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Abstract 

It is commonly observed that voids can nucleate and grow in the lithium anode of a solid state 

Li-ion battery at a location adjacent to the solid electrolyte during the stripping (discharge) 

phase of the battery; a similar phenomenon is observed in sodium-based batteries. It is 

hypothesised in the current literature that these voids are due to the coalescence of vacancies 

that have been generated at the electrode/electrolyte interface when metal atoms are oxidized 

and transported into the electrolyte: the slow diffusion of the vacancies away from the 

electrolyte interface into the adjacent electrode results in their coalescence and the consequent 

growth of voids. These hypotheses are challenged in the current study by using the Onsager 

formalism to generate a variational principle for vacancy diffusion. Our analysis reveals that 

no driving force exists for the diffusion of vacancies into a homogeneous metal electrode that 

thins by stripping. This finding is contrary to models in the literature which have mistakenly 

assumed that the vanishing flux at the current collector prevents rigid body motion (drift) of 

the electrode which in turn prevents thinning of the electrode during stripping. Based on our 

analysis, we conclude that vacancy diffusion within a homogeneous electrode is not responsible 

for the nucleation and growth of voids at the interface between a stripping metal electrode and 

a solid electrolyte.  

 

 

Keywords: Solid-state battery, ceramic electrolyte, Butler-Volmer kinetics, void growth 

 

 

 

 

 

 

 

 

 

* Corresponding author. E-mail address: vsd20@cam.ac.uk 

 

 

  

mailto:vsd@eng.cam.ac.uk


2 

 

1. Introduction 

Lithium metal is attractive for use as the negative electrode, commonly known as the anode, 

for Li-ion batteries due to the high energy density of lithium oxidation [1, 2]. Lithium dendrites 

grow in liquid electrolytes at a fast rate of battery charge [3, 4] and this has led to the use of 

solid electrolytes for dendrite suppression [5]. However, dendrites, which are also referred to 

as Li filaments [6] in solid electrolytes, still grow in polymer [7] and ceramic [8] electrolytes. 

This has been supported by a large body of recent experimental work on Li and Na cells with 

ceramic electrolytes reported by the groups of Bruce [9-11], Sakamoto [6, 12-14] and Shearing 

[15, 16]. Bruce and co-workers [9, 10] have also observed that voids form in the Li metal 

electrode during stripping of the electrode. These voids form at the interface between the 

electrode and solid electrolyte and increase the electrode/electrolyte interface resistance to level 

that makes the battery unviable. Moreover, both observations [9, 17] and simulations [18, 19] 

suggest that Li filaments grow preferentially in the vicinity of these voids and that the presence 

of these voids also lowers the critical current density for shorting of the cell due to filament 

growth. Thus, an understanding of void nucleation and growth at the metal electrode/solid 

electrolyte interface during stripping is essential. This has spurred a large experimental activity 

on the nucleation and growth of these voids in Li [20-23] and Na [9-10] electrodes; see Fig. 1 

for an example of scanning electron microscope (SEM) images of voids in Li electrodes. 

 

 
Figure 1: Cross-sectional SEM images of the Li metal electrode and Lithium Phosphorous Sulphide 

(LPS) solid electrolyte interface during continuous Li stripping showing void initiation (red arrows) 

and growth at a stripping current of 0.5 mA cm−2. Adapted from [23]. 
 

Numerous modelling studies have attempted to develop an understanding of the growth of these 

voids. In broad terms, these studies assume that void growth occurs either (i) by creep 

deformation of the metal [24-28] or (ii) by the generation of vacancies in the metal at the 

electrode/electrolyte interface. In the latter treatments, these vacancies are said to diffuse into 

the electrode or coalesce at the interface to form macroscopic voids [20, 21]. A few studies [23, 

29, 30] have combined both the creep deformation and the vacancy flux mechanisms, see the 

recent review [31] for further details. Here, we begin by discussing these two mechanisms to 

give our current study the appropriate context.  

 

The studies modelling void growth by creep envision that a pre-existing defect such as a 

void/impurity particle is present on the electrode/electrolyte interface. This impurity gives rise 

to flux focussing over the periphery of the defect [24-26]. The associated creep flow within the 

metal electrode then results in growth of a void around the initial defect. Given that the 

electrode/electrolyte interface is fixed in space, Shishvan et al. [24] used a coupled fluid 

Eulerian/electrochemical analysis to investigate this mechanism. However, their calculations 

demonstrated that standard Butler-Volmer kinetics leads to insufficient flux focussing for void 

growth to occur. Roy et al. [25] performed simpler decoupled calculations of essentially the 

same problem. However, they used a Lagrangian method to model the creep of the electrode 
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but added in the translation (that is, drift) of the electrode associated with the thinning of the 

stripping electrode as a post-processing step and came to the same conclusion as that of 

Shishvan et al. [24]: the flux focussing associated with Butler-Volmer kinetics is insufficient 

to cause void growth. Shishvan et al. [24] further suggested that creep of the metal (Li) modifies 

the interface kinetics and thereby increases flux focussing. Agier et al. [26] used this idea to 

compute the growth of a void around an impurity particle on the electrode/electrolyte interface. 

