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Effect of geometry on compressive failure of notched composites
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Abstract. The compressive failure of carbon fibre-epoxy laminates is investigated theoretically and experimentally.
Panels with a single edge notch, a central notch or a central hole are considered. The failure mechanism is by
microbuckling in the 0° plies and is accompanied by delamination and plastic deformation in the off-axis plies [1]. To
predict the critical length of the microbuckle and the failure load, the microbuckle is modelled as a cohesive zone. The
magnitude of the normal compressive traction across the microbuckle is assumed to decrease linearly with increasing
overlap of material on either side of the microbuckle. The relative effect of the specimen size and a bridging length scale
is investigated to illustrate the transition between small-scale and large-scale bridging. If the bridging length scale is
small compared with the specimen dimensions, the specimen fails when the stress intensity at the notch tip equals a
critical compressive stress intensity factor K;c. When the bridging length scale is not small compared with either the
initial defect size or the unnotched ligament length then it is necessary to include the details of the traction across the
microbuckle to predict the failure load accurately.

1. Introduction

Holes and notches reduce the compressive strength of composite panels. To investigate this
reduction in strength three geometries are considered in this paper — centre notched panels,
panels with a single edge notch ‘and panels with a central open hole, as illustrated in Fig. 1.
Soutis et al. [1] and Guynn et al. [2] find that damage is initiated in multi-directional carbon
fibre-epoxy and carbon fibre-PEEK laminates respectively at the edge of holes by fibre
microbuckles in the 0° plies. These microbuckles nucleate and grow in a stable manner under
an increasing remote load, so that the panel fails at a higher load than that at which damage
initiates. Similar behaviour is observed in this paper with blunt notched geometries. We assume
that there is a finite slit thickness separating the notch faces, sufficient to prevent contact across
the slit faces on loading.

Figure 2 is a simplified schematic diagram of the details of the microbuckling failure in a 0°
ply. The microbuckle emanates from the hole or blunt notch tip in a direction approximately
transverse to the loading direction [1]. As the microbuckle grows, fibres break behind the
microbuckle tip to form a kink band with a width of about 100 um. Matrix cracking and
plasticity in the off-axis plies above and below the microbuckled 0° plies and a zone of
delamination between the plies is associated with this microbuckle damage. Both the kink band
and these off-axis plies continue to support some load after microbuckling. In Fig. 2 microbuck-
ling is shown in the plane of the specimen and material buckles into the hole or into the notch.
In fact more detailed investigation shows that, away from the hole or notch, fibres generally
microbuckle out of the plane of Fig. 2 towards the unsupported surfaces [1-3]. :

In this paper the evolution of damage is studied theoretically using fracture mechanics
methods used for bridged cracks. The microbuckled region is treated as a cohesive zone and
the intrinsic toughness at the tip of the microbuckle is assumed to equal zero. The two
mechanisms of buckling into the hole and buckling out of the plane of the specimen allow the
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Fig. 1. Geometry of specimens. (a) Central hole, (b) Centre notch, (c) Single edge notch, (d) Details of microbuckle.
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Fig. 2. Schematic diagram of a microbuckle emanati'ng from the edge of a hole in a 0° ply.

material on either side of the microbuckle to approach, as required if the problem is to be
modelled as a bridged crack under compressive loading. By contrast with conventional fracture
mechanics, where it is assumed that the notch tip is sharp, we have considered here blunt
notches. Although initiation of the damage region will be affected by the geometry of the slit
tip, as long as the peak load is associated with a damage region significantly longer than the
separation of the slit faces, then the details of the slit geometry do not affect that peak load. If
the notch and ligament lengths a and b are large compared with the damage zone at failure,
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then the behaviour is termed ‘small-scale bridging’ and the applied stresses at failure are
characterised by the compressive stress intensity factor K¢, based on a sharp notch. This critical
stress intensity factor is a material property. Measurements of K,c made with a standard blunt
notch geometry can then be used to calculate the failure load for other blunt notch geometries
and for panels with holes, where similar failure mechanisms apply.

To investigate the situation where, as often occurs in composites, the damage zone at failure
is no longer small compared with the specimen dimensions (‘large-scale bridging’), we need to
look in more detail at the micro-mechanics of the damage region. The way in which the traction
across the microbuckle varies with the relative displacement of either side of the microbuckle is
an important input into the microbuckle bridging law. Although estimates of this can be made
from a microbuckling analysis [4], the values for the resulting toughness of the laminate are too
Jow. Instead the functional form of a bridging law is assumed and its magnitude is established
from fracture toughness tests in compression.

