, �̂�Tip is the value of �̂� in the vicinity of the filament tip within the electrolyte. 

This boundary condition requires special consideration as the existence of the sink implies a 

singularity in �̂� and a superposition methodology is used to solve for this singularity as detailed 

in Supplementary section S2.  

 

Similarly, 𝛿Ψ̇ = 0 delivers the mechanical balance laws within the electrolyte, viz. the static 

equilibrium equation 𝜎𝑖𝑗,𝑗 = 0 along with the associated boundary conditions. These boundary 

conditions are: (i) the crack opening displacement 𝛿Li at time 𝑡 along 𝒮Γ is given by mass 

conservation as 

𝛿Li(𝑥1, 𝑡) =
2

𝐹𝜌
m

∫ 𝑗
𝑓

𝑡

𝜏(𝑥1)

(𝑥1, 𝑡
′) 𝑑𝑡′, (8) 

where 𝑗𝑓 follows from (6) and 𝜏(𝑥1) is the time at which the filament tip 휁 is first located at 𝑥1 

and (ii) on all other electrolyte boundaries, i.e. 𝒮S, 𝒮P, 𝒮T, 𝒮B and the crack flank 𝒮C where the 

Li filament is absent the tractions vanish such that 𝑇𝑖 = 0. Additionally, 𝑇1 = 0 over 𝒮Γ (i.e., 

zero shear tractions between the Li filament and the electrolyte). The solution of 𝜎𝑖𝑗,𝑗 = 0 with 

these boundary conditions delivers the mechanical fields within the electrolyte for a given crack 

length 𝑎. It is emphasised that this mechanical solution requires a solution coupled with 

Gauss’s law. In addition, the Onsager principle delivers the time evolution of crack length via 

the Griffith [38] condition  

𝛾SE = −
𝜕𝑈elas
𝜕𝑎

|
𝑢2∈𝒮Γ 

 , (9) 

where  

𝑈elas = 
1

2
∫ 휀𝑖𝑗ℂ𝑖𝑗𝑘𝑙휀𝑘𝑙 𝑑𝒱
 

𝒱SE

 , (10) 

is the elastic strain energy within the electrolyte. Details of the derivations are given in 

Supplementary section S1.3 with material parameters for the LLZO electrolyte listed in 

Table 1. This highly coupled electro-mechanical formulation not only predicts the critical 

current density 𝑖CCD but also the kinetics of crack and Li filament growth, including the shapes 

of the crack and Li filament, for operation of the cell at a current density > 𝑖CCD. Details of the 

numerical scheme to solve these coupled equations are provided in Supplementary section S2. 

 

2.1 The critical current density 

The above equations considerably simplify for the case of a non-propagating crack and can 

then be used to deduce the critical current density 𝑖CCD. At an imposed cell current density 

magnitude 𝑖∞ ≤ 𝑖CCD, the pre-existing crack fills with Li and a steady-state is attained where 

Li+ flux across the crack flanks is switched-off, i.e., from (6) 𝜎𝑛 = −𝐹𝜌m�̂�. As the pre-existing 



 7 

crack is assumed to contain lithium along its entire length, there can be no lithium flux into its 

tip until the crack is forced to propagate. Moreover, with no Li flux into the crack the solution 

of Gauss’s law within the electrolyte is trivial as the Li+ flux within the electrolyte is one-

dimensional in the 𝑥1 −direction. Thus, �̂� is given by 

�̂� = 𝑖∞ [𝑍0 +
𝑥1
𝜅
] , (11) 

where 𝑖∞ = ΦP/(2𝑍0 + (𝐿/𝜅)) is the magnitude of the cell current density (i.e., the current 

per unit electrode/electrolyte interface area) and 𝐿 is the thickness of the electrolyte. The 

calculation of 𝑖CCD then simplifies considerably for the case of an initial crack of length 𝑎0 that 

emanates perpendicular from the plating electrode/electrolyte interface. From (6) and (11) it 

follows that the crack opening traction varies as 

𝑇𝑛 = −𝜎𝑛 = 𝑇0 +
𝑇0𝑥1
𝜅𝑍0

 , (12) 

where 𝑇0 = 𝐹𝜌m𝑖∞𝑍0. Given this traction distribution along the crack flanks, for the practical 

case of 𝑎0/𝐿 → 0, there exists a closed-form solution for (9) given in Tada et al. [40]. At 𝑖∞ =
𝑖CCD, the relation in (9) is satisfied, and therefore the crack and filament propagate, when 

𝑇0√𝜋𝑎0 [1.122 +
0.683𝑎0
𝜅𝑍0

] = √
4𝐺𝛾SE/Li 
(1 − 𝜈)

, (13) 

where 𝛾SE/Li = 𝛾SE − 𝛾adh  is the surface energy of an electrolyte/Li interface. Re-arranging 

(13) a closed-form expression for 𝑖CCD follows as 

𝑖CCD =
1

𝐹𝜌m
√
4𝐺𝛾SE/Li 
(1 − 𝜈)𝜋𝑎0

 [1.122𝑍0 +
0.683𝑎0

𝜅
]
−1

. (14) 

Note that in (13-14) we have employed 𝛾SE/Li  rather than 𝛾SE as at incipient crack propagation 

at 𝑖CCD we anticipate the crack and Li filament to propagate in unison since 𝛾SE/Li < 𝛾SE 

(𝛾adh > 0; see Table 1). The predicted variation (14) of 𝑖CCD with electrode/electrolyte 

interface resistance 𝑍0 is included in Fig. 2c for selected choices of the initial crack length 𝑎0 

and using material parameters representative of the LLZO electrolyte as listed in Table 1. In 

line with numerous observations, the model predicts a reduction in 𝑖CCD with increasing 𝑍0 and 

of course with increasing initial crack length 𝑎0. The reduction in 𝑖CCD with increasing 𝑍0 

follows from the fact that a higher 𝑍0 induces higher crack opening tractions 𝑇𝑛 due to a higher 

electric potential within the electrolyte relative to the plating electrode; see Eq. (12). With the 

model capturing the known dependencies of 𝑖CCD on material parameters, we proceed to use 

the full kinetic formulation to investigate the mechanisms of crack growth and the associated 

shape of the crack. 

 

Table 1: Summary of material parameters for the LLZO electrolyte.  

 

 

 

 

Material parameter Symbol Value Ref. 

Conductivity of LLZO 𝜅  0.46 mS cm−1  [9] 

Shear modulus of LLZO 𝐺 60 GPa  [39] 

Poisson’s ratio of LLZO ν 0.2  [39] 

Surface adhesion energy between LLZO/Li γadh 0.22 J m−2  [11] 

Surface energy of LLZO γSE 0.84 J m−2  [11] 
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3. Growth of cracks in LLZO 

Cracks grow in LLZO such that they are sparsely filled with Li [31] but given the very small 

shorting times of the cells [10] it is reasonable to assume that the cell shorts soon after the crack 

fully penetrates the entire thickness of the electrolyte. Thus, the Li filament and crack extend 

in unison in LLZO with 휁̇ ≈ �̇�. In our formulation this is achieved by setting 𝑅Tip = 0 and we 

shall investigate the effect of 𝑅Tip > 0 in Section 4. The justification for the choice 𝑅Tip = 0 

in LLZO is based on the fact that Density Functional Theory (DFT) calculations [41] show that 

LLZO surfaces have a much smaller band gap compared to the bulk and thus trap a significant 

number of excess electrons. This implies that as Li+ is deposited near the tip of the filament 

(Fig. 2b), it easily acquires electrons, resulting in negligible resistance to the plating of Li metal 

at the filament tip. All calculations in this and subsequent sections are reported for an 

electrolyte of size 𝐿 ×𝑊 = 1 mm × 3 mm which is representative of the electrolyte used in 

many reported experiments [29-31]. In engineering ceramics flaws/cracks on the order of grain 

size commonly exist. Given that the grain sizes of LLZO sintered at temperatures in the range 

1100 oC − 1200 oC are typically in the range 15 −  30 μm [42], in the calculations we assume 

an initial flaw of length 𝑎0 = 25 μm that emanates normally from the plating Li 

electrode/electrolyte interface and initially only contains an infinitesimally thin layer of Li. The 

electrode/electrolyte resistance is taken to be 𝑍0 = 5 Ωcm2 [9] and in the absence of direct 

measurements we assume that the crack flank/Li filament resistance 𝑍𝑓 = 𝑍0. The calculations 

have been conducted by imposing a potential difference ΦP across the electrodes and we report 

the results in terms of the imposed cell current density magnitude 𝑖∞ = ΦP/(𝐿/𝜅 + 2𝑍0) 
which is the current in the absence of the growth of the Li filament: the large width 𝑊 of the 

electrolyte employed in the calculations implies that the growth of the Li filament has a 

negligible effect upon the average cell current 𝑖∞. 

 

3.1 The effect of mismatch between elastic crack opening and Li flux into the crack 

For cracks of initial length 𝑎0 = 25 μm, the critical current density 𝑖CCD = 0.71 mAcm−2 

according to Eq. (14). Now consider the case of an imposed current density of 𝑖∞ =
1 mAcm−2 > 𝑖CCD such that the crack and accompanying Li filament both extend. Predictions 

of the length of the crack and Li filament at three selected times 𝑡 are shown in Fig. 3. In Fig. 3a 

we include distributions of normalised current density 𝑗̂ ≡ √𝑗𝑖𝑗𝑖/𝑖∞ while the corresponding 

distributions of the 𝜎22 stress component are shown in Fig. 3b (also see Supplementary 

Video S1). First consider Fig. 3a which includes a quiver plot to show the direction of the Li+ 

flux within the electrolyte and the shape of the crack (the opening of the crack has been 

magnified by two orders of magnitude so that the shape/profile is visible). Note that the Li 

filament fills the crack, as depicted by shading the crack black. The crack profiles in Figs. 3a 

and 3b indicate that the crack opening is maximum near the mid-length of the crack. (In 

contrast, the maximum opening along the length of an internally pressurised crack is typically 

at the crack mouth.) Throughout its loading history, the crack opening rate is positive over the 

entire length of the crack: i.e., the crack continues to thicken monotonically (i.e., open) 

consistent with observations in [30]. Thus, the bulged shape of the crack opening profile 

necessarily arises from the spatial variation of the Li+ flux into the crack. 

 

The spatio-temporal distributions of 𝑗̂ included in Fig. 3a show that far ahead of the crack tip 

the current density is spatially uniform and one-dimensional (1D) within the electrolyte with 

𝑗̂ = 1. Nearer the crack, the Li+ flux across the crack flanks implies that the flux field is no 

longer one-dimensional with the current density achieving a maximum around the crack tip. 

While the flux magnitude decreases towards the plating electrode/electrolyte interface it is 

difficult to infer directly the current density 𝑗𝑓 into the crack from these distributions of 𝑗̂. 
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Predictions of the normalised crack flank current density 𝑗𝑓/𝑖∞ are shown in Fig. 3c at three 

selected times and clearly show that the crack flank flux is a maximum at the tip and 

monotonically decreases towards the crack mouth at the plating electrode interface. 

Qualitatively we would expect such a dependence as the overpotential �̂� in (6) is expected to 

decrease with decreasing 𝑥1; see for example the dependence (11) of �̂� on 𝑥1 in the absence of 

flux into the growing Li filament. Now recall from (8) that the crack opening depends upon 

both the current density 𝑗𝑓 and the time interval over which the crack faces exist. The bulged 

opening arises from the fact that while 𝑗𝑓 decreases towards the plating electrode interface (and 

thereby tends to decrease 𝛿Li), 𝜏 also decreases with 𝜏 = 0 for 𝑥1 ≤ 𝑎0 and this tends to 

increase 𝛿Li.  
 