However, their calculations show that voids initially form and grow but ultimately collapse due 

to a combination of the electrode drift (thinning) and creep.  

 

 
Figure 2: (a) Sketch illustrating the mechanism of void formation at the electrode/electrolyte interface 

by vacancy generation and coalescence during stripping of metal ions (m+). Vacancies are generated at 

the interface during stripping and their diffusion away from the interface is slower than the rate at which 

metal atoms is stripped. (b) Vacancies generated by stripping at the electrode/electrolyte interface are 

annihilated by drift (thinning) of the electrode. 

 

Other models attribute the formation and growth of voids to the diffusion of vacancies within 

the electrode [20, 21]. In these models, it is hypothesised that vacancies are generated at the 

interface when metal atoms are oxidized and transported into the electrolyte. These vacancies 

then diffuse away from the interface, with the counter-motion of metal atoms allowing 

stripping to continue; see Fig. 2a. Thus, so long as the diffusion of vacancies is sufficiently fast 

to replenish the metal atoms stripped from the electrode there is no vacancy build-up at the 

interface. Above a critical stripping current vacancies are generated at the interface at a faster 

rate than diffusion can replenish them, and the build-up and subsequent congregation of these 

vacancies result in the formation of the observed macroscopic voids. The models to support 

this physical picture either write down empirical diffusion relations [20, 21, 23, 29] or solve 

detailed field equations [30]. They predict that cell failure can occur due to vacancy 

accumulation and/or void formation at the electrode/electrolyte interface. However, all these 

models miss a critical aspect of the physics. During stripping, there may or may not be vacancy 

diffusion within the electrode but there exists clear evidence that the electrode thins as metal is 

transported from the stripping to the plating electrode through the electrolyte (Fig. 2b). The 
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vacancy diffusion analyses reported in the literature [20, 21, 23, 29, 30] neglect this thinning 

or drift of the electrode; in contrast, this drift was accounted for in the creep models [24-26] as 

mentioned above. Vacancies formed at the electrode/electrolyte interface by the stripping of 

the metal (Fig. 2b) can be annihilated by electrode drift; by neglecting this contribution from 

drift, the models are missing a key physics that might fundamentally change the conclusion on 

the significance of vacancy diffusion. In addition, these models also seem to ignore the 

energetic barrier for vacancies to coalescence to form voids in Li. For example, the enthalpy 

of vacancy formation in Li is ~50 kJ mol−1 [32] but this energy rises to ~96 kJ mol−1 and 

~140 kJ mol−1 for di- and tri-vacancies [33], respectively. While the formation energies for 

these multi-vacancies is lower than the sum of mono-vacancies recall that the probability of 

existence of vacancies follows the Boltzmann distribution. The implication is that the 

equilibrium probability of a di-vacancy at 300 K is 10−8 lower than that of a single vacancy 

and this probability ratio drops to 10−16 for a tri-vacancy. The conclusion is that energetic 

barriers make vacancy coalescence a highly unlikely event. 
 

An important reason for why the vacancy diffusion models miss the key physics of drift is that 

the models either write empirical equations [20, 21, 23, 29] or propose field equations [30] 

without deriving consistent kinematics and thermodynamics of the assumed processes. The 

present study aims to address this deficiency. We develop a thermodynamically consistent 

variational principle and the governing equations for vacancy flux in a monovalent metal 

electrode that is being stripped into a solid electrolyte. We make use of the Onsager [34, 35] 

formalism via a one-dimensional (1D) treatment in which the only component of velocity of 

both metal atoms and vacancies is orthogonal to the planar interface between metal anode and 

solid electrolyte. This approach thus precludes creep which has been investigated in other 

investigations [24-28] and therefore also the formation of macroscopic voids and the associated 

three-dimensional motion of both metal atoms and vacancies. However, such 1D studies are 

simple and insightful, see for example [36] and will clarify the role of vacancy diffusion which 

is the primary focus of this study. Specifically, we use the 1D model to (i) illustrate the 

important consequences of neglecting the electrode drift in the vacancy diffusion analyses 

reported in the literature and (ii) explain the methodology to construct a thermodynamically 

consistent framework for vacancy diffusion within a stripping electrode. 

 

 

2. Variational framework for stripping with vacancy diffusion 

We consider the 1D stripping of Li through a solid electrolyte from a Li electrode; the half-cell 

is sketched in Fig. 3. The half-cell comprises a Li electrode of thickness 𝐻, a current collector 

adhered to the electrode and a portion of the electrolyte. The origin of our fixed co-ordinate 

system is located at the electrode/electrolyte interface as shown in Fig. 3. To analyze the 

stripping process, consider a system comprising the entire Li electrode of thickness 𝐻, a portion 

of the electrolyte of infinitesimal thickness, and absent the copper current collector. The 

electrode is taken to be a perfect electron conductor maintained at an electric potential 𝜙p and 

the electric potential of the electrolyte immediately in contact with the electrode is 𝜙e. Allow 

for vacancy diffusion within the electrode but neglect creep deformation in this 1D context 

(incompressible creep deformation cannot be modelled realistically in 1D). Furthermore, to 

simplify the analysis, assume that the electrode has a rigid atomic lattice which implies that: 

(i) we are neglecting elastic deformation of the Li and (ii) the volumes of each vacancy and of 

each Li atom are equal. The rigid lattice assumption is justified by recalling that the strength 

of Li at room temperature is ~1 MPa [37]. Consequently, the elastic (or lattice) strain is on the 

order of 2 × 10−4 and thus over a 10 μm thick electrode the lattice deformation will not exceed 



5 

 

~2 nm. We thus simplify the model development using the rigid lattice assumption given that 

this assumption has little influence on vacancy diffusion upon stripping of the electrode. 