Theoretical calculations are presented for all three geometries and experiments are performed
for the notched specimens to look at the effects of large-scale bridging. For the specimen
geometries shown in Fig. 1 three length scales can be identified: the notch length a or hole radius
R, the ligament length b for the undamaged specimen and a bridging length scale r,. An
appropriate bridging scale r, is given as

E'Gc _Kic
rp = 0_2 = 0_2 » (1)

where E' is an effective elastic modulus such that G = K?/E’ (defined further in Section 2), Gyc
is the compressive toughness and o, is the unnotched strength of the laminate. Important
dependent variables are the remote stress o, at failure, the corresponding stress intensity factor
K, based on the notch length, and the critical microbuckle length [.. For the simple bridging
law used in this paper the effect of geometry on the failure behaviour can then be described with
a functional relationship of the form

- R Zea(5 D) ®

c
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By drawing contour or surface plots of the independent variables as a function of a/r, and b/r,
it is possible to summarise the effects of large-scale bridging on one graph. This provides both
a simple qualitative picture of the importance of including a detailed analysis in a particular
application and quantitative results for the three geometries with the particular bridging law
used here. Although the work has been done to help understand the compressive failure of
composites, this analysis is equally applicable to either compressive or tensile failure in other
applications where a similar crack bridging analysis is relevant.

2. Calculation method

The microbuckled zone is modelled using linear elastic fracture mechanics, taking results
derived for cracks. The calculation method and numerical techniques used in this paper are
described by Cox and Marshall [5]. The specimen geometry is given in Fig. 1 with a
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microbuckle of length [ and a uniform remote compressive stress o,. The stress intensity at the
tip of the microbuckle is zero. The stress intensity factor K, due to a distribution of normal
compressive stresses a(x) along the microbuckle at the tip of a microbuckle of length [ is given
by the integral

K, = Jl a(x)m(l, x) dx, : (3)

0

where the weight function m(l, x) can be conveniently found from the point load solution given
by Newman [6] for a crack emanating from a central hole and from Tada et al. [7] for a single
edge notch and a centre notched panel.

Using the weight function method [8], the crack closing displacement u,(x) on the micro-
buckle face (where u is half the relative displacement of the two faces of the microbuckle) for a
microbuckle of length [ due to normal compressive tractions o(x) on the microbuckle faces is
given by

l

Uy(x) = — % 0m(l’, X) dl’f
0

I

| o(x")ym(l', x') dx’. 4

The weight function method is also used to find the stress intensity factor at the microbuckle
tip K,,, and the displacements across the microbuckle u,(x) due to the remote stress for the
notched panels, using Bueckner’s rule. Briefly, the stress intensity factor is calculated from (3)
and the displacements from (4), where now the traction on the crack faces is that along the crack
line for a specimen containing no crack. For specimens with a central hole, Newman gives the
stress intensity factor at the end of the microbuckle and the displacements due to a remote
uniform stress. The net stress intensity factor at the microbuckle tip K,, and the displacements
along the microbuckle u(x) are given by the sum of the contributions due to the microbuckle
loading and the remote loading

Km = Ka + Krma (5)

u(x) = us(x) + u,(x). (6)

The compressive traction ¢ across the microbuckle is related to the closing displacement u
across the microbuckle by a functional relationship ¢ = p(u) which is taken in this paper to be
a simple linear softening law

olo, =1 —ufu,) forO0<u<u,

(7

o/o, =0 foru>u,
where u, is a critical microbuckle overlap displacement. The appropriate value of u, is found

from the measured toughness Gyc, using the assumed variation of microbuckle load with
displacement, (7)

Gic = J “2o(w) du = o,u,. ~ | ®)
0
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olve for the remote stress, (3) and (4) are discretised in a similar way to that described by
ox ‘and Marshall [5]. The microbuckle is divided into a number of elements, as illustrated in
i 1(d). The influence functions due to triangular distributions of pressure of height unity:
- “centred on the ith node for the stress intensity factor at the microbuckle tip f; and for the
;",_‘?,’dlsplaccment at the jth node g;; are calculated by numerical integration of (3) and (4). Influence
" functions due to unit remote loading for the tip stress intensity factor f, and for the
Aff‘dlsplacement at the ith node g,; are found in a similar way. A change of variable was made to

