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Abstract

The axisymmetric compression of a power law creeping metallic sandwich

layer of micron-scale thickness is analysed. Account is taken of the elevation

in flow strength due to the presence of a spatial gradient in plastic strain

rate. Numerical and analytical solutions reveal that the average compressive

traction is enhanced by a combination of strain rate gradients and plastic

constraint. A similar size effect is predicted for simple shear of the creeping

sandwich layer. The difference in responses for compression and shear is

traced to the different profiles of shear strain rate through the thickness of

the layer. The sensitivity of compressive and shear strengths to the choice of

higher-order boundary condition is explored, and good agreement with recent

experiments on compression and shear of a thin sandwich layer of lithium is

achieved by assuming fully clamped higher-order boundary conditions and a

material length scale on the order of 3µm in the strain gradient-based creep

theory.
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1. Introduction

Size effects arising from strain gradients in glide plasticity are well estab-

lished both experimentally and theoretically. The presence of geometrically

necessary dislocations, associated with a gradient in plastic strain, elevates

the flow strength (Ashby, 1970; Fleck et al., 1994). In contrast, the degree to5

which spatial gradients of plastic strain rate influence the flow strength of a

creeping metal remains poorly understood. Iliev et al. (2017) observed a size

effect both in bending and indentation of indium at room temperature, and

they explained the elevation in creep strength in terms of the spatial gradient

in strain rate. By making use of rate dependent, phenomenological strain10

gradient theory (Hutchinson and Fleck, 1997), they inferred a material length

scale of approximately 100 microns, which is two orders of magnitude greater

than that for rate independent plasticity of structural alloys.

The purpose of the present study is to investigate a recently observed size

effect in power law creep of lithium for two geometries of practical interest in15

solid state lithium ion batteries: constrained compression and constrained

shear (Stallard et al., 2023). It is generally accepted that bulk specimens of

lithium at room temperature deform by power law creep when the strain rate

is in the range of 10−8 s−1 to 10−2 s−1 (Sargent and Ashby, 1984), such that

the true stress σ in uniaxial tension scales with the true strain rate ε̇ by20

σ

σ0

=

(
ε̇

ε̇0

)M

(1)
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where (σ0, ε̇0) are material constants and M is the creep exponent. Bulk

measurements on lithium suggest that σ0 = 1MPa and M = 1/6.55, for the

choice ε̇0 = 10−3 s−1 (LePage et al., 2019; Masias et al., 2019; Fincher et al.,

2020).

We proceed to summarise the size effects that have been observed for25

lithium specimens of characteristic dimension on the order of microns and

below. The pillar compression tests of Xu et al. (2017) found that the yield

strength of lithium increases from 15 MPa to 105 MPa as the pillar diameter

decreases from 9.5µm to 1.39µm. Fincher et al. (2020) reported that the

hardness of lithium increases from 7.5 MPa at an indentation depth of 10µm30

to 43 MPa at an indentation depth of 250 nm, for a representative strain rate

of 0.05 s−1 in the indentation test. In consistent manner, Herbert et al. (2018)

found that lithium can support an average indentation pressure of 23 MPa

to 175 MPa at an indentation depth of 40 nm, as the indentation strain rate

increases from 0.20 s−1 to 1.36 s−1.35

Recently, Stallard et al. (2023) performed compression and shear tests on

a thin lithium layer sandwiched between ceramic substrates in order to mimic

the mechanical environment experienced by micron-scale lithium filaments (or

‘dendrites’) that develop during the cracking of a ceramic electrolyte in a solid

state battery (Janek and Zeier, 2016; Cheng et al., 2017; Kasemchainan et al.,40

2019; Kazyak et al., 2020; Shishvan et al., 2020; Ning et al., 2021; Mukherjee

et al., 2023; Ning et al., 2023).

We begin by briefly reviewing the compression tests by Stallard et al.