The 𝜎22 stress distributions included in Fig. 3b clearly show the high stresses associated with 

the crack tip stress intensity factor. More intriguing is the change in sign of 𝜎22 along the crack 

flank. Recall that 𝜎22 is related to the tractions on the crack flank by 𝑇𝑛 = −𝜎𝑖𝑗𝑛𝑗𝑛𝑖 where 𝑛𝑖 

is the unit normal to the crack flank pointing into the crack. Note that the definition of 𝑇𝑛 means 

that its positive sense is in the direction of the inward normal to the electrolyte. It follows that 

𝑇𝑛 = −𝜎22|𝑥2=0,   𝑥1≤𝑎 where 𝑎 is the current length of the crack and a negative 𝑇𝑛 implies that 

the crack flank tractions are attempting to close rather than open the crack. These crack flank 

tractions are plotted in Fig. 3d for the three times 𝑡 shown in Fig. 3b. Early in the loading 

history when the crack has propagated to 𝑎 = 50 μm the tractions remain positive indicating 

that the Li that fluxes into the crack is tending to open the crack over its entire length. With 

increasing time (and crack length 𝑎) while the qualitative form of the 𝑇𝑛 distribution remains 

similar important quantitative differences emerge. The traction 𝑇𝑛 becomes negative near the 

crack mouth and tip indicating that the Li within the crack is attempting to close the crack at 

these locations. In this analysis we have assumed that the crack opening is set by (8) and thus 

equal to the time-integrated total Li+ flux at any location along the crack. The calculations 

show that with the crack opening set by the time integrated Li+ flux, elasticity of the electrolyte 

then requires the Li within the crack to close rather then open the crack at some locations and 

here the crack flank tractions become negative. This is most clearly seen in terms of the crack 

profile where the crack opening is lower near the crack mouth compared to that at midlength 

of the crack – this lower crack mouth opening is a direct consequence of the negative 𝑇𝑛 near 

the crack mouth. 

 

Note that the spatial gradients in Li+ flux along the length of a crack exist for dendrites in liquid 

electrolytes. However, negative dendrite flank tractions do not develop in liquid electrolytes as 

liquids deforms with a vanishing deviatoric stress. Thus, dendrites in liquid electrolytes can 

take mushroom-like shapes with them bulging away from the plating electrode interface [43] 

but yet maintain compressive Li stresses (positive pressure) within the dendrite.  

 

3.2 Debonding of crack flank/Li filament 

The finite shear modulus of a solid electrolyte implies that the negative crack flank tractions 

shown above are commonplace if we assume that the crack opening is set by the Li+ flux into 

the crack at every location along its flank. These negative tractions are on the order of at-least 

25 MPa (Fig. 3d) and the interface between the electrolyte and the Li filament needs to sustain 

a tensile traction of this order if this crack/Li filament propagation mode is to exist. The 

adhesive strength between Li and LLZO is on the order of a few kPa [44] and thus a better 

approximation is that the Li/electrolyte interface along the crack flank can only sustain 

compressive tractions. We therefore modify the formulation summarised in Section 2 to include 

the constraint that 𝑇𝑛(𝑥1) ≥ 0. Specifically, we modify the boundary conditions for the stress 
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equilibrium equation 𝜎𝑖𝑗,𝑗 = 0 over 𝒮Γ to be a contact type boundary condition, viz., over 𝒮Γ 

the crack opening 𝛿(𝑥1) = 𝛿Li(𝑥1) where 𝛿Li is given by (8) if 𝑇𝑛(𝑥1) ≥ 0; otherwise, 

𝑇𝑛(𝑥1) = 0 and the crack opening 𝛿(𝑥1) > 𝛿Li(𝑥1) is an outcome of the solution of the 

elasticity problem; see Supplementary section S3 for further details. 

 

The temporal evolution of the debonding of the Li filament from the electrolyte is a complex 

phenomenon that ultimately results in a complicated structure of a partially filled crack as 

observed via X-ray CT for LLZO [31]. To illustrate this, we consider the case analysed in 

Section 3.1 and first illustrate the process by which the Li filament detaches from the electrolyte 

that results in partial filling of the crack near the crack mouth. The shape of the crack near its 

mouth is shown in Fig. 4a at three selected times, with the crack lengths also indicated. At 𝑡 =
155 s, the crack is fully filled with Li over the region shown but the corresponding spatial 

distribution of 𝑇𝑛 shown in Fig. 4b suggests that the crack flanks are about to debond from the 

Li filament at the mouth (𝑥1 = 0) as 𝑇𝑛(𝑥1 = 0) = 0. When debonding occurs we assume that 

an atomistically thin layer of Li is left adhered to the electrolyte flanks so that further Li+ flux 

into the crack can continue with the fluxing Li+ acquiring an electron from this layer that is 

connected to the plating electrode. This continued flux gives a Li deposition rate �̇�Li < �̇� with 

the traction being maintained at 𝑇𝑛 = 0 at 𝑥1 = 0. In fact, with increasing time the debonding 

progresses towards the crack tip (i.e., 𝑥1 > 0) and the expected Li filament structure within the 

crack and the corresponding traction distribution are plotted in Fig. 4 at 𝑡 = 180 s. At this 

instant, 𝑇𝑛 = 0 for 𝑥1 < 20 μm and this portion of the crack is partially filled with Li. In Fig. 4a 

we have shaded the crack volume to show three separate regions: (i) Li deposited before 

detachment is shaded grey; (ii) Li deposited after detachment is shaded pink and (iii) a void or 

empty region is shaded blue. We emphasize that we have assumed that the Li within the crack 

is rigid. This implies that we are unable to predict the precise Li filament morphology within 

the partially filled crack. The Li morphology shown in Fig. 4a assumes that the Li does not 

deform and thus the voided region is shown in Fig. 4a between the Li that was initially 

deposited (grey in Fig. 4a) and the Li that is deposited after detachment occurred (shaded pink 

in Fig. 4a). Nevertheless, it is clear from Fig. 4a that the  extent of the empty region is largest 

at 𝑥1 = 0 (see structure at time 𝑡 = 220 s). This is a direct consequence of the fact that 

detachment first occurred at 𝑥1 = 0 and that the crack opening rates are the largest at the crack 

mouth.   

 

The geometry of the Li filament within the partially filled crack shown in Fig. 4a is inaccurate 

due to the assumption that the Li is rigid. However, our aim here is not to describe the Li 

filament geometry in detail but rather quantify the level of filling of the crack and its effect on 

crack propagation. Keeping this in mind, we define a filling ratio 𝑐 of the crack with its rate of 

change given by 

�̇�(𝑥1) = −
1

𝛿(𝑥1)
{�̇�(𝑥1) − �̇�Li(𝑥1)}, (15) 

where { ∙ } denotes the Macaulay brackets and (15) is integrated at locations 𝑥1 along 𝒮Γ with 

initial conditions 𝑐(𝑥1) = 1. Then the crack flank tractions 𝑇𝑛(𝑥1) ≥ 0 where 𝑐(𝑥1) = 1 and 

𝑇𝑛 = 0 where 𝑐(𝑥1) < 1. This coarse graining, whereby we only calculate the difference 

between the crack opening and deposition of Li, not only has the advantage of numerical 

convenience but also makes no assumptions about the geometry of the Li filament within the 

partially filled crack. Predictions using this approach are included in Fig. 5 (for the case 

analysed for Fig. 3) with flux distributions shown in Fig. 5a and the corresponding stresses 𝜎22 

in Fig. 5b (also see Supplementary Video S2). Two key differences are apparent: (i) in line 

with typical crack opening profiles, the opening increases monotonically behind the crack tip 
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with the maximum opening at the mouth (𝑥1 = 0) and (ii) the stresss 𝜎22 do not change sign 

along the crack flanks. This is further clarified via the 𝑇𝑛 distributions shown in Fig. 5c where 

we see that the tractions vanish near the mouth and tip of the crack, i.e., at locations where 

𝑇𝑛 < 0 in Fig. 3d. At these locations where 𝑇𝑛 = 0, the crack is partially filled with Li as seen 

in Fig. 5d where we show the spatial distribution of the crack filling ratio 𝑐 for two selected 

crack lengths 𝑎. 

 

The predictions that cracks in LLZO are partially filled with Li are consistent with recent X-

ray CT observations [31] (see also Fig. 1b) and our model gives a physical understanding of 

the phenomenon. When debonding of the Li filament from the electrolyte is permitted not only 

do partially filled cracks develop but negative tractions that tend to close the crack do not 

develop. These negative tractions tend to reduce the tip stresses (and stress intensity factor) and 

the absence of these negative tractions is expected to enhance crack growth rates. Predictions 

of the temporal evolution of the crack length 𝑎 with time are included in Fig. 6a for 3 imposed 

current densities 𝑖∞ for the two sets of simulations, viz. (i) no debonding and (ii) debonding 

permitted between the Li and the electrolyte along the crack flank. Clearly, when debonding is 

prevented, the growth of the crack slows down due to crack closing tractions (negative 𝑇𝑛) 

being imposed on the crack flanks near the tip and mouth of the crack. Predictions assuming 

no debonding and with debonding permitted of the average crack velocity 〈�̇�〉 (over the interval 

150 μm ≤ 𝑎 ≤ 250 μm) as a function of 𝑖∞ are included in Fig. 6b along with corresponding 

measurements from Kazyak et al. [10]. The predictions assuming full adhesion and no 

debonding underestimate the crack velocity while predictions that allow debonding with the 

crack flank tractions constrained to 𝑇𝑛 ≥ 0 agree remarkably well with the measurements. 

Thus, the predictions of partially filled cracks are not only consistent with direct tomographic 

observations of the Li filament structure within cracks but are also consistent with more 

macroscopic measurements of the growth rate of cracks. 

 

 

4. Growth of dry cracks  

Ning et al. [29] and Hao et al. [30] have used a combination of in-situ X-ray CT (see also 

Fig. 1a) and spatially mapped X-ray diffraction to demonstrate that the crack tip in sulphide 

electrolytes outruns the Li filament such that cracks traverse the entire electrolyte with Li 

absent from the crack over a finite length behind the crack tip. Thus, cracking of the electrolyte 

can occur before the cell short-circuits. In our model we attribute the difference in behaviour 

of LLZO and sulphide electrolytes to a difference in the magnitude of the Li filament tip 

resistance 𝑅Tip. DFT calculations [41] have shown that the surface band gap for sulphide 

electrolytes is large compared to the bulk and therefore we do not anticipate an accumulation 

of excess electrons on the surface of the fractured LPS. Consequently, we anticipate that a 

substantial resistance exists for Li+ to acquire electrons near the Li filament tip (see Fig. 2b) 

and expect that, unlike LLZO, 𝑅Tip ≫ 0 for sulphide electrolytes. While direct measurements 

of 𝑅Tip have not been reported in the literature we summarise the results of calculations here 

to show the effect of 𝑅Tip > 0 on the growth of the crack and Li filament. The aim is to show 

the effect of 𝑅Tip upon the mechanism of crack and Li filament propagation, and thus it suffices 

to keep all parameters fixed at the values for LLZO (Table 1) and only change 𝑅Tip for the 

calculations reported in this section. 