~“account for singularities in the integrations where necessary. The effect of a piecewise-linear

~“stress distribution along the microbuckle on the stress intensity at the microbuckle tip and on

- the displacements along the microbuckle is found by multiplying the traction ¢; = p(u;) at each
of the nodes by the relevant influence coefficient and summing over all the nodes. After including
‘the effect of the remote loading, the relationship between the stresses and the displacements
across the microbuckle expressed by (3) and (4) gives a set of N — 1 coupled non-linear
~simultaneous equations, where N is the number of nodes

N
= Y p(u;)gi; + 0,9 fori=1to N —1 ©)

j=1

The stress for the Nth node at the microbuckle tip equals the unnotched strength of the material
and the displacement there is zero. The additional equation needed to solve for the unknown
‘remote stress is that the stress intensity at the tip of the microbuckle K,, due to the remote stress
and microbuckle loading is zero

w)fi + 0,.fr (10)

n[\/jz

Normalised versions of the simultaneous equations are solved by a modified Powell hybrid
method using a NAG routine [9]. Increasing the number of nodes from five to ten had a
negligible effect on the critical load and results presented are for calculations with ten nodes.
Parameter tracking is used to ensure that the starting point for the iteration is reasonable. To
find the critical load, the length of the microbuckle is incremented until a maximum load is
reached. A more accurate value for the critical microbuckle length is then estimated by cubic
interpolation of the load versus microbuckle length curve. With the simple laws considered here
there was no subsequent increase in load after the first maximum.

The growth of a damage region with increasing load under conditions of small scale bridging
is often represented by ‘R-curves’. However Bao and Suo [10] note that this procedure may be
misleading with large-scale bridging conditions described here, since the curves then depend on
the specimen geometry. In this work, while ‘effective’ R-curves have been calculated to find the
peak load, we will not be concentrating on this sub-critical growth of the damage region, but
instead on the conditions at failure.

The calculation method outlined above can be compared to that described by Fett and Munz
[11]. Equations (3) and (4) can be combined with the effects of the remote loading to give an
integral equation

Ug(x) = — —EI—, lm(l’, x)dl Jl’p{ud(x’) + u,(a,)}m(l', x") dx". ‘ (11)
0 _
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Equation (11) can be solved by the method of successive approximations. In the implementa-
tion described by Fett and Munz this integral equation is solved by approximating the
displacement function u,(x) by polynomials and using a least-squares computer routine. This
method appears to be useful where the remote stress is known and the stress intensity factor at
the tip of the microbuckle is required. Where, as here, we are concerned with finding the
maximum load, while specifying the tip stress intensity factor, it is simpler to include (10) for
the tip stress intensity factor as one of the equations in the solving routine and solve for the
applied load.

The weight functions used here are for isotropic materials but the composites considered are
orthotropic. Suo et al. [12] show that results for orthotropic materials are dependent on two
parameters, A = E,/E, and p = (E; E;)"?/2u;, — (v51v12)'?, where E is the Young’s modulus,
u is the shear modulus and v is Poisson’s ratio for the laminate. Subscripts 1 and 2 refer to
directions perpendicular and parallel to the remote stress respectively. The equivalent elastic
modulus for orthotropic materials E’ is given by Sih et al. [13]; in terms of the above elastic
constants E' = AY*{(2E, E,)/(1 + p)}*/2. For p = 1, results for isotropic materials can be applied
to orthotropic materials by rescaling the dimensions of the problem. Where, as for the notched
specimens, there is no significant length scale in the direction normal to the crack, the stress
intensity results for orthotropic materials with p = 1 are the same as for isotropic materials.
Although there will be a dependence on p for p # 1, Sweeney [14] and Kaya and Erdogan [15]
show that this is small for notched specimens. For the specimens with microbuckles emanating
from holes there is no suitable set of weight functions for orthotropic materials. Where the
microbuckle is small compared with the hole and specimen dimensions, Suo et al. [12] give the
asymptotic solution for the stress intensity factor K,, at the microbuckle tip with remote
loading o,

Ky = Yo, /1l = 0, /7l(1 + /201 + p)AY*{1.12 — 0.011(p — 1)}. (12)

Equation (12) is derived by combining the stress concentration factor due to a hole with the
single edge notch solution given by Sweeney [14]. For the laminates considered in this paper the
above formula yields values of Y in the range 2.8 to 3.9, compared with 3.36 for isotropic theory,
indicating that the errors in using isotropic stress intensity solutions for these orthotropic
materials are not too large. As the microbuckle becomes significantly longer than the hole
diameter the effect of the hole becomes small and the solution tends to the notched results,
where the effect of orthotropy is negligible. In this paper the weight functions derived for
isotropic materials will be used to approximate the orthotropic results.