(2023) on thin cylindrical lithium layers of radius a and height h. The layers

were sandwiched between quartz plates and the plates were subjected to an45
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approach rate v that varied during the tests such that the through-thickness

true strain rate was held fixed at v/h = 10−3 s−1, see Fig. 1(a). Stallard

et al. (2023) plotted the average pressure on the film p̄ as a function of a/h.

They accounted for the role of plastic constraint at large a/h in elevating

the average pressure by making use of the analytical solution of Cheng et al.50

(2017) for the compression of a power law creeping film. Using this solution

they deduced that the value of σ0 increased from a bulk value of 1 MPa at

h = 200µm to 2 MPa at h = 15µm, see their Fig. 7(c).

Stallard et al. (2023) also performed shear experiments on sandwiched

circular cylindrical lithium layers by applying a tangential velocity v to the55

top plate while holding fixed the bottom plate, see Fig. 1(b). They were

careful to perform the shear tests at a value of von Mises strain rate equal to

10−3 s−1, consistent with their compression tests. They measured the average

shear traction on their specimens and converted it to an equivalent von Mises

stress in the usual manner. By so doing, they found that the value of σ060

increased from 1 MPa at h = 200µm to 1.3 MPa at h = 24µm.

(a) u̇z = −v

z

r

2a

h

(b)

u̇x = v

x

z
2a

h

Fig. 1: Axisymmetric compression and simple shear of sandwiched lithium layers of radius

a and height h, adapted from Stallard et al. (2023). (a) Axisymmetric compression, such

that an axial velocity u̇z = −v is applied to the top face of the layer, and (b) simple shear,

such that a tangential velocity u̇x = v is applied to the top face of the layer.
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In the present study, strain gradient plasticity theory is used to predict

the observed size effect of Stallard et al. (2023) for sandwiched thin lithium

layers subjected to compression and shear, and thereby give a mechanistic

interpretation of size effect that can exist in addition to strengthening by65

plastic constraint. Specifically, lithium is treated as a rigid, power law creeping

solid (Wang and Cheng, 2017; LePage et al., 2019; Masias et al., 2019; Fincher

et al., 2020). A phenomenological, isotropic theory of rate dependent strain

gradient plasticity is used such that an overall effective plastic strain rate is

defined in terms of the von Mises plastic strain rate and a scalar measure of70

plastic strain rate gradient along with a single material length scale (Fleck

and Willis, 2009; Niordson and Hutchinson, 2011). Numerical solutions are

obtained via the finite element method. Analytical upper bound solutions are

also reported by assuming a suitable velocity field, analogous to the approach

of Niordson and Hutchinson (2011) for constrained compression in plane75

strain for a rate independent solid.

The present paper builds upon previous experiments and analyses of

constrained compression and shear of a thin, rate independent solid. For

example, Mu et al. (2014) measured the compression and shear responses of

a thin copper layer confined between chromium nitride substrates and also80

silicon substrates. They observed a significant size effect in both compression

and shear: the average compressive stress for a layer thickness of 550 nm

is twice that for a thickness of 1.18µm, and the average shear stress for a

thickness of 150 nm is twice that for a thickness of 1.18µm.

Mu et al. (2014) used a phenomenological strain gradient plasticity theory85

to predict the compression and shear responses of their copper specimens.
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They treated the copper as a rigid-perfectly plastic solid, assumed that plastic

flow is fully constrained at the layer/substrate interfaces and chose a material

length scale of 647 nm to match the measured average shear stress for a layer

thickness of 550 nm. However, their model overestimates the enhancement in90

both compressive and shear strength for the thinner layers.