 

Predictions of the growth of the crack/Li filament initiating from an initial crack of length 𝑎0 =
25 μm are included in Fig. 7 (also see Supplementary Video S3). with the choice of 𝑅Tip =

22 Ωcm (all loading parameters are the same as for the cases in Fig. 3 and 5 and we restrict 
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attention to the case when debonding is permitted such that 𝑇𝑛 ≥ 0). The high value of 𝑅Tip 

results in two major differences from the corresponding 𝑅Tip = 0 results in Fig. 5:  

(i) The Li filament and crack propagate simultaneously until 𝑡 ≈ 90s (𝑎 = 휁 ≈
50 μm) but subsequently the crack tip accelerates ahead of the Li filament with the 

near crack tip region being devoid of Li. This is consistent with observations 

reported in [30]; see their Fig. 3e. Thus, while the stress concentration persists near 

the crack tip, the flux concentration is no longer at the crack tip but further back and 

located at the Li filament tip. This is in contrast to the 𝑅Tip = 0 case.  

(ii) The crack propagation rate is lower compared to the 𝑅Tip = 0 case. The crack 

propagates to 𝑎 = 500 μm in 250 s and 315 s for 𝑅Tip = 0 and 𝑅Tip = 22 Ωcm, 

respectively.  

To understand the lower crack propagation rate, note that shorter Li filaments imply that the 

crack opening tractions are now exerted over a smaller fraction of the crack flank (compare 

Fig. 7c with Fig. 5c). Thus, the magnitudes of the tractions need to be higher to allow the crack 

to propagate and these higher tractions requires greater crack openings, i.e. thicker Li filaments. 

To show this we compare the crack opening profiles for the 𝑅Tip = 0 case from Fig. 5 and the 

𝑅Tip = 22 Ωcm case in Fig. 7d. Until 𝑎 ≈ 50μm the crack and Li filament propagate in unison 

and the crack profiles are similar in both cases, but for 𝑎 > 50μm the crack openings are larger 

for 𝑅Tip = 22 Ωcm compared to those for 𝑅Tip = 0. These larger openings induce larger crack 

flanks tractions (compared Figs. 5c and 7c). The larger required crack opening take longer to 

be built-up by the Li+ fluxes, and this reduces the crack propagation rate. 

 

4.1 Effect of the filament tip resistance 

Predictions of the temporal evolution of the crack length 𝑎 and Li filament length 휁 are included 

in Fig. 8a for three values of the filament tip resistance 𝑅Tip and an imposed current density 

𝑖∞ = 1 mAcm−2. As discussed above, the crack and Li filament propagate in unison for 𝑅Tip =

0. However, for the higher values of 𝑅Tip not only does the crack tip propagate more slowly 

but the divergence between the temporal evolution of 𝑎 and of 휁 also increases with increasing  

𝑅Tip. An immediate consequence is that the time to crack the electrolyte and the time at which 

the cell shorts will differ at the higher values of 𝑅Tip. This is clearly observed in [29,30] where 

X-ray imaging shows that the electrolyte has cracked but the cell has not shorted at the time of 

complete fracture of the electrolyte. 

 

To quantify this difference, we define two failure times: (i) 𝑡crack for the cracking of the 

electrolyte, i.e., the time when 𝑎 = 𝐿 and (ii) the shorting time 𝑡short when 휁 = 𝐿. Note that 

for time 𝑡 > 𝑡crack the electrolyte has fractured with tractions 𝑇𝑛 = 0 on the crack flanks and 

the solution of the subsequent filament growth problem is a pure electrochemical solution with 

no mechanical coupling. Predictions of 𝑡crack and 𝑡short are included in Fig. 8b as a function 

of the imposed current density 𝑖∞ for 𝑅Tip = 0 and 𝑅Tip = 22 Ωcm. For 𝑅Tip = 0, 𝑡crack =

𝑡short so that cracking of the electrolyte is synonymous with shorting of the cell in line with 

observations for LLZO. On the other hand, shorting occurs significantly after cracking of the 

electrolyte in the 𝑅Tip = 22 Ωcm case and this is qualitatively consistent with observations for 

sulphide electrolytes. In all cases, the cracking and shorting times decrease with increasing 𝑖∞ 

as the flux of Li into the crack increases as 𝑖∞ increases.  
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5. Concluding remarks 

A variational principle for modelling the ingress of Li into solid electrolytes has been 

developed by making use of Onsager formalism. The Onsager principle [36-37] allows us to 

couple together the elastic deformation and cracking of the electrolyte, the electrochemical 

driving forces in the cell and the ion transport dissipative processes in the electrolyte bulk and 

across the electrolyte/electrode and electrolyte/crack interfaces. The kinetics of crack/Li 

filament propagation along with the shapes of the crack and Li filament are natural outcomes 

of the solution to the variational problem. 

 

Unlike liquid electrolytes, in solid electrolytes the elasticity of the solid implies that the crack 

cannot assume arbitrary shapes if the tractions along the Li filament/crack interface are to 

remain compressive. Consequently, the mismatch between the time-integrated flux of Li+ ions 

into the crack and elastic opening of the crack can result in sparse filling of the cracks with Li, 

while the resistance to the ability of Li+ ions to acquire electrons at the Li filament tip implies 

that the crack can propagate ahead of the Li filament in some cases. The predictions are not 

only in good qualitative agreement with X-ray CT observations of the cracking of LLZO and 

LPS electrolytes but are also in excellent quantitative agreement with measured crack 

velocities. 

 

The framework provides a comprehensive understanding of the kinetics of cracking and Li 

filament propagation in solid electrolytes. It shows that the mismatch between the elastic crack 

opening and the flux of Li+ ions into the cracks is a maximum near the mouth of the crack at 

the interface with the plating electrode. Direct X-ray CT observations to measure the extent of 

filling of cracks as a function of position within the electrolyte have not been reported to-date. 

Such observations are desirable and will serve to further test the fidelity of the modelling 

framework introduced here. 

 

 

Acknowledgements 

The authors are grateful for helpful discussions with Profs. Peter Bruce and Clare Grey. NAF, 

PRS and SH acknowledge support by the Faraday Institution [Solbat, grant number FIRG007]. 

PRS acknowledges the support of The Royal Academy of Engineering (CiET1718/59).  

 

 

References 

[1] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. 

Kamiyama, Y. Kato, S. Hema, K. Kawamoto, A. Mitsui, Nat. Mater., 2011, 10(9), 682-

686. 

[2] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J-M Tarascon, Nat. Mater., 2012, 11(1), 

19-29. 

[3] K. Takada, Acta Mater., 2013, 61(3), 759-770. 

[4] K. B. Hatzell, X. Chelsea Chen, C. L. Cobb, N. P. Dasgupta, M. B. Dixit, L. E. 

Marbella, M. T. McDowell, P.P. Mukherjee, A. Verma, V. Viswanathan, A. S. 

Westover, ACS Energy Lett., 2020, 5(3), 922-934. 

[5] L. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Frömling, H. L. Thaman, S. 

Berendts, R. Uecker, W. C. Carter, Y‐M. Chiang, Adv. Energy Mater., 2017, 7(20), 

1701003. 

[6] F. Flatscher, M. Philipp, S. Ganschow, H. M. R. Wilkening, D. Rettenwander, J. Mater. 

Chem. A, 2020, 8(31), 15782-15788. 



 14 

[7] L. Cheng, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, ACS Appl. 

Mater. Interfaces, 2015, 7(3), 2073-2081. 

[8] A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, J. Power 

Sources, 2016, 302, 135-139. 

[9] A. Sharafi, C. G. Haslam, R. D. Kerns, J. Wolfenstine, J. Sakamoto, J. Mater. Chem. 

A, 2017, 5(40) 21491-21504. 

[10] E. Kazyak, R. Garcia-Mendez, W. S. LePage, A. Sharafi, A. L. Davis, A. J. Sanchez, 

K-H. Chen, C. Haslam, J. Sakamoto, N. P. Dasgupta, Matter,  2020, 2(4) 1025-1048. 

[11] A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, 

J. Sakamoto, Chem. Mater., 2017, 29(18) 7961-7968. 

[12] C-L. Tsai, V. Roddatis, C. Vinod Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. 

Heitjans, O. Guillon. ACS Appl. Mater. Interfaces, 2016, 8(16) 10617-10626. 

[13] J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. 

Bruce, Nat. Mater., 2019, 18(10) 1105-1111. 

[14] T. Deng, X. Ji, Y. Zhao, L. Cao, S. Li, S. Hwang, C. Luo, P. Wang, H. Jia, X. Fan, X. 

Lu, Adv. Mater., 2020, 32(23) 2000030. 

[15] M.B. Dixit, M. Regala, F. Shen, X. Xiao, K. B. Hatzell, ACS Appl. Mater. Interfaces, 

2018, 11(2), 2022-2030. 

[16] K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, N. P. Balsara, Nat. 

Mater., 2014 13(1),  69-73. 

[17] D. Spencer Jolly, Z. Ning, J. E. Darnbrough, J. Kasemchainan, G. O. Hartley, P. 

Adamson, D. E. J. Armstrong, J. Marrow, P. G. Bruce, ACS Appl. Mater. 

Interfaces, 2019, 12(1), 678-685. 

[18] L. Barroso-Luque, Q. Tu, G. Ceder, J. Electrochem. Soc., 2020, 167(2), 020534. 

[19] P. Barai, A.T. Ngo, B. Narayanan, K. Higa, L. A. Curtiss, V. Srinivasan, J. 

Electrochem. Soc., 2020 167(10), 100537. 

[20] P. Barai, K. Higa, V. Srinivasan, J. Electrochem. Soc., 2018, 165(11), A2654. 

[21] L. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Frömling, H. L. Thaman, S. 

Berendts, R. Uecker, W. C. Carter, Y‐M. Chiang, Adv. Energy Mater., 2017, 7(20), 

1701003. 

[22] M. Klinsmann, F. E. Hildebrand, M. Ganser, R. M. McMeeking, J. Power Sources, 

2019, 442 227226. 

[23] F. Yang, Phys. Chem. Chem. Phys., 2020, 22(24), 13737-13745. 

[24] R. D. Armstrong, T. Dickinson, J. Turner, Electrochim. Acta, 1974, 19(5) 187-192. 

[25] G. Bucci, J. Christensen, J. Power Sources, 2019, 441, 227186. 

[26]      H. Haftbaradaran, S. Esmizadeh, A. Salvadori, Int. J. Solids Struct., 2022, 254, 111852. 

[27] S. S. Shishvan, N. A. Fleck, R. M. McMeeking, V. S. Deshpande, J. Power 

Sources, 2020, 456, 227989. 

[28] S. S. Shishvan, N. A. Fleck, R. M. McMeeking, V. S. Deshpande, Acta Mater., 2020, 

196, 444-455. 

[29] Z. Ning, D. Spencer Jolly, G. Li, R. De Meyere, S. D. Pu, Y. Chen, J. Kasemchainan, 

J. Ihli, C. Gong, B. Liu, D. L. R. Melvin, A. Bonnin, O. Magdysyuk, P. Adamson, G. 

O. Hartley, C. W. Monroe, T. J. Marrow, P. G. Bruce, Nat. Mater., 2021, 20(8), 1121-

1129. 

[30] S. Hao, S. R. Daemi, T. MM. Heenan, W. Du, C. Tan, M. Storm, C. Rau, D. JL. Brett 

P. R. Shearing, Nano Energy, 2021, 82, 105744. 

[31] S. Hao, J. J. Bailey, F. Iacoviello, J. Bu, P. S. Grant, D. JL. Brett, P. R. Shearing, Adv. 