3. Results of bridging analysis

The nature of the crack bridging solution is dependent upon the non-dimensional geometrical
variables a/r, and b/r,. For the centre notched geometry details of the behaviour at the critical
load are given. While these details will depend on the details of the bridging law, the general
behaviour observed will be similar for similar bridging laws [10]. Since the behaviour for the
single edge notch specimen and for the panel with a central hole is similar to that for the centre
notch specimen, only a summary of the results will be given for those cases. ’
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3.1. Centre notched panel

Results are given in Figs. 3 to 6 for the centre notched panel. Figure 3 plots contours of the
critical microbuckle length I, at failure, normalised by r,. Figure 4 is a surface plot of the ratio of
the stress intensity factor K, based on the notch length and the remote stress at failure to the
critical stress intensity factor Kc. Figure 5 shows the average stress across the ligament g,
(=O’,,W/b) normalised by the unnotched strength o, and Fig. 6 gives the stress distribution across
the microbuckle at failure for some typical cases. For b > r, results agree with those calculated
by Bao and Suo for an infinite plate [10]. There are three distinct regimes of behaviour as
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122 M.P.F. Sutcliffe and N.A. Fleck

()rl/()u - P TR BN N

0\
100

100

0.01
0.01

Fig. 5. Theoretical ratio ¢,/0, (=0,w/o,b) of the net section stress across the ligament to the unnotched strength for
centre notched specimens.

1.0 ¢
0.8
S 0.6
©
oo
e}
n
é’)’ 0.4
%)
0.2 L
— Centre notch 0.1 110
- - Single edge nolch a/rp
OO 1 1 1 1
0.0 0.2 04 06 0.8 1.0
Notch tip Position x/lc Microbuckle tip

Fig. 6. Theoretical pressure distribution across the microbuckle at failure for centre notched and single edge notched
specimens. Inset gives a key to labelling.

summarised in Fig. 3. We deal with each regime in turn and give asymptotic solutions (described
in the Appendix) for the critical microbuckle length and the failure load.

3.1.1. Regime I: small scale bridging

Small scale bridging conditions exist when the bridging length scale r, is much less than the
ligament length b and the notch length a. Figure 4 shows that the stress intensity factor K,
(based on the notch length and the remote stress) equals the critical stress intensity factor K;c. In
this regime the details of the damage zone do not affect the failure load. At failure the traction
across the microbuckle at the notch tip drops almost to zero, as shown in curve B of Fig. 6. The
limiting case appropriate for this regime, with a microbuckle emanating from a semi-infinite
notch in an infinite body, shows that the microbuckle length at failure tends to 0.75r), as a/r, and
b/r, tend to infinity, confirming the role of r, in determining the bri.dging length scale. This can
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~ be compared with a Dugdale analysis for the same geometry, in which the bridging tractions are
‘ ‘equal to the unnotched strength o,, for u less than u, and equal to zero for u > u.. This gives a
" critical microbuckle length of 0.39r,; thus the length of the damage region at failure depends on
the particular choice of bridging law.

" 3.1.2 Regime II: a <r,, b>r,

When the notch length a is small compared with the bridging length scale but the ligament
length b is large compared with r,, the effect of the notch on the critical load is unimportant and
the net stress in the ligament equals the unnotched strength, as shown in Fig. 5. The traction at
the notch tip is no longer zero, but in the case chosen with a/r, = 10, b/r, = 0.1 the traction at
the notch tip equals about 0.7a, (curve A in Fig. 6). The asymptotic analysis appropriate for this
regime with a finite crack in an infinite body shows that, as a/r, tends to zero, the critical
microbuckle length tends to about 0.45r, (Fig. 3). This value of critical microbuckle length
depends on the assumed bridging law; for a Dugdale-type law with finite u. the critical
microbuckle length is much greater than r,.