 

Write 𝜌L as the molar density per unit volume of lattice sites in the electrode and 𝜇0 as the 

reference molar chemical potential of Li. Then, the Helmholtz free-energy per unit volume of 

the electro-neutral electrode, when a number fraction 𝜃 of vacant lattice sites is present at a 

temperature 𝑇, is 

𝑎 = 𝜌L(1 − 𝜃)𝜇0 + 𝜃𝜌Lℎv + 𝜌L𝑅𝑇[𝜃 ln 𝜃 + (1 − 𝜃) ln(1 − 𝜃)], (1) 

where ℎv is the enthalpy of vacancy formation and 𝑅 is the universal gas constant. In (1), we 

have neglected the possibility of vacancy coalescence given the high energy barrier for such 

an event as discussed in the introduction. The vacancy fraction 𝜃(𝑥, 𝑡) is a function of the 

spatial position 𝑥 (measured with respect to the electrode/electrolyte interface) within the 

electrode and time 𝑡. We proceed to develop a formulation to predict the spatio-temporal 

evolution of 𝜃. 

 

 
Figure 3: Sketch of the 1D stripping problem analysed where the origin of the co-ordinate system is 

fixed at the electrode/electrolyte interface, i.e., at 𝑥 = 0. The current collector is adhered to the electrode 

at 𝑥 = −𝐻 and the electrolyte is located at 𝑥 > 0.  

 

The time rate of change of free-energy follows from (1) as 

�̇� = 𝜌L�̇� [(ℎv − 𝜇0) + 𝑅𝑇 ln
𝜃

1 − 𝜃
], (2) 

since we have assumed a rigid lattice such that �̇�L = 0. We wish to calculate the rate of change 

of potential energy Π̇ of the system which includes the relevant fluxes across the boundaries of 

the system. Upon denoting 𝑗D as the diffusive flux of vacancies through the electrode (with 

respect to the reference frame fixed to the lattice), the flux 𝑗m of Li metal atoms through a 

spatially fixed location 𝑥 is given by 

𝑗m = (1 − 𝜃)𝜌L𝑣 − 𝑗D, (3) 

where 𝑣 is the spatially constant velocity of the lattice as we have assumed a rigid lattice. Then, 

conservation of the Li atoms implies that  

𝜌L�̇� =
𝜕𝑗m

𝜕𝑥
= − (𝜌L𝑣

𝜕𝜃

𝜕𝑥
+

𝜕𝑗D

𝜕𝑥
) . (4) 

Now recall that during stripping there is a flux of Li+ ions out of the system into the electrolyte 

as well as a corresponding flux 𝑗el−  of electrons out of the system into the current collector.  

The rate of change of potential energy Π̇ of the system then follows as 

Π̇ =
𝜕

𝜕𝑡
(∫ 𝑎

0

−𝐻

 𝑑𝑥) + (𝜇e + 𝐹𝜙e + 𝜇el−)𝑗
m

|
𝑥=0

, (5) 
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where 𝜇e and 𝜇el− = −𝐹𝜙p are the chemical potential of the Li+ ions in the electrolyte 

immediately in contact with the electrode and the chemical potential of the electrons in the 

electrode, respectively, and 𝐹 denotes the Faraday constant. In deriving (5), we have used the 

fact that the oxidation reaction at the electrode/electrolyte interface generates an electron flux 

with electroneutrality requiring that the magnitude of the electron flux into the current collector 

equals the flux of Li+ ions into the electrolyte. Now make use of the Leibniz integral rule to re-

write (5) as 

Π̇ = ∫ �̇�
0

−𝐻

 𝑑𝑥 + 𝑎|𝑥=−𝐻�̇� + [𝜇e + 𝐹(𝜙e − 𝜙p)] 𝑗
m

|
𝑥=0

, (6) 

where the change in the electrode thickness is related to the metal flux via the conservation 

statement 

�̇� = −
1

(1 − 𝜃|𝑥=−𝐻)𝜌L
𝑗m|𝑥=−𝐻 . (7) 

We shall employ the Onsager [34, 35] formalism to calculate the kinetic path this non-

equilibrium system acquires. The Onsager formalism requires that the kinetic path is such that 

arbitrary variations in rate kinematic degrees of freedom give a rate of change of potential 

energy that is balanced by the variation in the dissipation rate. Assume a dissipation potential 

Φ that comprises two sources of dissipation: (i) dissipation associated with the flux of Li+ 

across the electrode/electrolyte interface and (ii) dissipation due to vacancy diffusion in the Li 

electrode. Following Shishvan et al. [24], we define an electrode/electrolyte interface 

dissipation potential ΦI ≡ 𝐹2𝑗m
2 𝑍/2 where 𝑍 is the interfacial resistance. This dissipation 

potential is appropriate for linearised Butler-Volmer kinetics. The dissipation potential 

associated with vacancy diffusion is given by 

ΦD ≡
1

2𝜌L𝑀
∫

𝑗D
2

𝜃

0

−𝐻

 𝑑𝑥 , (8) 

where 𝑀 is the mobility of vacancies which is related to the vacancy diffusion co-efficient 𝐷v 

via the Einstein relation 𝐷v ≡ 𝑀𝑅𝑇.  