Funct. Mater., 2021, 31(10) 2007564. 

[32] C. D. Fincher, D. Ojeda, Y. Zhang, G. M. Pharr, M. Pharr, Acta Mater., 2020, 186, 215-

222. 



 15 

[33] C. Xu, Z. Ahmad, A. Aryanfar, V. Viswanathan, J. R. Greer, Proc. Natl. Acad. Sci. 

U.S.A, 2017, 114(1) 57-61. 

[34] L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang, J. Zhao, B. Wang, T. Chen, Y. Sun, P. Jia, 

H. Li, L. Geng, J. Chen, H. Ye, Z. Wang, Y. Li, H. Sun, X. Li, Q. Dai, Y. Tang, Q. 

Peng, T. Shen, S. Zhang, T. Zhu, J. Huang, Nat. Nanotechnol., 2020, 15(2), 94-98. 

[35] C. D. Fincher, C. E. Athanasiou, C. Gilgenbach, M. Wang, B. W. Sheldon, W. Craig 

Carter, Y-M. Chiang, ChemRxiv, 2022. 

[36] L. Onsager, Phys. Rev. 1931, 37, 405-426. 

[37] L. Onsager, Phys. Rev. 1931, 38, 2265-2279. 

[38] A. A. Griffith, Phil. Trans. Roy. Soc. London A, 1921, 221(582-593), 163-198. 

[39] J. E. Ni, E. D. Case, J. S. Sakamoto, E. Rangasamy, J. B. Wolfenstine, J. Mater. 

Sci., 2012, 47(23), 7978-7985.  

[40] H. Tada, P. Paris, G. Irwin, The stress analysis of cracks handbook, New York: ASME 

Press, 2000. 

[41] H-K. Tian, Z. Liu, Y. Ji, L-Q. Chen, Y. Qi, Chem. Mater., 2019, 31(18), 7351-7359. 

[42] A. Sharafi, C.G Haslam, R.D. Kerns, J. Wolfenstine, J. Sakamoto, J. Mater. Chem. A, 

2017, 5, 21491-21504. 

[43] K. N. Wood, E. Kazyak, A. F. Chadwick, K-H. Chen, J-G. Zhang, K. Thornton, N. P. 

Dasgupta, ACS Cent. Sci., 2016, 2(11), 790-801. 

[44] M. Wang, J. Sakamoto, J. Power Sources, 2018, 377, 7-11. 

 

  



 16 

 

Figures 

 

 
 

Figure 1: (a) Optical micrograph and corresponding X-ray CT reconstruction of the crack in 

LPS showing that while the electrolyte has completely cracked the Li is only present near the 

mouth of the crack at the plating electrode interface. Modified from [30] with the image on the 

left indicating the two planes over which the zoom-ins are shown. (b) Scanning electron 

microscope (SEM) image and X-ray CT reconstruction of a crack within LLZO showing that 

the crack is partially filled with Li. Data reconstructed from measurements taken in [31]. 
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Figure 2: (a) Sketch of the symmetric cell analysed with the system of volume 𝒱 that is 

bounded by 𝒮 ≡ 𝒮L ∪ 𝒮R ∪ 𝒮T ∪ 𝒮B. The electrolyte of size 𝐿 ×𝑊 has a volume labelled 𝒱SE 

and the plating and stripping electrode interfaces are labelled 𝒮P and 𝒮S, respectively. There 

exists an initial crack of length 𝑎0 that is perpendicular to 𝒮P. (b) Sketch showing the plating 

of the Li at the tip of the filament with a current 𝐽Tip along with the current density 𝑗𝑓 = 𝑗𝑖𝑛𝑖 

across the crack flanks along with crack surface 𝒮Γ along which the Li filament of length 휁 is 

present with the remainder of the crack of length 𝑎 being dry. The dry crack flanks are labelled 

𝒮C.  (c) Predictions of the critical current density 𝑖CCD as a function of electrode/electrolyte 

interface resistance 𝑍0 for selected values of 𝑎0 using properties representative of LLZO 

(Table 1). 
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Figure 3: Predictions of the evolution of the (a) normalised current density 𝑗̂ ≡ √𝑗𝑖𝑗𝑖/𝑖∞ and 

(b) stress 𝜎22 within the electrolyte for a cell with 𝑅Tip = 0 subjected to an imposed current 

density 𝑖∞ = 1 mAcm
−2. In (a) we include a quiver plot to show the direction of Li+ flux within 

the electrolyte. Debonding of the Li from the crack flanks is not permitted. The opening of the 

crack is magnified × 200 so that the crack profile is clearly visible. The time 𝑡 and current 

crack length 𝑎 are indicated for each of the three time instants (also see Supplementary Video 

S1). Corresponding predictions of the (c) normalised crack flank current density 𝑗𝑓/𝑖∞ and (d) 

crack flank tractions 𝑇𝑛. Note that a positive value of 𝑇𝑛 contributes to opening the crack 

whereas a negative one does the opposite. 

 



 19 

 
 

Figure 4: Structure of the Li filament within the crack near the crack mouth for the case of a 

cell subjected to an imposed current density 𝑖∞ = 1 mAcm−2 with 𝑅Tip = 0. (a) The Li within 

the crack at three time instants with 𝑡 = 155 s corresponding to the instant when debonding is 

about to commence at the crack mouth. Subsequently we show the Li filament geometry within 

the crack with the shading indicating the empty regions and Li deposited before and after 

detachment from the crack flanks. Note that the 𝑥2-axis scale is in nm such that the crack opens 

by less than 100 nm when it has propagated to a length 𝑎 ≈ 350 μm. (b) The corresponding 

evolution of the crack flank tractions 𝑇𝑛 that are not permitted to be negative. 
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Figure 5: The effect of debonding between the Li filament and the crack flank on the 

predictions of the evolution of the (a) normalised current density 𝑗̂ ≡ √𝑗𝑖𝑗𝑖/𝑖∞ and (b) stress 

𝜎22 within the electrolyte for a cell with 𝑅Tip = 0 subject to an imposed current density 𝑖∞ =

1 mAcm−2. In (a) we include a quiver plot to show the direction of the Li+ flux within the 

electrolyte. Debonding between the Li filament and crack flanks is assumed to occur such that 

the crack flank traction 𝑇𝑛 ≥ 0. The opening of the crack is magnified × 200 so that the crack 

profile is clearly visible. The time 𝑡 and current crack length 𝑎 are indicated for each of the 

three time instants (also see Supplementary Video S2). Corresponding predictions of the (c) 

crack flank traction 𝑇𝑛 and (d) filling fraction 𝑐 along the crack. 
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Figure 6: (a) Predictions of the temporal evolution of the crack length 𝑎 with 𝑅Tip = 0 for 

three values of the imposed current density 𝑖∞. Results are shown for the cases when debonding 

is not permitted and when debonding of the Li from the crack flanks is allowed such that 𝑇𝑛 ≥
0. (b) Comparison between predictions and measurements [10] of the average crack speed 〈�̇�〉 
over the interval 150 μm ≤ 𝑎 ≤ 250 μm as a function of 𝑖∞. The predictions for the both the 

debonding allowed and prevented cases are included. 

 

 

 



 22 

 
 

Figure 7: Predictions of the evolution of the (a) normalised current density 𝑗̂ ≡ √𝑗𝑖𝑗𝑖/𝑖∞ and 

(b) stress 𝜎22 within the electrolyte for a cell with 𝑅Tip = 22 Ωcm subjected to an imposed 

current density 𝑖∞ = 1 mAcm−2. In (a) we include a quiver plot to show the direction of the 

Li+ flux within the electrolyte. Debonding is assumed to occur such that the crack flank traction 

𝑇𝑛 ≥ 0. The opening of the crack is magnified × 200 so that the crack profile is clearly visible. 

The time 𝑡 and current crack length 𝑎 are indicated for each of the three time instants (also see 

Supplementary Video S3). (c) Corresponding predictions of the crack flank traction 𝑇𝑛 and (d) 

comparison of the crack profile for the 𝑅Tip = 22 Ωcm case with the 𝑅Tip = 0 case of Fig. 5. 
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Figure 8: (a) Predictions of the temporal evolution of the crack length 𝑎 and Li filament length 

휁 for a cell subjected to an imposed current density 𝑖∞ = 1 mAcm−2. Results are shown for 

three choices of the filament tip resistance 𝑅Tip. (b) Predictions of the time 𝑡crack to crack the 

electrolyte and the time 𝑡short to short the cell as a function of 𝑖∞ for two choices of 𝑅Tip. These 

predictions are for an electrolyte of thickness 𝐿 = 1 mm. 
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S1. A variational principle for Li dendrite and dry crack propagation in solid 

electrolytes 

In this section we derive a variational principle for the propagation of a Li filament and a dry 

crack in solid electrolytes. Here we constrain ourselves to the case when the Li filament is 

perfectly bonded to the crack flanks of the electrolyte (Fig. S1) with the interface assumed to 

be capable of sustaining tensile tractions. This condition is relaxed in a small modification to 

the principle presented in Section S3.  

 

S1.1 Free-energy of the Li filament and chemical potentials of Li within the electrolyte and 

the Li filament 

First consider the metallic Li filament that is electrically neutral. Consider a volume Ω of Li 

metal comprising 𝑁L moles of lattice sites that are occupied by 𝑁Li moles of Li atoms such that 

Ω ≡ (𝑁LiΩLi + 𝑁vΩv) where ΩLi is the molar volume of Li and Ωv denotes the molar volume 

of vacant sites. The Li atoms have an occupancy 𝜃 ≡ 𝑁Li/𝑁L  and 𝑁v = 𝑁L  − 𝑁Li lattice sites 

are vacant, with 𝜃v ≡ 𝑁v/𝑁L denoting the fraction of these vacant sites. The internal energy is 

then given by 



 25 

𝑈m = 𝜇0𝑁Li + ℎv𝑁v, (S1) 

where ℎv is the molar enthalpy of formation of vacant sites in Li and 𝜇0 is the reference molar 

chemical potential of the Li atoms. In writing (S1) we have assumed no contribution from the 

elastic energy of the Li. We neglect vibrational entropy and, therefore, set the entropy of 𝑁Li 

moles of Li atoms, and 𝑁v moles of vacant sites, equal to zero prior to mixing. Then, the entropy 

𝑆m of the filament is given in terms of the gas constant 𝑅 by the entropy of mixing as 

𝑆m = −𝑁L𝑅[𝜃 ln 𝜃 + (1 − 𝜃) ln(1 − 𝜃)]. (S2) 

The Helmholtz free-energy at temperature 𝑇 ≡ (𝜕𝑈m/𝜕𝑆m )Ω follows as 𝐴m ≡ 𝑈m − 𝑇𝑆m, 

such that  

𝐴m = 𝜇0𝑁Li + ℎv𝑁v +𝑁L 𝑅𝑇[𝜃 ln 𝜃 + (1 − 𝜃) ln(1 − 𝜃)], (S3) 

and the Gibbs free-energy of the metal subjected to a pressure 𝑝 (positive in compression) is 

𝒢m ≡ 𝐴m + 𝑝Ω. The equilibrium fraction of vacant sites then follows from the condition  

𝜕𝒢m
𝜕𝑁L 

|
𝑁Li

= 0, (S4) 

such that at 𝑝 = 0, 𝜃v
0 = exp [−ℎv/(𝑅𝑇)] while at a non-zero pressure 𝑝 we have 𝜃v =

𝜃v
0exp [−𝑝Ωv/(𝑅𝑇)]. Note that the enthalpy of formation of vacant sites in Li is ℎv ≈

50 kJ mol−1 [1]; consequently, at room temperature 𝑇 = 300 K, we have ℎv/(𝑅𝑇) ≫ 1 and 

therefore 𝜃v ≪ 1 with 𝜃 ≈1. Therefore, to a high degree of accuracy 𝐴m ≈ 𝜇0𝑁Li. 