3.1.3. Regime III: b <,

Now consider the case where the ligament length b is small compared with r,. For b/r, less than
about 0.3 calculations show that the load continues to increase with increasing microbuckle length
for I/b up to 0.95. Beyond this the weight functions used become unreliable. When a maximum is
not reached before this point, the maximum microbuckle length is plotted on Fig. 3 as b and the
remote stress at failure is taken as the value for [/b = 0.95. In this regime the microbuckle dis-
placements along the entire microbuckle length are small compared with the characteristic
displacement u, until just before failure and the microbuckle stress is close to the unnotched
strength.

The full asymptotic calculation for this geometry has not been performed, but results will be
similar to those for the single edge notched geometry given in the Appendix. A simplified analysis
for a/r, large, using the results of Benthem and Koiter [16], shows that the net section stress across
the original uncracked ligament at failure tends to the unnotched strength, as b/r, tends to zero.
For finite b/r, the maximum load is reached before the microbuckle extends completely through
the ligament and is only slightly above the value of remote load at I/b = 0.95, as assumed earlier.

3.2. Single edge notched specimen

Contours of the ratio of the critical microbuckle length [, to the bridging length scale r, for the
single edge notched specimen are shown in Fig. 7. The effect of geometry on the failure load is
illustrated in Fig. 8 by showing a surface plot of the variation of the parameter ¢,w/(s,b) with
the length ratios a/r, and b/r,. This normalisation of the applied stresses is suggested by the
asymptotic solution for small b/r,, as described in the Appendix. Theoretical stress distributions
across the microbuckle at failure are included on Fig. 6. In order to compute accurately the
solution for the finite geometry (Figs. 6-8) as the intact part of the ligament becomes small
compared with the other specimen dimensions, it was found necessary to use the weight function
solution given by Tada et al. [7] for a crack approaching a free edge in a semi-infinite plate. For
the cases where this modification was made (i.e. where the intact part of the ligament was less
than one-tenth of the specimen width) this approach gives a good approximation to the weight
function for the single edge notched geometry. |
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Fig. 8. Theoretical ratio o,w/o,b (=0o,w?/a,b?) showing the effect of geometry on applied stress for single edge notched
specimens.

Results for the single edge notched specimens are very similar to those for the centre notched
specimens. The only important difference is that, for small b/r,, the net section across the
ligament tends to o,b/w at failure, compared with the value of ¢, for the centre notched panels.
Consider the case of the single edge notched specimen with b/r, and b/a small. An asymptotic
solution is given in the Appendix for this case. Maximum load occurs when the microbuckle is
near to the free edge of the specimen, at [~ b. The stress intensity factor K, due to the
microbuckle loading scales as o,b2. The stress intensity K,,, due to the remote loading scales as
o,w? and balances K, for the total stress intensity to vanish at the tip of the microbuckle. Thus
o, tends to ¢,b%/w? as b tends to 0 and the net section stress tends to agub/w.
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In this paper tensile failure in the intact ligament has not been considered. However, for the
edge notched specimen with b/r, small, the tensile stress across the intact ligament is
significantly larger than the unnotched compressive strength o, when the microbuckle length is
much larger than the intact ligament length. Where the tensile strength is of the order of the
compressive strength the theory should then be modified accordingly to allow for this failure
mechanism.

3.3. Panel with a central hole

For a panel with a central hole, it is not possible to cover such a wide range of cases as for the
notched specimens, since the formulae given by Newman are only valid for R/w < 0.25 and
(R + I)/w < 0.75. Figure 9 is a contour plot of the critical microbuckle length at failure. Figure
10 shows the net failure stress across the ligament for the range of values that can be considered.
The results agree with the calculations of Soutis et al. [1] using the stress intensity results of
Newman in a slightly different way. These results are similar to those for the notched specimens
except in the region where R/r, is greater than 1. For R/r, > 10 the specimens with a central
hole fail when the local stress at the hole due to the stress concentration equals the unnotched
strength, with no stable microbuckle growth. Bao and Suo [10] find that the corresponding
transition to unstable growth occurs for R/r, > 20 with a Dugdale bridging law. For the
analogous case of a notched specimen with large a/r, failure occurs at K, = Kjc.