 

To proceed with the Onsager formulation, introduce an augmented potential 

Ψ(𝑗m, 𝑣) ≡ Π̇ + ΦD + ΦI, (9) 

such that the kinematic solution is required to satisfy 𝛿Ψ = 0. Now consider the variation of 

each term on the right-hand side of (9) in turn. Upon substitution from (2), (4) and (7) into (6) 

we have 

𝛿Π̇ = ∫ [(ℎv − 𝜇0) + 𝑅𝑇 ln
𝜃

1 − 𝜃
]

0

−𝐻

𝜕𝛿𝑗m

𝜕𝑥
𝑑𝑥

+ [𝜇e + 𝐹(𝜙e − 𝜙p)] 𝛿𝑗m|
𝑥=0

−
𝑎|𝑥=−𝐻

(1 − 𝜃|𝑥=−𝐻)𝜌L
𝛿𝑗m|𝑥=−𝐻. 

(10) 

Integrate the above expression by parts and introduce an overpotential 𝜂 ≡ 𝜙p − (𝜙e + 𝒰) 

where the open circuit potential is 𝒰 ≡ (𝜇e − 𝜇0)/𝐹; then, (10) reduces to 

𝛿Π̇ = −𝑅𝑇 ∫ (
1

𝜃
+

1

1 − 𝜃
)

0

−𝐻

𝜕𝜃

𝜕𝑥
𝛿𝑗m𝑑𝑥 + (ℎv + 𝑅𝑇 ln

𝜃|𝑥=0

1 − 𝜃|𝑥=0

− 𝐹𝜂) 𝛿𝑗m|𝑥=0

+ [𝜇0 − ℎv − 𝑅𝑇 ln
𝜃|𝑥=−𝐻

1 − 𝜃|𝑥=−𝐻

−
𝑎|𝑥=−𝐻

(1 − 𝜃|𝑥=−𝐻)𝜌L
]  𝛿𝑗m|𝑥=−𝐻. 

(11) 
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Now consider the variation of the dissipation potential which follows from the definitions of 

ΦI and ΦD as 

𝛿ΦD + 𝛿ΦI = 𝐹2𝑍𝑗m𝛿𝑗m|𝑥=0 + 
1

𝜌L𝑀
∫

𝑗D𝛿𝑗D

𝜃

0

−𝐻

 𝑑𝑥 , (12) 

where from (3) 𝛿𝑗D = −𝛿𝑗m + (1 − 𝜃)𝜌L𝛿𝑣. Upon combining (11) and (12) and setting 𝛿Ψ =
0 we obtain 

− ∫
1

𝜃
(

𝑅𝑇

1 − 𝜃

𝜕𝜃

𝜕𝑥
+

𝑗D

𝜌L𝑀
)

0

−𝐻

𝛿𝑗m𝑑𝑥 +
𝛿𝑣

𝑀
∫ 𝑗D

0

−𝐻

1 − 𝜃

𝜃
𝑑𝑥

− [
1

1 − 𝜃|𝑥=−𝐻

(ℎv + 𝑅𝑇 ln𝜃|𝑥=−𝐻 )]  𝛿𝑗m|𝑥=−𝐻

+ [ℎv + 𝑅𝑇 ln
𝜃|𝑥=0

1 − 𝜃|𝑥=0

− 𝐹𝜂 + 𝐹2𝑍𝑗m]  𝛿𝑗m|𝑥=0   = 0 . 

To 

(13) 

This completes the general variational statement. Since 𝛿𝑗m is arbitrary throughout the domain, 

the first term in (13) implies that 

𝑗
D

= −
𝜌

L
𝐷v

1 − 𝜃

𝜕𝜃

𝜕𝑥
  , (14) 

where 𝐷v = 𝑀𝑅𝑇 and (14) is the flux law for vacancies. The combination of (14) and (4) gives 

the overall governing differential equation as 

�̇� = − [𝑣
𝜕𝜃

𝜕𝑥
− 𝐷v

𝜕

𝜕𝑥
(

1

1 − 𝜃

𝜕𝜃

𝜕𝑥
)] , (15) 

which is the usual 1D differential equation for diffusion with drift. Note that the drift velocity 

𝑣 will be an outcome of the boundary conditions as we shall subsequently discuss. However, 

the initial conditions to (15) are straightforward to specify. It is natural to assume that the 

electrode prior to imposition of a stripping current 𝑖cell or overpotential 𝜂 is at equilibrium. In 

the absence of an imposed pressure, the Gibbs free-energy of the electrode comprising 𝑁Li 

moles of Li and 𝑁L lattice sites is given by (1) as 

𝒢 = 𝑁L𝜇0 + (𝑁L − 𝑁Li)(ℎv − 𝜇0)