 

The chemical potential of Li in the absence of an imposed pressure with an equilibrium vacancy 

content is given by  

𝜇Li ≡
𝜕𝒢m
𝜕𝑁Li

|
𝑁L 

= 𝜇0, (S5) 

and the corresponding chemical potential of the Li+ ions in the electroneutral metal is [2] 

𝜇Li+ = 𝜇Li − 𝜇el, (S6) 

where 𝜇el is the chemical potential of the electrons (often referred to as the Fermi level). It is 

reasonable to assume that the Fermi level of electrons in the electrode depends only on the 

electric potential 𝜑 with 𝜇el = −𝐹𝜑 and thus 𝜇Li+ = 𝜇0 + 𝐹𝜑, where 𝐹 is the Faraday constant. 

 

Now consider the chemical potential 𝜇Li+
e  of the Li+ ions within the single-ion-conductor 

electrolyte. The electrolyte is assumed to remain electroneutral with every Li+ cation paired 

with an immobile anion within the single-ion-conductor electrolyte. Thus, the Li+ occupancy 

within the electrolyte is constant and the chemical potential of  Li+ ions within the electrolyte 

can be written as [2] 

𝜇Li+
e = 𝜇e + 𝐹𝜑, (S7) 

where 𝜇e is the reference chemical potential of Li+ ions in the electrolyte and 𝜑 is the electric 

potential of the electrolyte. Note that there is no stress contribution to (S7) since we have 
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assumed that the molar volume Ωe of Li within the electrolyte is zero [2,3] because the Li in Li-

stuffed ceramic electrolytes lies within a rigid ceramic skeleton which does not deform upon 

removal/addition of a Li atom. 

 

The reference quantities 𝜇e and 𝜇0 are directly related to the open circuit potential 𝒰 of the 

electrode relative to the electrolyte, also known as the equilibrium potential. It is defined as the 

electrical potential that equalises the chemical potentials of Li+ in the electrode and electrolyte 

in the absence of an external applied pressure, i.e., 𝜇0 + 𝐹𝒰 = 𝜇e. 

 

S1.2 Constitutive relations  

Constitutive relations are required for the dielectric, mechanical and ion transport properties of 

the electrolyte. We model the electrolyte as an isotropic linear dielectric with permittivity ℇSE 

such that the electric displacement 𝐷𝑖 is given in terms of the electric field 𝐸𝑖 = −𝜑,𝑖 by 𝐷𝑖 =

ℇSE𝐸𝑖. The transport of Li+ within the electrolyte is driven by the spatial gradient of the 

chemical potential of Li+ that provides the driving force 𝑓𝑖 ≡ −𝜕𝜇Li+
e /𝜕𝑥𝑖. The molar flux of 

Li+ in the electroneutral electrolyte is ℎ𝑖 ≡ 𝑚𝑁Li+
e 𝑓𝑖, where 𝑚 is the mobility of Li+ in the 

electrolyte and 𝑁Li+
e  the molar concentration of the Li+ ions within the electrolyte. Typically, 

this flux is measured in terms of the current density 𝑗𝑖 = 𝐹ℎ𝑖 of the Li+ ions, with the mobility 

written in terms of an ionic conductivity defined as 𝜅 ≡ 𝑗1/𝐸1 for an electrical field applied in 

the 1 −direction. Thus, setting 𝜅 = 𝑚𝑁Li+
e 𝐹2 shows that the current density is related to the 

gradient of the electric potential as 𝑗𝑖 = −𝜅𝜑,𝑖 which is essentially a statement of Ohm’s law. 

(There is no diffusive contribution to the flux as the electrolyte is assumed to remain 

electroneutral with fixed occupancy of Li+ sites.) Moreover, since we are assuming an 

electroneutral electrolyte with a fixed concentration of Li+ ions, conservation of Li requires that 

𝑗𝑖,𝑖 = 0 or equivalently 𝜙,𝑖𝑖 = 0 and 𝐷𝑖,𝑖 = 0 since 𝐷𝑖 = (ℇSE/𝜅)𝑗𝑖. Finally, the electrolyte is 

assumed to be a linear elastic solid with shear modulus 𝐺 and Poisson’s ratio 𝜈. Under small 

strain conditions the strain 휀𝑖𝑗 is defined from the displacement field 𝑢𝑖 as 휀𝑖𝑗 ≡ (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)/2 

with the mechanical stress 𝜎𝑖𝑗 then related to 휀𝑖𝑗 via Hooke’s law,  

휀𝑖𝑗 =
𝜎𝑖𝑗

2𝐺
−

𝜈

2𝐺(1 + 𝜈)
𝜎𝑘𝑘𝛿𝑖𝑗, (S8) 

where 𝛿𝑖𝑗 is the usual Kronecker delta. 

 

In formulating the variational principle, we will also need to specify the electric fields within 

the Li and the empty space within the crack. We approximate the Li to be a perfect conductor 

with a vanishing electric field, while empty space has permittivity ℇ0 which is a universal 

constant. 

 

S1.3 System definition and the variational principle 

Our aim is to analyse the growth of cracks and Li filaments within the electrolyte, and we thus 

define a system whose domain is denoted 𝒱 and surface 𝒮. This system excludes the external 

power supply but encompasses the entire electrolyte volume 𝒱SE, the Li filament and dry crack 

occupying volumes 𝒱F and 𝒱C, respectively, within the electrolyte and infinitesimal layers of 

the electrodes as shown in Fig. S1. Correspondingly, the electrolyte has cracked surfaces 𝒮Γ 
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and 𝒮C where the Li filament is present and absent, respectively (Fig. S1). Thus, the system is 

bounded by surfaces 𝒮L and 𝒮R in the plating and stripping electrodes, respectively as well as 

by the top and bottom free surfaces of the electrolyte 𝒮T and 𝒮B, i.e., 𝒮 ≡ 𝒮L ∪ 𝒮B ∪ 𝒮R ∪ 𝒮T. 

The metal electrodes are maintained at fixed electric potentials by the external power supply 

while there is no flux of Li across 𝒮T and 𝒮B. This sets known boundary conditions for the 

system being analysed. While this is the simplest system that can be analysed for investigating 

the growth of cracks, it is nevertheless a complex open system with fluxes of Li+ ions across 

the system boundaries 𝒮L and 𝒮R. In addition, there is a change in the total Li content in the 

system as the Li filaments grows due to Li+ ions being deposited into the crack with a 

corresponding flux of electrons from the plating electrode to the filament to neutralize these Li+ 

ions. While the formulation is general for simplicity of presentation, we shall describe the 

principle in a two-dimensional (2D) context with growth of a straight crack as depicted in Fig. 

S1b. 

 

The rate of loss of a potential energy, Π̇, of the system defined above drives the dissipation 

processes within the system as well as the fracture of the electrolyte. Let 𝑓 denote the Helmholtz 

free-energy per unit volume of the system absent contributions from the electrical stored energy 

associated with the electric displacement 𝐷𝑖 and electric field 𝐸𝑖 within the system, while 𝑇𝑖 are 

the tractions on the surface 𝒮 of the system. At time 𝑡 the crack within the electrolyte is of 

length 𝑎 and the Li filament within the crack has a length 휁 ≤ 𝑎 with 𝛾adh denoting the work of 

adhesion between the Li and the electrolyte surface and 𝛾SE  the fracture energy of the 

electrolyte. Then within the 2D context being considered here, Π̇ per unit thickness of the 

electrolyte given by 

Π̇  =  ∫𝑓̇𝑑𝒱
 

𝒱

−  ∫𝐷𝑖�̇�𝑖𝑑𝒱
 

𝒱

+
1

𝐹
∫ 𝜇Li+𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮R

+ 
1

𝐹
∫ 𝜇Li+𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮L

− ∫ 𝐷𝑖𝑛𝑖�̇�𝑑𝒮

 

𝒮T∪𝒮B

−∫𝑇𝑖�̇�𝑖

 

𝒮

𝑑𝒮 − 
1

𝐹
∫ 𝜇el𝑗𝑖

el𝑛𝑖 𝑑𝒮
 

𝒮L

− 2𝛾adh 휁̇ +  2𝛾SE �̇�, 

(S9) 

where 𝑗𝑖 is the current density vector accounting for the flux of Li+ ions across the electrode 

boundaries 𝒮R and 𝒮L within the electrodes, 𝑗𝑖
el is the current density vector accounting for the 

flux of electrons from the plating electrode to neutralise the charge in the Li+ ions being 

deposited into the growing Li filament and 𝑛𝑖 is the outward unit normal vector to the 

electrolyte. Note that in (S9) we have no boundary electrical work on 𝒮L and 𝒮R as these surfaces 

are just within the electrodes and held at a fixed electric potential. Now consider the first integral 

in (S9). The elastic energy within the solid electrolyte is given by 

𝑈elas = ∫ 𝑤elas𝑑𝒱
 

𝒱SE

= 
1

2
∫ 휀𝑖𝑗ℂ𝑖𝑗𝑘𝑙휀𝑘𝑙 𝑑𝒱
 

𝒱SE

, (S10) 

where ℂ𝑖𝑗𝑘𝑙 = 2𝐺𝜈𝛿𝑖𝑗𝛿𝑘𝑙/(1 − 2𝜈) + 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) is the elastic stiffness tensor and the 

stress 𝜎𝑖𝑗 = ℂ𝑖𝑗𝑘𝑙휀𝑘𝑙. Noting that, other than from elasticity, there are no contributions to 𝑓̇ from 

the electrolyte (that is assumed to have a fixed concentration of Li), that there are no 

contributions at all from the dry crack volume 𝒱C and that the infinitesimal electrode layers 

store negligible amount of energy, we have  
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∫𝑓̇𝑑𝒱
 

𝒱

= �̇�elas + ∫𝑓̇ 𝑑𝒱

 

𝒱F

 (S11a) 

where  

�̇�elas = ∫ 𝜎𝑖𝑗휀�̌�𝑗  𝑑𝒱
 

𝒱SE

+ 𝑈elas
′ 𝑎 ̇ , (S11b) 

and 

휀�̌�𝑗 =
𝜕휀𝑖𝑗

𝜕𝑡
|
𝑎 

, 𝑈elas
′ =

𝜕𝑈elas
𝜕𝑎

|
𝑢𝑖𝑛𝑖∈𝒮Γ 

 (S11c) 

where the oversymbol   ̌ is used to denote a time derivative with the crack length held fixed.  