4. Experimental work

Experimental measurements of the compressive failure load for two lay-ups of T800/924C
carbon fibre-epoxy laminates have been made for the centre notched and single edge notched
configurations using the test set-up described in [1]. The lay-ups used were [ +45°/0°,);] and
[(4+45°),/0°/(+45°),/0°/ +45°];, denoted as lay-ups L2 and L6 respectively, following Soutis et
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Fig.9, Regimes of behaviour and contours of the ratio of the critical microbuckle length /, to the bridging length scale r,
for specimens with a central hole. .
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Fig. 10. Theoretical ratio ¢,/0, (=0,w/o,b) of the net section stress across the ligament to the unnotched strength for
specimens with a central hole.

al. [17]. These lay-ups were chosen to give a wide range in compressive properties. The
unnotched strengths o, of the laminates were 8§10 and 428 MPa for the L2 and L6 lay-ups. The
corresponding orthotropic elastic constants were A = 3.6 and 1.6, and p = 0.67 and —0.09
respectively. The thickness of each panel was 3 mm and specimen widths of 30 and 50 mm were
used. The gauge length of the specimens was 115 mm. An anti-buckling guide was used to
prevent macro-buckling and the specimens were loaded through wedge grips (see [17] for
further details). The jewellers saw made to cut the slits had a 0.7 mm thick blade. The notch tip
was sharpened with a razor blade. This arrangement ensured that the slit faces did not close up
on loading until after the maximum load had been reached. In all the cases investigated stable
growth of the microbuckle was observed and the damage zone length at failure was significantly
larger than the slit separation, justifying the use of the stress intensity factor based on a sharp
notch to characterise the applied load. The failure load was found to be the same for sharpened
specimen as for specimens with notch tips which were not sharpened with a razor blade,
confirming that the details of the notch geometry are unimportant at failure.

In the design of the tests two aspects of interest have been addressed. Firstly the analysis
shows that, when the bridging length scale r, is small compared with the specimen dimensions,
the critical load corresponds to K, = K;c. The length scale of the bridging zone r, is calculated
from the measured values of K;c and o, using (1). When the bridging length scale is no longer
small, a more sophisticated analysis is necessary to estimate the failure load. Experiments can be
used to check the generality of K¢ as a failure criterion for conditions of small scale bridging for
different geometries and to estimate the bridging length scale given by (1). Secondly, it is
important to investigate how well the bridging calculation can predict failure loads with
large-scale bridging. Soutis et al. [1] show that it is possible to predict accurately the
compressive strength of panels with central holes from fracture toughness measurements using a
centre notched specimen. Here, we consider the single edge notched specimen and examine the
effect of specimen width. ’
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4.1. Results for centre notched panels

Experimental data for the remote stress intensity factor at failure (based on the notch length)
taken from Soutis et al. [17] and from the current study are presented in Fig. 11 for the centre
notched specimens. The approximate range of conditions covered is included in Fig. 3. Soutis et
al. assumed that r,/a < 1 and r,/b < 1 and thus K, = K¢ at failure. In this paper the value of
K is estimated by fitting theoretical calculations of K, (including the effect of bridging) at
failure to the combined experimental measurements of [17] and those of the current study. The
fit is made for the 50 mm wide specimens over the central portion of the curves in Fig. 11, where
the effect of the bridging model on K, and hence on the estimate of K¢ is least. The fitted
values of K,c are 52.5 MPa\/rE and 51.1 MPa./m respectively for the L2 and L6 lay-ups,
giving values for r, of 4.2 mm and 13.3 mm, respectively. These values are somewhat larger than
those estimated by [17] because of the allowance made here for microbuckle bridging in
estimating K;c. As shown in Fig. 11, the theory predicts a significant effect of bridging on the
failure stress for the specimen sizes used, with K, less than Kjc. For the lay-up L6 the predicted
values of microbuckle length at failure (approximately equal to 0.6r,) are significantly larger
than those measured by [17]. This is not surprising since lay-up L6 is composed primarily of
45° plies: the simple microbuckle model used here may be inadequate for this laminate and a
more detailed consideration of off-axis deformation and delamination must be included to
model the failure.