The shear strength of the confined copper layer of Mu et al. (2014, 2016)

has also been analysed by the one-dimensional strain gradient plasticity

model of Kuroda and Needleman (2019, 2023). They assumed that the plastic

shear strain gradient at the layer/substrate interface cannot exceed a limiting95

value. This limit on strain gradient at the boundary has also been assumed

by Kuroda et al. (2021) in their finite element analyses of elastic-plastic

thin metal layers confined between elastic solids. This enrichment of the

strain gradient model led to good agreement with the shear and compression

experiments of Mu et al. (2014, 2016). Alternatively, Dahlberg and Ortiz100

(2019) were able to reproduce the results of the constrained shear experiments

of Mu et al. (2014, 2016) by introducing fractional derivatives of plastic

strain into their phenomenological strain gradient plasticity theory. Both

the phenomenological models of Kuroda and Needleman (2019, 2023) and

of Dahlberg and Ortiz (2019) highlight the significance of the higher-order105

boundary condition in influencing the size effect. Danas et al. (2010) gave

a micromechanical interpretation of the role of the higher-order boundary

condition by replacing the interface with a compliant elastic interphase that

dictates the degree of build-up of back-stress to dislocation pile-ups.

The outline of the present paper is as follows. The phenomenological,110

rate dependent strain gradient plasticity theory is summarised in Section 2.
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This theory is specialised for two-dimensional, axisymmetric compression in

Section 3, and for one-dimensional shear in Section 4. Numerical solutions and

approximate analytical solutions based on an assumed velocity field are given

for both compression and shear. Comparison between theory and experiment115

on lithium layers is given in Section 5, and a concluding discussion is reported

in Section 6.

2. Theoretical framework

The principle of virtual power is used to obtain the field equations for the

proposed rate dependent strain gradient plasticity theory. The theory makes120

use of the full tensor theory of Fleck and Willis (2009) but considers a version

involving a single material length scale on the grounds of simplicity.

The approach is to write the total strain rate tensor ε̇ij in the current

configuration xi as the sum of an elastic rate ε̇eij and a viscoplastic rate ε̇pij,

such that ε̇ij = ε̇eij + ε̇pij. The internal work rate per unit current volume125

includes a gradient term ε̇pij,k = ∂ε̇pij/∂xk in order to develop a strain gradient

theory. The problems under consideration involve creep rates that far exceed

the elastic strain rates and consequently elasticity can be neglected. Large

changes in geometry occur but it suffices to solve for the velocity field u̇i(xj)

in the current configuration for any given aspect ratio a/h of specimen. As130

deformation proceeds a/h evolves and the macroscopic load is determined as

a function of prescribed velocity.

Three stress measures enter the statement of internal virtual power: the

Cauchy stress tensor σij , a deviatoric stress tensor qij and a deviatoric higher-

order stress tensor τijk that are work-conjugate to the elastic strain rate135
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tensor ε̇eij, the deviatoric viscoplastic strain rate tensor ε̇pij and the gradient

of deviatoric viscoplastic strain rate tensor ε̇pij,k, respectively. The internal

virtual power δẆint in the current volume Ω, associated with the virtual fields

δε̇eij, δε̇
p
ij and δε̇pij,k, is given by

δẆint =

∫

Ω

(
σijδε̇

e
ij + qijδε̇

p
ij + τijkδε̇

p
ij,k

)
dV (2)

It is convenient to write the Cauchy stress tensor in terms of a deviatoric140

component σ′
ij and a hydrostatic component −pδij, where p is pressure and

δij denotes the usual second-order identity tensor, such that σij = σ′
ij − pδij.

Then, the internal virtual power can be rephrased as

δẆint =

∫

Ω

[
σijδε̇ij +

(
qij − σ′

ij

)
δε̇pij + τijkδε̇

p
ij,k

]
dV (3)

Upon relating the strain rate tensor to the velocity field u̇i such that ε̇ij =

(u̇i,j + u̇j,i) /2 and upon making use of the divergence theorem, we obtain145

δẆint =

∫

Ω

[
−σij,jδu̇i +

(
qij − τijk,k − σ′

ij

)
δε̇pij
]
dV

+

∫

∂Ω

(
σijnjδu̇i + τijknkδε̇

p
ij

)
dA (4)

where ni denotes the outward unit normal to the boundary ∂Ω of the current

domain Ω. The external virtual power δẆext is expressed in terms of the

usual traction Ti and a higher-order traction tij such that

δẆext =

∫

∂Ω

(
Tiδu̇i + tijδε̇

p
ij

)
dA (5)