Now recall that within the assumptions discussed in Section S1.1, the rate of change of 

Helmholtz free-energy of the Li within the filament is well approximated by �̇�Li𝜇0 where �̇�Li 

is the molar rate of change of the Li content in the filament. Then, with ∫ 𝑓̇ 𝑑𝒱
 

𝒱F
 given by �̇�Li𝜇0, 

substitution of (S11a) into (S9) gives (1) of the main text. Upon substituting (S11a) & (S11b) 

into (S9) we have 

Π̇  =  �̇�Li𝜇0 +∫ 𝜎𝑖𝑗휀�̌�𝑗  𝑑𝒱
 

𝒱SE

−  ∫𝐷𝑖�̇�𝑖𝑑𝒱
 

𝒱

+
1

𝐹
∫ 𝜇Li+𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮L

+ 
1

𝐹
∫ 𝜇Li+𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮R

− ∫ 𝐷𝑖𝑛𝑖�̇�𝑑𝒮

 

𝒮T∪𝒮B

−∫𝑇𝑖�̇�𝑖

 

𝒮

𝑑𝒮 − 
1

𝐹
∫ 𝜇el𝑗𝑖

el𝑛𝑖 𝑑𝒮
 

𝒮L

− (
2𝛾adh 
𝐹𝜌m𝛿Tip 

) (𝐽Tip
+ + 𝐽Tip

− ) + [𝑈elas
′ + 2𝛾SE ]�̇�, 

  (S12) 

where 𝐽Tip
+  and 𝐽Tip

−  are the currents into the tip of the filament from the two crack flanks such 

that conservation of Li dictates that the filament extension rate 

휁̇ =
𝐽Tip
+ + 𝐽Tip

−

𝐹𝜌m𝛿Tip 
, (S13) 

with 𝛿Tip  the tip thickness of the Li filament (Fig. S1b) and 𝜌m the molar density of Li metal. 

Without loss of generality, we set 𝜑 = 0 and 𝜑 = ΦP as the potentials of the plating and 

stripping electrodes, respectively, and use the expressions for 𝜇Li+  and 𝜇el from Section S1.1 

along with the conservation of Li expression 

∫ 𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮L

 +  ∫ 𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮R

 =  − �̇�Li𝐹, (S14) 

to reduce the expression (S12) for Π̇ to  

Π̇  =  ∫ 𝜎𝑖𝑗휀�̌�𝑗  𝑑𝒱
 

𝒱SE

−  ∫𝐷𝑖�̇�𝑖𝑑𝒱
 

𝒱

+ΦP∫ 𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮R

− ∫ 𝐷𝑖𝑛𝑖�̇�𝑑𝒮

 

𝒮T∪𝒮B

−∫𝑇𝑖�̇�𝑖

 

𝒮

𝑑𝒮

− (
2𝛾adh 
𝐹𝜌m𝛿Tip 

) (𝐽Tip
+ + 𝐽Tip

− ) + [𝑈elas
′  + 2𝛾SE ]�̇�. 

  (S15) 

The decrease in this potential energy is associated with dissipation in the system from: (i) flux 

of Li+ through the electrolyte with an ionic conductivity 𝜅, (ii) flux of Li+ across the stripping 

and plating electrode/electrolyte interfaces 𝒮S and 𝒮P, respectively (Fig. S1a) with a resistance 

𝑍0, (iii) flux of Li+ across the crack flanks 𝒮Γ into the Li filament that is associated with a 
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resistance 𝑍𝑓 and (iv) the flux Li+ to the Li filament tip that is associated with a tip resistance 

𝑅Tip (note that 𝑅Tip is the resistance for the tip current while 𝑍𝑓 is the resistance for the flank 

flux and hence 𝑍𝑓 and 𝑅Tip have different units). We then define a dissipation potential 𝒟 for 

the system given by the sum of the dissipation potentials associated with each of these 

contributions  

𝒟 =
1

2
[
1

𝜅
∫ 𝑗𝑖𝑗𝑖 𝑑𝒱
 

𝒱SE

 +  𝑍0∫ 𝑗2𝑑𝒮
 

𝒮P

+ 𝑍0∫ 𝑗2𝑑𝒮
 

𝒮S

+ 𝑍𝑓∫ 𝑗2𝑑𝒮
 

𝒮Γ

+ 𝑅Tip  {(𝐽Tip
+ )

2
+ (𝐽Tip

− )
2
}], (S16) 

where 𝑗 = 𝑗𝑖𝑛𝑖.  

 

Following [4-7], we define a functional Ψ̇(�̌�𝑖, �̇�, 𝑗𝑖 , 𝐽Tip
± , �̇�)  

Ψ̇ = Π̇  + 𝒟,   (S17) 

and the system evolves such that Ψ̇ is stationary with respect to arbitrary variations in the kinetic 

variables (�̌�𝑖, �̇�, 𝑗𝑖, 𝐽Tip
+/−

, �̇�), i.e., δΨ̇ = 0. We shall consider the variations of 𝛿Π̇ and 𝛿𝒟 

separately. Taking the variation of (S15) and applying divergence theorem we obtain 

 

𝛿Π̇ =  ΦP∫ 𝛿𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮R

−∫𝐷𝑖,𝑖𝛿�̇�𝑑𝒱
 

𝒱

−∫ 𝜎𝑖𝑗,𝑗𝛿�̌�𝑖𝑑𝒱
 

𝒱SE

+∫ �̃�𝑖𝛿�̌�𝑖 𝑑𝒮
 

𝒮Γ

− (
2𝛾adh 
𝐹𝜌m𝛿Tip 

) (𝛿𝐽Tip
+ + 𝛿𝐽Tip

− ) + [𝑈elas
′  + 2𝛾SE ]𝛿�̇�. 

(S18) 

where �̃�𝑖 on 𝒮Γ is the traction applied on the solid electrolyte by the filament. In writing (S18) 

we have noted that the tractions on the surfaces 𝒮𝑆 ∪ 𝒮𝑃 of the electrolyte in contact with the 

electrodes vanish as do tractions on 𝒮L ∪ 𝒮R ∪ 𝒮T ∪ 𝒮B. Moreover, the electrolyte has cracked 

surfaces 𝒮Γ and 𝒮C where the Li filament is present and absent, respectively, and the tractions 

vanish on 𝒮C, and thus only the surface integral of tractions over 𝒮Γ remains in (S18). This 

expression can be further simplified by recalling that the electric field and therefore 𝐷𝑖 vanishes 

within the infinitesimal electrode layers and Li filament while within the electrolyte 𝐷𝑖,𝑖 = 0 

since 𝐷𝑖 = (ℇSE/𝜅)𝑗𝑖 and electroneutrality of the electrolyte requires 𝑗𝑖,𝑖 = 0. Thus, since 𝐷𝑖,𝑖 =

0 in 𝒱 ∖ 𝒱C, the volume integral over 𝒱 in (S18) reduces to an integral over the volume 𝒱C of 

empty space within the crack and (S18) can be written as  

𝛿Π̇ =  ΦP∫ 𝛿𝑗𝑖  𝑛𝑖 𝑑𝒮
 

𝒮R

−∫ 𝐷𝑖,𝑖𝛿�̇�𝑑𝒱
 

𝒱C

−∫ 𝜎𝑖𝑗,𝑗𝛿�̌�𝑖𝑑𝒱
 

𝒱SE

+∫ 𝑇𝑛𝛿�̌�𝑛 𝑑𝒮
 

𝒮Γ

− (
2𝛾adh 
𝐹𝜌m𝛿Tip 

) (𝛿𝐽Tip
+ + 𝛿𝐽Tip

− ) + [𝑈elas
′ + 2𝛾SE ]𝛿�̇� , 

  (S19) 

where we have assumed that the shear tractions vanish on 𝒮Γ with 𝑇𝑛 = −𝜎𝑖𝑗𝑛𝑗𝑛𝑖 = −𝜎𝑛  and 

𝑢𝑛 = −𝑢𝑖𝑛𝑖 being the normal tractions and displacements, respectively. Note that 𝑇𝑛 and 𝑢𝑛 

both have positive senses that are in the direction of the inward normal to the electrolyte. 

Therefore, 𝑇𝑛 provides the algebraic value of the crack opening tractions on the crack surfaxes 

and 2𝑢𝑛 is the algebraic value of the crack opening displacements. Finally, recall that 𝑈elas
′  is 

calculated with 𝑢𝑛 fixed on the crack flanks 𝒮Γ. Thus, Li conservation dictates that the Li flux 

is related to the crack opening via �̇�𝑛 = �̌�𝑛 = 𝑗𝑖𝑛𝑖/(𝐹𝜌m) and (S19) is then rewritten as 
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𝛿Π̇ =  ΦP∫ 𝛿𝑗𝑖𝑛𝑖 𝑑𝒮
 

𝒮R

−∫ 𝐷𝑖,𝑖𝛿�̇�𝑑𝒱
 

𝒱C

−∫ 𝜎𝑖𝑗,𝑗𝛿�̌�𝑖𝑑𝒱
 

𝒱SE

−
1

𝐹𝜌m
∫ 𝜎𝑛𝛿𝑗𝑖 𝑛𝑖𝑑𝒮
 

𝒮Γ

− (
2𝛾adh 
𝐹𝜌m𝛿Tip 

) (𝛿𝐽Tip
+ + 𝛿𝐽Tip

− ) + [𝑈elas
′  + 2𝛾SE ]𝛿�̇� . 

  (S20) 

Now consider the variation of the dissipation potential (S16). Recalling that 𝑗𝑖 = −𝜅𝜑,𝑖 and 

𝑗𝑖,𝑖 = 0 in 𝒱SE, application of the divergence theorem to the integral over 𝒱SE gives the variation 

𝛿𝒟 as 

𝛿𝒟 = −∫ (𝜑 + 𝜑0)𝛿𝑗𝑘𝑛𝑘𝑑𝒮
 

𝒮SE

+ 𝑍0∫ 𝑗𝑖𝑛𝑖 𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮P

+ 𝑍0∫ 𝑗𝑖𝑛𝑖 𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮S

+ 𝑍𝑓∫ 𝑗𝑖𝑛𝑖 𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮Γ

+ 𝑅Tip(𝐽Tip
+ 𝛿𝐽Tip

+ + 𝐽Tip
− 𝛿𝐽Tip

− ) , 
  (S21) 

where 𝜑0 is a constant of integration that we will specify subsequently and 𝒮SE  ≡  𝒮P ∪ 𝒮Γ ∪

𝒮C ∪ 𝒮B ∪ 𝒮S ∪ 𝒮T is the surface of 𝒱SE (Fig. S1a and b). The fluxes 𝑗𝑖𝑛𝑖 vanish of the top and 

bottom surfaces 𝒮T and 𝒮B of the electrolyte as well as on the crack surface 𝒮C where there is 

no Li filament, and these reduce (S21) to 

𝛿𝒟 = ∫ [𝑍0𝑗𝑖𝑛𝑖 − (𝜑 + 𝜑0)]𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮P

+ ∫ [𝑍0𝑗𝑖𝑛𝑖 − (𝜑 + 𝜑0)]𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮S

+ ∫ [𝑍𝑓𝑗𝑖𝑛𝑖 − (𝜑 + 𝜑0)]𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮Γ

+ [𝑅Tip𝐽Tip
+ − (𝜑Tip

+ + 𝜑0)]𝛿𝐽Tip
+

+ [𝑅Tip𝐽Tip
− − (𝜑Tip

− + 𝜑0)]𝛿𝐽Tip
−  , 

 (S22) 

where we have used the fact that the flux at the Li filament tip located at 휁 is singular but its 

integral over 𝒮Γ around the Li filament tip is finite such that  

𝐽Tip
± = lim

𝜖→0
∫ 𝑗𝑖

±𝑛𝑖
±𝑑Γ

𝜁+𝜖

𝜁−𝜖

,   (S23) 

with 𝑗𝑖
± and 𝑛𝑖

± denoting the fluxes and the electrolyte outward unit normal on the two crack 

flanks and Γ the path along the Li filament/electrolyte interface.  In (S22) 𝜑Tip
±  is the electric 

potential in the electrolyte adjacent to the Li filament tip located at 휁.  