Figure 11 shows that the theory is in reasonable agreement with observed strengths for the
centre notched panels. Experiments confirm that the stress intensity at failure changes only
slowly in the region where the bridging length r, is small compared with other specimen
dimensions so that conditions are close to that of small-scale bridging. At the extremes of small
and large notches the stress intensity drops significantly below this peak value as large-scale
bridging effects become important. The data for the two widths of lay-up L2 support the
prediction of a slight dependence of K, on width.
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Fig. 11. Measured ratio of the stress intensity factor K, at failure (based on notch length) to the critical stress intensity
factor K¢, for centre notched specimens. K¢ is deduced by fitting the theory for 50 mm wide specimens giving
Kic =525 and 51.5 MPa,/m for L2 and L6 respectively.
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4.2. Single edge notched specimens

For experiments with single edge notched specimens two methods of end support were used. In
the first set of tests the ends of the specimen were loaded through metal tabs using a wedge
clamp arrangement (as for the centre notched specimens). However it was clear, particularly for
the specimens with only a small ligament, that this loading arrangement did not produce a
uniform remote stress. The clamps allowed little rotation of the ends, of the specimen so that a
moment was applied by the end grips to counter the tendency for these unsymmetrical
specimens to rotate. To investigate this effect, several specimens were loaded through pins
placed along the centre line of the specimens. The distance from the pin to the notch line was
two to three times the total width of the specimen. End rotation of the specimen is made
possible by the pins, and the loading condition is approximately uniform remote loading.

Experimental results for single edge notched specimens are presented in Figs. 12 and 13, and
the corresponding range of experimental conditions is shown in Fig. 7. The experimental values
of K, shown in Fig. 12 are calculated using the single edge notch formula for open cracks given
by Tada et al. [7], and are normalised by the value of K;c deduced from the centre notched
specimens including the effects of bridging. Figure 12 shows that the loading arrangement for
single edge notched specimens has a considerable effect on the failure load, particularly for the
longer notch lengths; the clamped specimens are up to eight times stronger than the pin loaded
specimens. For the pin loaded specimens, measured values of K, based on the single edge notch
calibration are in broad agreement with the theoretical curve for uniform end loading, which has
been calculated including microbuckle bridging using the value of K¢ deduced from the centre
notched specimens. The theory predicts a slight drop in K, at small and large notch lengths.
However the experiments are not able to confirm this feature, since the magnitude of the drop is
small compared with the experimental scatter.

For a specimen loaded through clamps, the effect of imposing no end rotation is to make the
specimen behave in a similar manner to half of a centre notched specimen with uniform remote
loading, particularly as the ligament becomes small compared with the notch length. The remote
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Fig. 12. Measured ratio of the stress intensity factor K at failure (based on notch length and uniform remote loadmg for
a single edge notched specimen) to the critical stress intensity factor K¢, for smgle edge notched specimens. Filled
symbols are for pin loading, open symbols for clamp loading.
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Fig. 13. Measured ratio of the stress intensity factor K, at failure (based on the centre notch approximation) to the
critical stress intensity factor K¢, for single edge notched specimens with clamp loading.

stress intensity factor K, can then be estimated by treating the specimen as one half of a centre
notched specimen, and by using the appropriate K calibration given by [7]. Figure 13 plots this
value of K, for the clamped specimens, normalised by the value of K;c deduced from the
specimens with a centre notch. The theoretical values for the remote stress intensity factor at
failure included in this figure are found from a bridging analysis using the value of K;c measured
from the centre notched panels, again treating the specimen as half of a centre notched specimen.
The assumption that the clamped panel behaves like half of a centre notched panel appears to
be a good one, with the values of K, at failure calculated in this way now much closer to the
theoretical value. The slight overestimate of the failure load given by this approximation is
consistent with a small amount of rotational freedom of the grips.

5. Conclusions

Theoretical calculations and experiments have been performed to investigate the effect of
large-scale bridging on compressive failure of carbon fibre epoxy laminates with a hole, a centre
notch or a single edge notch. Stable damage growth under increasing load due to microbuckling
in the 0° plies is modelled using a crack bridging analysis. The intrinsic tip toughness is assumed
to be zero and a linear softening law is used to describe the relationship between the
displacements and the bridging tractions across the microbuckle. Results are presented for
conditions at the peak load. While the work is motivated by the need to model the compressive
failure of composites, it will have relevance to either compressive or tensile failure in other
materials where such a bridging analysis is relevant. There are three length scales in the
problem: the bridging length scale r,, the notch length a or radius R, and the ligament length b.
The bridging length scale r,, given by (1), is a material parameter which depends for composites
on the laminate lay-up.