Upon invoking the principle of virtual power δẆint = δẆext for any vir-

tual fields δu̇i and δε̇pij, pointwise equilibrium in the current domain follows150

immediately as

σij,j =
(
σ′
ij − pδij

)
,j
= 0 (6a)
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and

σ′
ij = qij − τijk,k (6b)

along with the following traction relations on the boundary of the current

domain:

Ti = σijnj (7a)

and155

tij = τijknk (7b)

We emphasise that either the velocity field u̇i or the traction Ti can be specified

pointwise on the domain boundary. Higher-order boundary conditions are

also imposed: either the plastic strain rate tensor ε̇pij or the higher-order

traction tij is prescribed pointwise on the boundary.

Now consider a gradient formulation for a rigid, power law creeping solid.160

Elastic strains are neglected, and the viscoplastic strain rate tensor is directly

related to the velocity field via

ε̇ij = ε̇pij = (u̇i,j + u̇j,i) /2 (8)

In the subsequent analysis we shall drop the superscript “p” from strain rate

and strain rate gradient in order to simplify the notation. An overall effective

(viscoplastic) strain rate Ėp is introduced, and includes a term in strain rate165

gradient along with a single plastic length scale l:

Ė2
p = 2

(
ε̇ij ε̇ij + l2ε̇ij,kε̇ij,k

)
/3 (9)

We note in passing that, in general, three invariants of ε̇ij,k exist for an

isotropic solid, with three associated length scales, see Smyshlyaev and Fleck
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(1996). Eq. (9) is one simple version of the more general theory. Next, a

creep potential Up is introduced in the form of a power law in Ėp such that170

Up(Ėp) =
σ0ε̇0
M + 1

(
Ėp

ε̇0

)M+1

(10)

where σ0 is a reference stress value, ε̇0 is a reference strain rate value and M

is the creep exponent, such that 0 ≤ M ≤ 1. An overall effective stress Σ,

work-conjugate to Ėp, is obtained by differentiation of Up with respect to Ėp:

Σ =
∂Up

∂Ėp

= σ0

(
Ėp

ε̇0

)M

(11)

In similar fashion, the deviatoric stress tensor qij, work-conjugate to ε̇ij, and

the deviatoric higher-order stress tensor τijk, work-conjugate to ε̇ij,k, are175

obtained by differentiation of Up with respect to ε̇ij and ε̇ij,k, respectively,

such that

qij =
∂Up

∂ε̇ij
=

2

3

Σ

Ėp

ε̇ij (12a)

and

τijk =
∂Up

∂ε̇ij,k
=

2

3
l2

Σ

Ėp

ε̇ij,k (12b)

Note that for the case of uniaxial tension, in the absence of strain rate

gradients, Σ reduces to the tensile stress σ, Ėp reduces to the uniaxial strain180

rate ε̇ and Eq. (11) reduces to Eq. (1).

3. Axisymmetric compression problem

The strain gradient viscoplasticity theory presented in Section 2 is spe-

cialised to the case of axisymmetric compression of a cylindrical layer adhered

to its substrates. A circular cylinder of radius a and height h is defined in185
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Fig. 1(a), along with a cylindrical coordinate system (r, θ, z) centred on the

bottom face of the cylinder. The velocity components in the radial direction

r and in the axial direction z are denoted by u̇r and u̇z, respectively. The

velocity u̇z = −v is imposed on the top face of the cylinder, whereas the

bottom face does not translate axially, u̇z = 0. No-slip is imposed between190

cylinder and substrates such that u̇r = 0 for all r along both z = 0 and z = h.

The numerical solution is obtained by using the commercial finite element

software COMSOL MultiPhysics.1 Additional insight into the nature of the

solution is achieved by making use of an upper bound approximate solution

with an assumed velocity field, see Appendix A.195

3.1. Numerical solution

The governing equations in the velocity field u̇i are obtained by substitution

of Eqs. (8)-(12) into Eqs. (6), and a solution is obtained by using COMSOL

MultiPhysics. Quadratic finite elements are used for u̇i and incompressibility

is enforced by means of a Lagrange multiplier in the form of a pressure field200

p(xi); linear finite elements are used in order to describe the pressure field.