+ 𝑁L𝑅𝑇 [
𝑁Li

𝑁L

ln
𝑁Li

𝑁L

+ (1 −
𝑁Li

𝑁L

) ln (1 −
𝑁Li

𝑁L

)], 
(16) 

where 𝜃 = 1 − 𝑁Li/𝑁L is used to rearrange (1). Now consider an isobaric-isothermal ensemble 

(𝑁𝑝𝑇-ensemble) where the only particles are Li atoms (i.e., lattice sites and Li atoms are the 

two species in the system). Then, within the context of the 𝑁𝑝𝑇-ensemble, the electrode attains 

equilibrium with a vacancy reservoir at fixed 𝑁Li by changing the number of lattice sites. Thus, 

at equilibrium  
𝜕𝒢

𝜕𝑁L 
|

𝑁Li,𝑇

= 0, (17) 

and it follows that the number fraction of vacant sites is 𝜃 = exp [−ℎv/(𝑅𝑇)]. This gives the 

initial condition for (15) as 𝜃 = 𝜃0 = exp [−ℎv/(𝑅𝑇)]  ∀ 𝑥, along with the stripping current 

or overpotential imposed at time 𝑡 = 0. 

 

2.1 Constraint imposed by the current collector 

The current collector that is adhered to the electrode at 𝑥 = −𝐻 restricts the flux of vacancies 

across the electrode/current collector interface implying that 𝑗D|𝑥=−𝐻 = 0. It immediately 

follows from (3) that  
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𝑣 =
𝑗m|𝑥=−𝐻

𝜌L(1 − 𝜃|𝑥=−𝐻)
  . (18) 

In the limit of a rigid lattice assumed here, 𝑣 is spatially uniform and thus (18) implies that 𝑣 

is no longer an independent kinetic variable and we can rewrite (13) as 

− ∫
1

𝜃
(

𝑅𝑇

1 − 𝜃

𝜕𝜃

𝜕𝑥
+

𝑗D

𝜌L𝑀
)

0

−𝐻

𝛿𝑗m𝑑𝑥 +
𝛿𝑗m|𝑥=−𝐻

𝜌L𝑀(1 − 𝜃|𝑥=−𝐻)
∫ 𝑗D

0

−𝐻

1 − 𝜃

𝜃
𝑑𝑥

− [
1

1 − 𝜃|𝑥=−𝐻

(ℎv + 𝑅𝑇 ln 𝜃|𝑥=−𝐻 )]  𝛿𝑗m|𝑥=−𝐻

+ [ℎv + 𝑅𝑇 ln
𝜃|𝑥=0

1 − 𝜃|𝑥=0

− 𝐹𝜂 + 𝐹2𝑍𝑗m] 𝛿𝑗m|𝑥=0   = 0 . 

To 

(19) 

Upon substituting for 𝑗D from (14) and integration of the 2nd integral, it follows that 

− ∫
1

𝜃
(

𝑅𝑇

1 − 𝜃

𝜕𝜃

𝜕𝑥
+

𝑗D

𝜌L𝑀
)

0

−𝐻

𝛿𝑗m𝑑𝑥

− [
1

1 − 𝜃|𝑥=−𝐻

(ℎv + 𝑅𝑇 ln 𝜃|𝑥=0 )]  𝛿𝑗m|𝑥=−𝐻

+ [ℎv + 𝑅𝑇 ln
𝜃|𝑥=0

1 − 𝜃|𝑥=0

− 𝐹𝜂 + 𝐹2𝑍𝑗m] 𝛿𝑗m|𝑥=0   = 0 . 

To 

(20) 

This completes the variational statement for the case of the adhered current collector, and we 

can now solve (15) by making use of boundary conditions that satisfy (20). 

 

 

3. Solutions for 1D stripping of the electrode 

Boundary conditions for (15) must be chosen in accordance with (20). Consider two limiting 

cases: (i) stripping with no mechanical constraint imposed on the current collector and (ii) 

stripping with the current collector mechanically constrained to be fixed in space with respect 

to the electrode/electrolyte interface, i.e., for a spatially fixed electrolyte, the current collector 

is also spatially fixed. The boundary condition (ii) is often imposed in the literature [23, 29, 

30] although this is due to a misinterpretation of the kinematics as we shall subsequently 

discuss. 