Figures 3 and 7 summarise the effect of geometry on the failure mechanisms for different
values of the ratios a/r, and bjr, for the centre notched and single edge notched specimens.
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Asymptotic results are given for the net stress across the ligament and the stress intensity at
failure in three regimes. The transition between these extremes is given in Figs. 4, 5 and 8. The
behaviour is very similar for these two geometries. Where the bridging length scale is small
compared with the specimen dimensions (small-scale bridging), the stress intensity at failure is
given by the critical stress intensity factor K;c. The critical microbuckle length is 0.75 times the
bridging length scale r,. As the bridging length becomes comparable with the specimen
dimensions an analysis ignoring the local effect of the bridging zone is no longer adequate. The
figures quantify this transition for the linear softening law used and give results which will be
qualitatively similar for similar bridging laws. For large b/r, but small a/r,, the specimen fails
when the net section stress equals the unnotched strength and the critical microbuckle length is
approximately equal to 0.45r,. As b/r, tends to zero, the critical microbuckle length tends to the
ligament length for both notch geometries. For the centre notched panel the net section stress
across the ligament tends to the unnotched strength o, while for the single edge notch the net
section stress tends to o,b/w.

Experimental results for the centre notched panel are used to deduce values of the critical
stress intensity factor K;c and hence the bridging length scales for two laminate lay-ups. For
intermediate ratios of the notch length to the specimen width, where the critical microbuckle
length is relatively small compared with the specimen dimensions, the applied stress intensity
factor at failure is roughly constant as expected for small-scale bridging. When the bridging
length scale is not small compared with either the notch or ligament lengths, experiments
confirm the theoretical predictions of a smaller stress intensity at failure, although results are not
so accurate as to confirm the accuracy of the particular bridging law used. Here, evaluation of
the stress intensity factor is based on the initial notch length.

The failure load for single edge notched panels is observed to be sensitive to the specimen
loading arrangement. If the load is applied via the wedge grips, the lack of rotational freedom at
the ends of the specimen makes the specimen behave more like half of a centre notched specimen
with a significantly higher failure load than the equivalent pin-loaded specimen. When the effect
of the loading arrangement is included, experimental results agree with theoretical predictions,
with failure given when the applied stress intensity factor equals the critical stress intensity
factor measured from the centre notched geometry.

Theoretical calculations for falure from a central hole are presented in Figs. 9 and 10. These
results agree with those of Soutis et al. Where the bridging length is of the order of the hole
radius the critical microbuckle length is approximately 0.7r,. For r, much smaller than the hole
radius, a maximum load occurs when the local stress at the edge of the stress raiser equals the
unnotched strength.

Appendix

Asymptotic solutions for a number of specimen geometries are described in this Appendix. The
asymptotic behaviour for the centre notched specimen with a <r, < b is investigated by
considering the case of a finite notch in an infinite body under uniform remote normal loading.
The calculation method described above for finite specimens is used in this analysis with slight
modifications. The weight functions for point loads applied at the microbuckle faces, the effect of
the remote loading on the microbuckle displacements and the stress intensity factor at the
microbuckle tip due to remote loading are all taken from [7]. As a/r, tends to infinity, the
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Fig. Al. Geometry of semi-infinite body with a semi-infinite notch.

critical microbuckle length tends to about 0.45r, and the maximum remote stress tends to the
unnotched strength o,.

The limiting behaviour for small scale bridging with a/r, and b/r, tending to infinity is
investigated in a similar way by analysing the case of a microbuckle emanating from a
semi-infinite notch in an infinite body, using the calculation method described above. For this
case the maximum stress intensity factor K, due to the remote loading equals K;c and the
critical microbuckle length [, is 0.75r,.

The geometry shown in Fig. Al is used to investigate the asymptotic behaviour as a
microbuckle extends through the ligament and approaches the free surface in a semi-infinite
notched body. A bending moment M is applied. With this loading arrangement the body
resembles a single edge notched specimen with a/b and a/r, large, under uniform remote normal
loading. Appropriate dimensionless forms of the dependent variables of interest, the applied
moment 2M/c,b? and the microbuckle length [./b at failure, depend only on the ratio of the
ligament length b to the microbuckle bridging length scale r,,.
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Fig. A2. Asymptotic behaviour for a semi-infinite body with a semi-infinite notch under applied bending.
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Results from this calculation are given in Fig. A2. As b/r, tends to zero the dimensionless
applied moment tends to 1 and the maximum load is attained as the microbuckle reaches the
free surface. As b/r, tends to infinity the maximum applied moment and the critical microbuckle
length tend to the limit found above for small scale bridging, with the stress intensity factor due
to remote loading equal to K;c and the microbuckle length equal to 0.75r,.
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