With reference to the geometry and reference system in Fig. 1(a), sym-

metry requires that u̇r = 0 and σrz = 0 on r = 0. The boundary at r = a is

traction-free such that σrr = 0 and σrz = 0. The boundary at z = 0 is fixed

in the z-direction such that u̇z = 0, whereas u̇z = −v is prescribed on z = h.205

Sticking boundary conditions are imposed on both z = 0 and z = h such that

u̇r = 0.

Higher-order boundary conditions are imposed in addition to the sticking

1https://www.comsol.com/, Version 5.6.
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boundary conditions on the velocity component u̇r tangential to the surface.

Recall that the higher-order boundary term is of the form τijknkδε̇ij, see210

Eq. (4). Symmetry at r = 0 dictates that τrrr = τθθr = τzzr = 0 along

with ε̇rz = 0. Traction-free higher-order stress on r = a demands that

τrrr = τθθr = τzzr = τrzr = 0. There remains a choice of higher-order boundary

condition on z = 0 and z = h. We consider the two extremes of a fully

constrained higher-order boundary condition ε̇rz = 0, and an unconstrained215

higher-order boundary condition such that τrzz = 0. Constrained plastic

strain corresponds to the blocking of dislocations at the boundary, while

unconstrained plastic strain (τrzz = 0) is the natural boundary condition

associated with the free motion of dislocations into the boundary, see for

example Shu et al. (2001).220

The mesh has rectangular elements of number 10 a/h in the r-direction,

and 100 rectangular elements in the z-direction. For the constrained case,

steep strain rate gradients exist near the boundaries at z = 0 and z = h. In

order to capture these features in the numerical model, it is necessary to use

a more refined mesh near the boundaries: the size of the largest element is225

twenty times that of the smallest element.

Selected aspects of the numerical solution are given in Fig. 2, for the

choice M = 1/7 (a representative value for lithium, close to the value of

M = 1/6.55 as observed by LePage et al., 2019, Masias et al., 2019 and

Fincher et al., 2020) and for a large aspect ratio a/h = 20. The distributions230

of radial velocity u̇r(z) and shear strain rate ε̇rz(z) at r/a = 1/2 are plotted in

Figs. 2(a) and (c), respectively, for the unconstrained case, and in Figs. 2(b)

and (d), respectively, for the constrained case. The corresponding distribution
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(a)

u̇r/v

z

h

l/h = 0
l/h = 0.1
l/h = 1

(b)

u̇r/v

l/h = 0
l/h = 0.1
l/h = 1

(c)

hε̇rz/v

z

h

l/h = 0
l/h = 0.1
l/h = 1

(d)

hε̇rz/v

l/h = 0
l/h = 0.1
l/h = 1

(e)

r/a

−
σ
z
z

σ
0

(
h
ε̇ 0 v

) M

l/h = 0
l/h = 0.1
l/h = 1

(f)

r/a

l/h = 0
l/h = 0.1
l/h = 1

Fig. 2: Axisymmetric compression problem. Numerical solution forM = 1/7 and a/h = 20:

u̇r/v as a function of z/h for r/a = 0.5 in the (a) unconstrained and (b) constrained cases;

hε̇rz/v as a function of z/h for r/a = 0.5 in the (c) unconstrained and (d) constrained cases;

−(σzz/σ0)(hε̇0/v)
M as a function of r/a on the plane z/h = 1/2 in the (e) unconstrained

and (f) constrained cases. Solutions are plotted for selected values of l/h.
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of axial stress σzz(r) on the mid-plane z/h = 1/2 is given in Figs. 2(e) and

(f) for the unconstrained and constrained cases, respectively. The sensitivity235

of response to l/h is shown by taking selected values of l/h from zero to unity

in each plot; note that l/h = 0 is the limit of the conventional, power law

creeping solid. The effect of invoking strain gradients in the creep theory with

l/h > 0 is to give a more uniform shear strain rate through the thickness of

the layer, see Fig. 2(c). The constrained higher-order boundary condition240

ε̇rz = 0 on z/h = 0 and z/h = 1 leads to a boundary layer of thickness on the

order of l, see Fig. 2(d) for the case l/h = 0.1. An elevation in compressive

strength of the layer with increasing l/h is evident in Figs. 2(e) and (f) for

unconstrained and constrained higher-order boundary conditions, respectively.