 

3.1 Free current collector (allowing for a thinning of the electrode) 

Consider the case when no mechanical constraint is imposed on the current collector such that 

it is allowed to move freely, i.e., �̇� is not specified and is an outcome of the solution. Thus, 

𝛿𝑗m|𝑥=−𝐻 is arbitrary and the 2nd term in (20) then implies that  

𝜃|𝑥=0 = exp (−
ℎv

𝑅𝑇
). (21) 

Similarly, 𝛿𝑗m|𝑥=0 is also arbitrary and then, upon substituting for 𝜃|𝑥=0 from (21) into the 3rd 

term in (20), the stripping current 𝑖cell ≡ 𝐹𝑗m|𝑥=0 is related to the overpotential such that 

𝑖cell =
𝜂

𝑍
+

𝑅𝑇

𝐹𝑍
ln [1 − exp (−

ℎv

𝑅𝑇
)]. (22) 

The conditions (21) and (22) along with the initial condition 𝜃 = 𝜃0 = exp [−ℎv/(𝑅𝑇)]  ∀ 𝑥 

admits a trivial solution to (15) such that 𝑗D = �̇� = 𝜕𝜃/𝜕𝑥 = 0 and (3) delivers 

𝑣 = −�̇� =
𝑖cell

𝐹𝜌L[1 − 𝜃0]
≈

𝑖cell

𝐹𝜌L
. (23) 
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The approximate solution in (23) holds in the practical case for Li at room temperature where 

𝜃0 ≪ 1. Equation (23) implies that there is no vacancy diffusion, the lattice undergoes rigid 

body drift and the electrode thins to accommodate the stripping current. Thus, no void growth 

is expected under these circumstances. 

 

3.2 Mechanically constrained current collector (which prevents thinning of the electrode) 

Now consider the other extreme condition where the current collector is held fixed so that �̇� =
𝑗m|𝑥=−𝐻 = 0. Given that 𝑗D|𝑥=−𝐻 = 0, it follows from (3) that 𝑣 = 0 and the governing 

differential equation (15) reduces to a standard diffusion equation 

�̇� = 𝐷v

𝜕

𝜕𝑥
(

1

1 − 𝜃

𝜕𝜃

𝜕𝑥
). (24) 

For an imposed stripping current, 𝑖cell ≡ 𝐹𝑗m|𝑥=0, the boundary conditions for (24) are the 

Neumann and Robin boundary conditions 

𝜕𝜃

𝜕𝑥
= {

0                       𝑥 = −𝐻,
𝑖cell(1 − 𝜃)

𝜌L𝐹𝐷v
   𝑥 = 0,

 (25) 

where the Robin boundary condition is obtained by substituting for 𝑗D from (14) into (3). The 

corresponding overpotential follows from recognising that the flux variation 𝛿𝑗m|𝑥=0 is 

arbitrary and thus the 3rd term of (20) gives 

𝜂 = 𝑖cell𝑍 +
1

𝐹
(ℎv + 𝑅𝑇 ln

𝜃|𝑥=0

1 − 𝜃|𝑥=0
). (26) 

For this case of the mechanically constrained current collector, the governing equation (24) 

does not admit a trivial solution and we proceed to report numerical solutions. 

 

3.2.1 Numerical predictions 

We restrict attention to the case of loading where a fixed stripping current 𝑖cell is imposed and 

the corresponding overpotential 𝜂(𝑡) is an outcome of the solution via (26). The problem thus 

reduces to solving the diffusion equation (24) with initial conditions 𝜃 = θ0  ∀ 𝑥 and boundary 

conditions (25). All results are presented at room temperature 𝑇 = 295 K and for well-

established Li properties, viz. 𝜌L = 76300 mol m−3, ℎv = 50 kJ mol−1 [32] and 𝐷v =
10−14 m2s−1 [20, 23, 38-40]. The calculations are reported for an electrode of thickness 𝐻 =
1 mm to simulate a thick electrode where the influence of the current collector is small. 

    
Figure 4: Stripping with the mechanically constrained current collector. (a) Spatio-temporal 

distribution of the vacancy fraction, 𝜃, for 𝑖cell = 1 mA cm−2. (b) Temporal variations of 𝜃|𝑥=0 for 
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selected stripping currents in the range 0.5 mA cm−2 ≤ 𝑖cell ≤ 1 mA cm−2. Analytical predictions (27) 

and (28) are included in (a) and (b), respectively, as dashed lines. Equation (28) and 𝜃|𝑥=0 = 1 are two 

asymptotes for the full numerical predictions in (b). Time 𝑡 = 0 corresponds to the instant that stripping 

is initiated. 

First, consider the case of a prescribed stripping current 𝑖cell = 1 mA cm−2. Predictions of the 

spatio-temporal distributions of 𝜃 are included in Fig. 4a. Vacancies are nucleated at the 

electrode/electrolyte interface as Li+ ions are stripped, and these vacancies diffuse into the bulk 

of the electrode. The vacancy fraction 𝜃 rises at the interface 𝑥 = 0 such that, after 1.2 hrs, the 

electrode is a porous solid over 20 μm from the electrode/electrolyte interface. It is likely that 

the vacancy fraction at the electrode/electrolyte interface governs cell failure and therefore we 

include predictions of the temporal variation of 𝜃|𝑥=0 for selected stripping currents in the 

range 0.5 mA cm−2 ≤ 𝑖cell ≤ 1 mA cm−2 in Fig. 4b. For all values of imposed current density, 

𝜃|𝑥=0 rises rapidly and then slowly attains the limiting value of 𝜃|𝑥=0 = 1. 