 

Given that the electrode layers within the system are infinitesimal, 𝑗𝑖𝑛𝑖 on 𝒮S equals that on 𝒮R. 

Using this continuity requirement, combining (S20) and (S22), and setting 𝛿Ψ̇ = 𝛿Π̇ + 𝛿𝒟 =

0 we find 

𝛿Ψ̇   =  − ∫ 𝐷𝑖,𝑖𝛿�̇�𝑑𝒱
 

𝒱C

−∫ 𝜎𝑖𝑗,𝑗𝛿�̌�𝑖𝑑𝒱
 

𝒱SE

+∫ [ΦP − (𝜑 + 𝜑0) + 𝑍0𝑗𝑖𝑛𝑖] 𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮S

+∫ [−(𝜑 + 𝜑0) + 𝑍0𝑗𝑖𝑛𝑖] 𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮P

+∫ [−(𝜑 + 𝜑0) −
𝜎𝑛
𝐹𝜌m

+ 𝑍𝑓𝑗𝑖𝑛𝑖] 𝛿𝑗𝑘𝑛𝑘 𝑑𝒮
 

𝒮Γ

+ [−(
2𝛾adh 
𝐹𝜌m𝛿Tip 

) − (𝜑Tip
+ + 𝜑0) + 𝑅Tip𝐽Tip

+ ] 𝛿𝐽Tip
+

+ [−(
2𝛾adh 
𝐹𝜌m𝛿Tip 

) − (𝜑Tip
− + 𝜑0) + 𝑅Tip𝐽Tip

− ] 𝛿𝐽Tip
− + [𝑈elas

′  + 2𝛾SE ]𝛿�̇� = 0. 

(S24) 

Since (𝛿�̌�𝑖 , 𝛿�̇�, 𝛿𝑗𝑖, 𝛿𝐽Tip
± , 𝛿�̇�) are arbitrary it follows that 𝜎𝑖𝑗,𝑗 = 0 in 𝒱SE which is the usual 

stress equilibrium equation that has boundary conditions 𝑇𝑖 = 0 on all 𝒮𝑆E except the crack 

flanks 𝒮Γ. On 𝒮Γ only the shear tractions vanish while the normal displacement rate is given by 
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�̇�𝑛 = 𝑗𝑖𝑛𝑖/(𝐹𝜌m). Moreover, the crack length is set by the “Griffith condition” that emerges 

from (S24), viz. 

𝑈elas
′ =

𝜕𝑈elas
𝜕𝑎

|
𝑢𝑖𝑛𝑖∈𝒮Γ 

= −2𝛾SE .  (S25) 

Within the electrolyte 𝒱SE the requirement that 𝑗𝑖,𝑖 = 0 implies that the electric potential needs 

to satisfy 𝜑,𝑖𝑖 = 0. The boundary conditions of this Laplace equation follow from (S24), viz., 

𝑗𝑖𝑛𝑖 = 0 on 𝒮T, 𝒮B and 𝒮C implying we have the Neuman boundary condition 𝜑,𝑖𝑛𝑖 = 0 on 

these surfaces. On the surfaces where there is a Li+ flux 𝑗𝑖𝑛𝑖 = −𝜅𝜑,𝑖𝑛𝑖, (S24) dictates the 

Robin boundary conditions  

𝑗𝑖𝑛𝑖  =  
𝜑 + 𝜑0 −ΦP

𝑍0
     on    𝒮S,  (S26) 

 

𝑗𝑖𝑛𝑖  =  
𝜑 + 𝜑0
𝑍0

     on    𝒮P,  (S27) 

 

𝑗𝑖𝑛𝑖 = 
1

𝑍𝑓
(𝜑 + 𝜑0 +

𝜎𝑛
𝐹𝜌m

)      on    𝒮Γ,  (S28) 

and 

 

𝐽Tip
±  =  

1

𝑅Tip
[𝜑Tip

± + 𝜑0 + (
2𝛾adh 
𝐹𝜌m𝛿Tip 

)]. (S29) 

Finally, (S24) requires that 𝐷𝑖,𝑖 = −ℇ0𝜑,𝑖𝑖 = 0 in 𝒱C. The boundary conditions for this Laplace 

equation are 𝐷𝑖𝑛𝑖 = 0 on the surface of 𝒱C so that there is no jump in the normal electric 

displacement at the interface of 𝒱C with the electrolyte and Li filament and thereby no charge 

build-up at these interfaces. Thus, the electric potential, field and displacement vanish 

throughout 𝒱C.  

 

It now remains to specify the integration constant 𝜑0. We consider the case with no crack and 

the two electrodes subject to the same potential (which without loss of generality is ΦP = 0). 

Under these conditions there is no Li+ flux in the electrolyte so that the electric potential 𝜑 

within the electrolyte is spatially uniform and boundary conditions (S26) and (S27) then require 

𝜑 = −𝜑0. Thus, the constant of integration is the open circuit potential 𝒰, i.e., 𝜑0 = 𝒰 and it 

is convenient to rewrite the governing equations and boundary conditions for the 

electrical/transport problem in terms of a shifted potential �̂� ≡ 𝜑 + 𝒰. The governing equation 

for �̂� in 𝒱SE is �̂�,𝑖𝑖 = 0 with boundary conditions 

𝑗𝑖𝑛𝑖  =  
�̂� − ΦP
𝑍0

     on    𝒮S,  (S30) 

 

𝑗𝑖𝑛𝑖  =  
�̂�

𝑍0
     on    𝒮P,  (S31) 

 

𝑗𝑖𝑛𝑖 = 
1

𝑍𝑓
(�̂� +

𝜎𝑛
𝐹𝜌m

)      on    𝒮Γ,  (S32) 
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and 

 

𝐽Tip
±  =  

1

𝑅Tip
[�̂�Tip

± + (
2𝛾adh 
𝐹𝜌m𝛿Tip 

)]. (S33) 

 

This is coupled with the mechanical governing equation 𝜎𝑖𝑗,𝑗 = 0 in 𝒱SE with traction-free 

boundary conditions on all surfaces except 𝒮Γ where we specify the crack flank displacement 

rate �̇�𝑛 = 𝑗𝑖𝑛𝑖/(𝐹𝜌m) and vanishing shear tractions. Finally, the crack length is given by the 

Griffith condition (S25), while the filament length is given by the evolution equation (S13). 

This completes the variational principle which delivers the governing equations and the 

associated boundary conditions.  

 

 

S2. Numerical solution methodology 

The above variational principle provides strongly coupled mechanical and electrochemical 

balance laws and associated boundary conditions. Before discussing the methodology for the 

numerical solution of these equations we shall first discuss the method used to regularise the 

governing equation �̂�,𝑖𝑖 = 0 in 𝒱SE which has a singularity associated with the current into the 

tip of the Li filament.  

 

The solutions presented in the main body of the paper are for plane strain 2D crack growth with 

the crack growing perpendicular to the plating electrode/electrolyte interface and located at the 

mid-plane of the electrolyte (Fig. 2). The problem is thus symmetric about the crack plane and 

in the following we shall describe the solution methodology for this symmetric case where the 

fluxes across both crack flanks are equal and 𝐽Tip
− = 𝐽Tip

+  as well as �̂�Tip
+ = �̂�Tip

− . We shall thus 

refer to these quantities simply as 𝐽Tip and �̂�Tip with the crack propagating along 𝑥2 = 0 and 

the crack and filament tips located at (𝑎, 0) and  (휁, ±𝛿Tip/2), respectively.  

 

 

 

S2.1 Superposition methodology for the solution of the Laplace equation in the electrolyte 

The sink at the Li filament tip creates computational difficulties in terms of a direct numerical 

solution and here we propose a superposition method for solving �̂�,𝑖𝑖 = 0 along with the 

interface conditions (S30-S33). In 2D, the electric potential at a radius 𝑟 from the filament tip, 

due to a line sink (along the 𝑥3 −direction in Fig. S1) of strength 𝒞 in an infinite medium is 

�̃�(𝑟) = 𝒞 ln(2𝑟/𝛿Tip ). (S34) 

Here we have normalised (S34) such that 𝜑 ̃ = 0 at 𝑟 = 𝛿Tip /2 which is taken to be the 

filament tip, i.e., �̃�Tip = 0. The potential field (S34) satisfies �̃�,𝑖𝑖 = 0 for 𝑟 > 0, but also results 

in a current flux into the filament tip. The current flux 𝐽Tip per unit thickness of the electrolyte 

into the tip (where the current into the tip is defined as positive) associated with this potential 

field is readily calculated by considering a circular contour ℛ centred at 𝑟 = 0. The flux across 

unit length of this contour is 𝑗�̃��̃�𝑖, where �̃�𝑖 is the unit outward normal to the contour and 𝑗�̃� =
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−𝜅�̃�,𝑖. Since �̃�,𝑖𝑖 = 0 for 𝑟 > 0, this flux represents the flux into the sink located at 𝑟 = 0 and 

follows as 

2𝐽Tip = −∫ 𝑗�̃��̃�𝑖𝑑Γ = 𝜅∫
𝜕�̃�

𝜕𝑟
𝑑Γ

ℛℛ

= 2𝜋𝜅𝒞. (S35) 

so that 𝐽Tip = 𝜋𝜅𝒞. Note that the field �̃� gives a current flux into the filament tip, but it does 

not satisfy all boundary conditions on 𝒱SE; imposition of these boundary conditions along with 

(S33) will set the value of 𝐽Tip via the value obtained for 𝒞.  

 

In order to satisfy the required boundary conditions, we recall linearity of the Laplace equation 

�̂�,𝑖𝑖 and write the potential within the electrolyte as �̂� = �̆� + �̃�. Recalling that �̃�,𝑖𝑖 = 0, the 

solution of the total potential field reduces to solving �̆�,𝑖𝑖 = 0 with the appropriate boundary 

conditions. These boundary conditions in terms of 𝑗�̆� = −𝜅�̆�,𝑖 are: 

 

(i) The Neumann boundary conditions that enforce zero flux across the boundaries 

with free-space, viz. �̆�,2 = −�̃�,2 along 𝑥2 = ±𝑊/2 and the crack flank where the 

Li filament is absent, viz. (휁 < 𝑥1 < 𝑎 along 𝑥2 = 0). Note that  �̃�,2 = 0 on 𝑥2 = 0 

so on 휁 < 𝑥1 < 𝑎 along 𝑥2 = 0 the boundary condition reduces to �̆�,2 = 0. 

(ii) The Robin boundary conditions for the linearized Butler-Volmer flux relations 

along the electrode/electrolyte interfaces, viz. 

𝑗1̆  =  
�̆� + �̃� − ΦP

𝑍0
+ 𝜅�̃�,1     on    𝒮S  (𝑥1 = 𝐿),  (S36) 

and 

−𝑗1̆  =  
�̆� + �̃�

𝑍0
− 𝜅�̃�,1     on    𝒮P   (𝑥1 = 0).  (S37) 

(iii) Robin-like boundary conditions for flux along the upper crack flank where the Li 

filament is present, viz. along 𝒮Γ (0 < 𝑥1 < 휁 on 𝑥2 = 0) 

−𝑗2̆ = 
1

𝑍𝑓
(�̆� + �̃� 

 +
𝜎𝑛
𝐹𝜌m

) . (S38) 

The numerical solution of this boundary value problem for a given applied ΦP furnishes the 

distribution �̆�(𝑥1, 𝑥2) within the electrolyte for an assumed value of 𝒞 and known 𝜎𝑛 and the 

filament tip overpotential follows as �̂�Tip = �̆�Tip(𝒞) = �̆�Tip(𝑥1 = 휁, 𝑥2 = 𝛿Tip/2) since 

�̃�Tip = 0.  