The imposition of a constrained higher-order boundary condition, ε̇rz = 0, also245

elevates the strength: for example, at l/h = 1, the peak value of axial stress

at r = 0 for the constrained case is about twice that for the unconstrained

case, compare Figs. 2(e) and (f).

The average pressure p̄ is obtained as p̄ = −(2/a2)
∫ a

0
σzz(r, z = h/2) r dr.

The numerical solution for (p̄/σ0)(hε̇0/v)
M is plotted in Fig. 3(a) as a250

function of l/h for M = 1/7, and for selected values of a/h, in the constrained

and unconstrained cases. Note that p̄ increases with increasing l/h and

with increasing a/h, and is larger for the constrained case than for the

unconstrained case. Analytical solutions have also been obtained by assuming

a suitable velocity field, as detailed in Appendix A. These upper bound255

solutions overestimate the numerical solutions by less than 10%.

It is instructive to re-plot the results of Fig. 3(a) by normalising the

average pressure p̄ at finite l/h by the response for l/h = 0, again as a

14



(a)

p̄

σ0

(
hε̇0
v

)M

constrained

unconstrained

a/h = 1

a/h = 10

a/h = 100

(b)

l/h

p̄

p̄(l = 0)

a/h = 1
10

100

a/h = 1

10

100

Fig. 3: Axisymmetric compression problem. Numerical solution for constrained and

unconstrained higher-order boundary conditions: (a) (p̄/σ0)(hε̇0/v)
M and (b) p̄/p̄(l = 0)

as a function of l/h for M = 1/7 and for selected values of a/h. The average pressure p̄ is

defined as the average of the axial stress on the mid-plane, that is, p̄ = −(2/a2)
∫ a

0
σzz(r, z =

h/2) r dr.
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function of l/h, see Fig. 3(b). For both constrained and unconstrained

higher-order boundary conditions, this ratio increases with increasing a/h up260

to a/h = 10, but then attains a limiting value for a/h > 10. This observation

suggests that, for large values of aspect ratio, the elevation in strength due

to the size effect, associated with l/h, and the elevation in strength due to

plastic constraint, associated with a/h, can be decoupled in a multiplicative

manner. This is confirmed in the following section, where an asymptotic265

analytical solution at large a/h is reported.

3.2. Asymptotic solution for large aspect ratio a/h ≫ 1

Accurate finite element solutions at large values of aspect ratio a/h are

computationally expensive. Moreover, the derivation of an asymptotic solution

for large aspect ratio allows us to shed light on the relative importance of270

plastic constraint and size effect on the sensitivity of compressive strength to

layer thickness.

An upper bound solution for the average pressure is derived in Appendix

A. Write ā = a/h as the aspect ratio, and r̂ = r/a and z̄ = z/h as the

non-dimensional cylindrical co-ordinates. Then, the upper bound solution is275

based upon an assumed velocity field of:

u̇r

v
= ār̂

[
C1z̄(1− z̄) + C2z̄

2(1− z̄)2 + C3z̄
3(1− z̄)3

]
(13a)

and

u̇z

v
= −2C1

(
1

2
z̄2 − 1

3
z̄3
)
− 2C2

(
1

3
z̄3 − 1

2
z̄4 +

1

5
z̄5
)

− 2C3

(
1

4
z̄4 − 3

5
z̄5 +

1

2
z̄6 − 1

7
z̄7
)

(13b)
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where C1, C2 and C3 are scaling factors, to be determined by imposition

of the boundary conditions and by minimisation of compressive load. An

analogous displacement field has been proposed by Niordson and Hutchinson280

(2011) for the corresponding plane strain, rate independent problem.