 

     
Figure 5: Stripping with the mechanically constrained current collector. (a) Temporal variation of the 

interface overpotential 𝜂 for selected stripping currents in the range 0.5 mA cm−2 ≤ 𝑖cell  ≤
1 mA cm−2  and interface resistance 𝑍 = 5 Ωcm2. The inset shows the early time history over the range 

0 < 𝑡 < 10 s. (b) The prediction (30) of 𝐶crit over a wide range 0.1 ≤ 𝑖cell (mA cm−2) ≤ 10. The 

measurement of Krauskopf et al. [20] is included. 

 

Recall that cell failure in experiments is defined by a precipitous rise in the cell voltage or, 

equally, the overpotential, rather than a critical value of electrode porosity. To make this 

connection, we include in Fig. 5a temporal predictions of 𝜂 using (26) for selected stripping 

currents in the range 0.5 mA cm−2 ≤ 𝑖cell ≤ 1 mA cm−2 and 𝑍 = 5 Ωcm2, representative of 

an interface between Li and the garnet electrolyte LLZO (Li7La3Zr2O12) [41]. However, unlike 

observations, the model predicts a sudden rise in 𝜂 very early in the stripping history from the 

initial value ≈ 𝑖cell𝑍 to nearly ~100 times this value (also see the inset of Fig. 5a). This sudden 

increase is followed by a much more gradual increase. In experiments, there is a gradual 

increase in 𝜂 from the start of stripping until cell failure, defined by a sudden rise in 𝜂. This 

discrepancy between predictions and observations can be understood as follows. From the 

onset of stripping the vacancy fraction 𝜃|𝑥=0 at the interface rises (Fig. 4b). The overpotential 

is directly related to 𝜃|𝑥=0 via (26) and comprises two terms: 𝑖cell𝑍 and a term associated with 

the vacancy fraction. At 𝜃 = 𝜃0, the contribution from the vacancy fraction term is negligible 

and 𝜂 ≈ 𝑖cell𝑍 but as 𝜃 increases this second term becomes the dominant contribution. We 

observe from Fig. 4b that for the stripping current of 𝑖cell = 1 mA cm−2, 𝜃|𝑥=0 increases from 
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its initial equilibrium value of 𝜃0 ≈ 1.4 × 10−9 to 𝜃 = 0.05 in 10 s and it is this large increase 

in 𝜃 that results in the very early rise in 𝜂 as seen in Fig. 5a. Given that only a very gradual 

initial increase in 𝜂 is measured in experiments, it is unlikely that vacancy growth is initially 

rapid, as predicted here by the diffusion analysis when the current collector is mechanically 

constrained. 

 

While there seem to be some clear discrepancies between observations and predictions of this 

analysis, the model nevertheless predicts a growth in the vacancy fraction at the interface and 

is therefore capable of providing an estimate of the time for failure of the cell and the 

corresponding critical cell capacity. However, it is difficult to unambiguously define failure 

from these numerical predictions as the expression (1) for the free-energy implies that 𝜃|𝑥=0 

tends to unity but does not attain unity within finite time. We thus adopt a simpler approach 

which is also predicated on the recognition that the free-energy expression (1) loses accuracy 

at large vacancy content when the Li electrode begins to resemble a foamed metal rather than 

a solid metal electrode. Observe that the diffusion equation (24) reduces to linearity for 𝜃 ≪ 1. 

Then, taking the limit 𝜃 → 0 in (24) and (25), we find a simple analytical solution for 𝜃(𝑥, 𝑡) 

as 

𝜃(𝑥, 𝑡) = 𝜃0 +
2𝑖cell

𝜌L𝐹𝐷v
[
√𝐷v𝑡

√𝜋
exp (−

𝑥2

4𝐷v𝑡
) +

𝑥 

2
erfc (

|𝑥|

2√𝐷v𝑡
)] , (27) 

in the limit of a thick electrode where 𝐻 → ∞. Predictions of (27) included in Fig. 4a agree 

remarkably well with the full non-linear predictions in the low 𝜃 range where (27) is anticipated 

to be accurate. Of primary concern is the temporal evolution of 𝜃|𝑥=0 and this follows from 

(27) as 

𝜃|𝑥=0 = 𝜃0 +
2𝑖cell

𝜌
L
𝐹

√𝑡

√𝐷v𝜋
  . (28) 

The analytical predictions (28) are included in Fig. 4b and we observe that (28) and 𝜃|𝑥=0 = 1 

represent the two asymptotes to the full numerical prediction. This immediately suggests that 

an appropriate definition of the failure time is given by the intersection of these two asymptotes, 

viz., the failure time 𝑡f is obtained by setting 𝜃|𝑥=0 = 1 in (28) so that 

𝑡f = 𝜋𝐷v [
(1 − 𝜃0)𝜌

L
𝐹

2𝑖cell
]

2

 . (29) 

The capacity 𝐶crit of the cell at cell failure is then given by 

𝐶crit ≡ 𝑖cell𝑡f =
𝜋𝐷v

4𝑖cell
[(1 − 𝜃0)𝜌

L
𝐹]

2
 . (30) 

 

The critical capacity 𝐶crit from (30) over a wide range 0.1 mA cm−2 ≤ 𝑖cell ≤ 10 mA cm−2 is 

included in Fig. 5b. In line with measurements, the predicted value of 𝐶crit reduces with 

increasing 𝑖cell. There are very limited data available for cell failure in the absence of stack 

pressure as considered in our current 1D study. Krauskopf et al. [20] reported 𝐶crit ≈
1.2 mAh cm−2 for stripping at 𝑖cell = 0.1 mA cm−2 for a Li/LLZO/Li symmetric cell and this 

measurement is included in Fig. 5b where predictions suggest a value of 𝐶crit ≈ 10 mAh cm−2. 