 

It remains to determine 𝒞 using (S33). The total current into the filament tip is 𝐽Tip = 𝐽Tip +

𝐽Tip, where 𝐽Tip is the current due to the �̆� field. Considering a circular contour centred at the 

filament tip and using the divergence theorem, it follows that 𝐽tip = 0 since �̆�  is a smooth field 

that satisfies �̆�,𝑖𝑖 = 0. Then combining (S33) and (S35) we obtain 

𝒞 =  
1

𝜋𝜅𝑅Tip
[�̆�Tip(𝒞) +

2𝛾adh 
𝐹𝜌m𝛿Tip 

], (S39) 

giving an implicit relation for 𝒞. 

S2.2 Numerical computation algorithm 

We employ a staggered algorithm to solve the coupled electro-mechanical boundary value 

problem for the Li filament and crack propagation using a time step Δ𝑡. The solution is 

calculated using the Lagrangian finite element partial differential equation solver in the 
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COMSOL Multiphysics package in a two-dimensional plane strain setting. We used 4-node 

quadrilateral elements with linear interpolation functions. The quadrilateral size is ~ 

0.1μm ×  0.1μm in the vicinity of the entire crack flank and over the crack path along 𝑥2 = 0. 

The mesh is gradually coarsened towards the top and bottom boundaries 𝒮T and 𝒮B. In all the 

simulations we employed a time increment ∆𝑡 = (𝑖Ref/𝑖∞)25 ms, where the reference current 

density is 𝑖Ref = 1.0 mA cm−2.  Mesh and time step convergence studies were performed to 

confirm the adequacy of these numerical parameters. 

 

Given the solution (i.e., all field variables) at time 𝑡 we first solve for the overpotential �̂� at 

time 𝑡 + Δ𝑡 in 𝒱SE governed by the Laplace equation �̂�,𝑖𝑖 = 0 and the boundary conditions (S30 

– S33). As per the staggered algorithm, the interface stress, 𝜎𝑛 in (S32), is taken from the known 

solution at time 𝑡. However, recall that the solution of �̂�,𝑖𝑖 = 0 as discussed in section S2.1 

involves determining of the strength 𝒞 of the Li filament tip sink. Thus, the boundary value 

problem (BVP) for �̂�,𝑖𝑖 = 0 with the known tractions is solved iteratively (see Eq. S39) to 

determine 𝒞 and thereby the potential field �̂� = �̆� + �̃� and the filament tip current given by 

𝐽Tip  =  
1

𝑅Tip
[�̆�Tip + (

2𝛾adh 
𝐹𝜌m𝛿Tip 

)], (S40) 

where we use 𝛿Tip = 5 nm. Next, we update the filament length via 휁(𝑡 + Δ𝑡) = 휁(𝑡)+ Δ𝑡휁̇ 

where  

휁̇ =

{
 
 

 
     

2𝐽Tip

𝐹𝜌m𝛿Tip
       if  휁(𝑡 + Δ𝑡) ≤ 𝑎 

 
𝑎 − 휁

Δ𝑡
            otherwise.        

  , (S41) 

The crack opening displacement 𝛿Li(𝑥1, 𝑡 + ∆𝑡) = 2𝑢𝑛(𝑥1, 𝑡 + ∆𝑡) over the filament length 휁 

is then calculated as 

𝛿Li(𝑥1, 𝑡 + ∆𝑡) = 𝛿Li(𝑥1, 𝑡) +  
2𝑗𝑓

𝐹𝜌m
∆𝑡, (S42) 

where 𝑗𝑓 = 𝑗𝑖𝑛𝑖 is given by (S32) over the filament length. 

 

Given now the solution of �̂�,𝑖𝑖 = 0 we solve the mechanical BVP 𝜎𝑖𝑗,𝑗 = 0 in 𝒱SE with the 

known crack opening displacements (S42) over the filament length and traction-free boundary 

conditions on all other surfaces (as well as shear traction-free conditions on the crack flanks in 

contact with the filament) to provide the mechanical fields at time 𝑡 + Δ𝑡. This solution is 

performed keeping the crack length 𝑎 held fixed. To determine the crack length we now 

calculate one half of the crack tip J-integral on semi-circular contours ℛ of radius 𝑅 centered at 

the crack tip via 

−
1

2

𝜕𝑈elas
𝜕𝑎

= 𝒥I = ∫ [𝑤elas𝑚1 −𝑚𝑗𝜎𝑗𝑖
𝜕𝑢𝑖
𝜕𝑥1

]  𝑑ℛ
 

ℛ

+
1

2
∫ 𝜎𝑛

𝜕𝛿

𝜕𝑥1
 𝑑𝑥1

𝑎 

𝑎−𝑅

, (S43) 

where 𝑚𝑖 is the outward unit normal to ℛ, we have augmented the usual J-integral to account 

for the non-zero crack flank tractions, and we recall that 𝜎𝑛 is the tensile stress across the 

interface between the electrolyte and the filament. If 𝒥I > 𝛾SE we release one node of the finite 

element mesh ahead of the crack tip and the mechanical BVP is resolved leading to further 

crack growth until 𝒥I ≤ 𝛾SE , providing the full solution at time 𝑡 + Δ𝑡 for all the field variables, 

viz. (𝑢𝑖, 𝜑, 휁, 𝑎). 
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S3: Modification of variational principle and numerical solution technique when 

debonding between filament and crack flanks is permitted 

The variational principle and associated numerical solution methodology have assumed that the 

crack opening over the region where the Li filament is present is given by the Li flux with no 

constraints on the crack flank tractions 𝑇𝑛. These tractions can thus become tensile and thus we 

have effectively assumed that adhesion between the Li and electrolyte crack flanks is 

sufficiently strong that the interface can sustain arbitrary tensile tractions. A more realistic 

condition is that the interface can sustain no tensile tractions and we are required to implement 

the constraint 𝜎𝑛 ≤ 0 with 𝛾adh  set equal to zero, where we recall that 𝜎𝑛 is the tensile stress 

across the interface. 

 

The variational principle and all associated equations and boundary conditions outlined in 

Section S1.3 do not change but rather an additional constitutive constraint of 𝜎𝑛 ≤ 0 is added. 

This constraint means that the crack flanks can detach from the Li filament and hence over the 

region within the crack where the Li filament exists (i.e., 0 ≤ 𝑥1 ≤ 휁, 𝑥2 = 0) the crack opening 

displacement 𝛿 ≥ 𝛿Li where  

�̇�Li(𝑥1, 𝑡) =

{
 
 

 
 

 
2𝑗𝑓

𝐹𝜌m
      0 ≤ 𝑥1 ≤ 휁,   

 
0             otherwise.

 

 (S44) 

The mechanical BVP is then solved via an interactive “contact” type algorithm such that if the 

solution gives 𝜎𝑛 ≤ 0 we use a displacement boundary condition 𝛿 = 𝛿Li at that location along 

the filament. Otherwise, we allow for debonding to occur such that 𝑇𝑛 = 0 and the crack 

opening 𝛿 > 𝛿Li emerges from the solution of the mechanical BVP. 

 

 

Supplementary References 

[1]  H. Schultz, Mater. Sci. Eng. 1991, A141, 149-167. 

[2]  S. S. Shishvan, N. A. Fleck, R. M. McMeeking, V. S. Deshpande, J. Power Sources, 

2020, 456, 227989.  

[3]  M. Klinsmann, F. E. Hildebrand, M. Ganser, R. M. McMeeking, J. Power Sources, 

2019, 422, 227226.  

[4]  L. Onsager, Phys. Rev. 1931, 37, 405-426. 

[5]  L. Onsager, Phys. Rev. 1931, 38, 2265-2279. 

[6]  Z. Suo, Adv. App. Mech., 1997, 33, 193-294.  

[7]  A.C.F. Cocks, S.P.A. Gill, J. Pan, Adv. App. Mech., 1998, 36, 81-162. 

 

  



 36 

 

Supplementary Figures 

 

 
 

Figure S1: (a) Sketch of the symmetric Li/electrolyte/Li cell along with the inset showing the 

initial crack of length 𝑎0 that emerges from the boundary with the plating electrode (see inset). 

The system analysed is of volume 𝒱 and is bounded by the top and bottom surfaces of the 

electrolyte 𝒮T and 𝒮B, respectively and the left and right boundaries 𝒮L and 𝒮R, respectively that 

lie just within the plating and stripping electrodes. The stripping and plating 

electrolyte/electrode boundaries are denoted by 𝒮S and 𝒮P, respectively. (b) Sketch showing a 

zoom-in of the propagating crack and Li filament of length 𝑎 and 휁, respectively. The interface 

between the electrolyte and Li filament is denoted by 𝒮Γ while the flanks of the crack where the 

filament is absent is identified as 𝒮C. The volume of the filament and dry crack are denoted by 

𝒱F and 𝒱C, respectively, so that 𝒱 ≡ 𝒱SE ∪ 𝒱F ∪ 𝒱C plus the infinitesimal layers of the 

electrodes included in the system. A zoomed view of the filament tip shows the fluxes into the 

filament from the top and bottom interfaces having unit outward normals 𝑛𝑖
+and 𝑛𝑖

− (pointing 

out of the electrolyte). The currents into the top and bottom of the crack tip responsible for the 

Li filament propagation are indicated as 𝐽Tip
+  and 𝐽Tip

− , respectively.  
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Supplementary Videos 

 

Supplementary Video S1: Temporal evolution of the normalised flux 𝑗̂ ≡ √𝑗𝑖𝑗𝑖/𝑖∞ (along with 

a quiver plot to show the direction of the flux within the electrolyte) and stress 𝜎22 within the 

electrolyte having initial crack of length 𝑎0 = 25μm for the cell with 𝑅Tip = 0 and loaded by 

a current 𝑖∞ = 1 mAcm
−2. Debonding of the Li from the crack flanks is not permitted. The 

opening of the crack is magnified × 200 so that the crack profile is clearly visible.  

 

Supplementary Video S2: Temporal evolution of the normalised flux 𝑗̂ ≡ √𝑗𝑖𝑗𝑖/𝑖∞ (along with 

a quiver plot to show the direction of the flux within the electrolyte) and stress 𝜎22 within the 

electrolyte having initial crack of length 𝑎0 = 25μm for the cell with 𝑅Tip = 0 and loaded by 

a current 𝑖∞ = 1 mAcm
−2. Debonding between the Li filament and crack flanks is assumed to 

occur such that the crack flank tractions 𝑇𝑛 ≥ 0. The opening of the crack is magnified × 200 

so that the crack profile is clearly visible.  

 

Supplementary Video S3: Temporal evolution of the normalised flux 𝑗̂ ≡ √𝑗𝑖𝑗𝑖/𝑖∞ (along with 

a quiver plot to show the direction of the flux within the electrolyte) and stress 𝜎22 within the 

electrolyte for the cell with 𝑅Tip = 22 Ωcm and loaded by a current 𝑖∞ = 1 mAcm−2. 

Debonding is assumed to occur such that the crack flank tractions 𝑇𝑛 ≥ 0. The opening of the 

crack is magnified × 200 so that the crack profile is clearly visible. The crack tip in this case 

outruns the Li filament. 

 

 

 

 