Given that the prediction is from a simple 1D calculation with no interface impurities or other 

heterogeneities, we might be inclined to disregard this discrepancy between theory and 

experiment and conclude that this model represents the actual stripping failure mechanism. 

Here, we shall argue otherwise. Although some qualitative features of these results are in line 

with observations (and other features such as the 𝜂(𝑡) predictions that are divergent from 
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observations), a model that assumes full mechanical constraint of the current collector is in 

direct contradiction to the actual experimental setup as reported in the literature [23, 29, 30].   

 

 

 

4. Concluding discussion  

The formulation detailed in Section 2 demonstrates that in the absence of creep there are two 

kinematic variables in the problem: (i) flux of Li (or vacancies) and (ii) the lattice drift velocity, 

which in general is a field variable that can vary with position but reduces to a rigid body 

velocity in the limit of the non-deformable lattice assumed here. A thermodynamically 

consistent formulation, as presented here, implies that there exist work conjugates to these two 

kinematic variables viz., the chemical potential of the Li (or vacancies) is the conjugate to the 

flux of Li (or vacancies), while a traction is the work-conjugate to the velocity of the rigid 

lattice.  

 

In the presence of an adhered current collector, it is reasonable to assume that the vacancy flux 

relative to the lattice vanishes at the current collector, as assumed in the literature [23, 29, 30]. 

However, these studies directly relate the Li flux to the vacancy flux via the relation 𝑗m = −𝑗D. 

Comparing with (3), it is clear that the modelling studies in the literature [23, 29, 30] implicitly 

assume a vanishing drift velocity of the lattice. Therefore, the analyses in the literature reduce 

to the mechanically constrained current collector analysis as described in Section 3.2 and 

predict that the electrode does not thin. In practice, (with an imposed stack pressure present or 

absent) the stripping Li electrode thins as the Li is transported across the electrolyte into the 

plating electrode. If the electrode were prevented from thinning in an experiment, then a tensile 

traction (which is conjugated to the lattice drift velocity) would develop on the current 

collector1. Such a constraint is never imposed in any experiment or practical cell. 

 

In contrast, in our analysis we have correctly recognised that the Li flux and drift velocity are 

two independent variables. We can therefore decouple these variables and allow the electrode 

to thin while still ensuring that the vacancy flux vanishes at the current collector. This 

corresponds to our free current collector boundary condition of Section 3.1 where the analysis 

predicts that 1D stripping occurs with no vacancy diffusion and in fact 𝜃 = 𝜃0 ∀ (𝑥, 𝑡) such 

that stripping occurs purely by thinning of the electrode due to drift of the lattice. The 1D 

analysis gives an unambiguous prediction that stripping does not result in void/vacancy 

formation at the electrode/electrolyte interface and consequently no cell failure occurs. 

 

Note that lattice drift is naturally included in Eulerian [24] or arbitrary Lagrangian/Eulerian 

[26] analyses. On the other hand, Lagrangian analyses are commonly used in the literature and 

drift has largely been neglected in those treatments, whereas it needs to be explicitly accounted 

for, as described in our study. A recent investigation [42] attempts to include drift in a 

Lagrangian analysis wherin a drift velocity is explicitly enforced as a boundary condition rather 

than being allowed to emerge naturally. The approach in [42] results in over-defined boundary 

conditions with associated issues of numerical ill-posedness. 

 

In summary, both versions of the 1D analyses presented here cannot explain the observation of 

cell failure at the stripping Li electrode due to the formation of voids, albeit for different 

 
1 The analysis of Section 2 implicitly has such a traction which is conjugated to the drift velocity 𝑣. However, the 

rigid lattice assumption employed here (which neglects elasticity) implies that the magnitude of that traction is 

not predicted. The formulation presented here can be readily extended to a non-rigid lattice including elasticity to 

predict the tensile traction required to mechanically constrain the current collector. 
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reasons. The mechanically constrained current collector boundary condition predicts vacancy 

growth at the electrode/electrolyte interface, suggesting that it predicts cell failure akin to 

observations. However, this boundary condition, which prevents thinning of the electrode, is 

at odds with experimental protocol and observations. On the other hand, the free current 

collector boundary condition accurately captures the experimental boundary conditions but 

unlike observations it predicts that voids will not form at the electrode/electrolyte interface by 

vacancy coalescence. There are numerous reasons for this discrepancy including: (i) 

imperfections such as impurity particles [24, 26] and surface roughness [27] are required at the 

interface to initiate void growth; and/or (ii) creep of the electrode results in a break-down of 

Butler-Volmer kinetics [24]. While reasons for the observed void formation at the 

electrode/electrolyte interface remain an open research question, we have demonstrated here 

that the drift of the electrode that is inherent in the thinning of the stripping electrode has a 

strong tendency to close voids.  
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