As detailed in Appendix A, at large aspect ratio ā ≫ 1, the average

pressure can be written in non-dimensional fashion as Eq. (A.12), and

repeated here as:

p̄

σ0

(
hε̇0
v

)M

=
āM+1

M + 3
min
C2

{
gc
(
C2,M, l̄

)}
(14)

where l̄ = l/h and the function gc to be minimised is given in Eq. (A.11) of285

Appendix A. Note from Eq. (14) that (p̄/σ0)(hε̇0/v)
M is multiplicatively

decomposed into a contribution depending upon ā, quantifying the effect of

plastic constraint, and a contribution depending upon l̄, quantifying the role

of size effect. Both contributions depend upon the creep exponent M .

The ratio of average pressure p̄ given by Eq. (14) to the average pressure290

given by conventional rate dependent plasticity, p̄(l = 0), is independent of ā.

For illustration, this ratio is plotted in Fig. 4 as a function of l/h, for selected

values of M . Predictions for the unconstrained case are given in Fig. 4(a)

and for the constrained case in Fig. 4(b). The choice M = 0 corresponds to

the rigid, ideally plastic limit. The ratio p̄/p̄(l = 0) increases with increasing295

M , except for small l/h in the unconstrained case. A comparison with the

numerical solution for large aspect ratio is provided in Appendix A.

4. Shear problem

The strain gradient viscoplasticity theory of Section 2 is now specialised

to a one-dimensional version of the shear problem sketched in Fig. 1(b). A300
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(a)

l/h

p̄

p̄(l = 0)

M = 0
1/7

1/3

1unconstrained

(b)

l/h

M = 0

1/7

1/3

1constrained

Fig. 4: Axisymmetric compression problem. Asymptotic solution for large aspect ratio

a/h ≫ 1 for the average pressure p̄ normalised by the conventional value p̄(l = 0) as

a function of l/h, for selected values of creep exponent M . (a) Unconstrained and (b)

constrained higher-order boundary conditions.

Cartesian reference system (x, z) is introduced, with origin at the centre of

the bottom face of the layer. The face of the layer at z = 0 is fixed, whereas

a tangential velocity (in the x-direction) u̇x = v is imposed on the face at

z = h. For large aspect ratio a/h ≫ 1, edge effects can be neglected and the

problem is one-dimensional in the z-direction. The only non-zero velocity305

component is u̇x, and the only non-zero component of the strain rate tensor

is the shear strain rate γ̇ ≡ 2ε̇xz = ∂u̇x/∂z.

4.1. Numerical solution

A numerical solution for the one-dimensional shear problem γ̇(z) is ob-

tained by making use of COMSOL Multiphysics. The equilibrium statements310

of Eqs. (6) reduce to a single equation (q − τ,z),z = 0, where the symbols q

18



and τ are used to simplify the notation of qxz and τxzz, respectively. Note

that (q, τ) are the only non-zero components of the stress tensors qij and τijk

for the case of simple shear, and are related to γ̇ and γ̇,z via the constitutive

relations of Eqs. (12).315

The governing equilibrium equation is a non-linear fourth-order equation

in the unknown tangential displacement u̇x. This equation is implemented

in COMSOL Multiphysics, and quadratic finite elements are used for the

numerical discretisation. The mesh again consists of 100 finite elements in the

z-direction, with a finer mesh adopted near the domain boundaries; the ratio320

of largest to smallest element size equals 20. The boundary conditions are

u̇x = 0 on z = 0 and u̇x = v on z = h. The constrained higher-order boundary

condition is γ̇ = 0 on z = 0 and z = h. In contrast, the unconstrained

higher-order boundary condition is τ = 0 on z = 0 and z = h. We can state

immediately that the unconstrained higher-order boundary condition reduces325

the problem to the trivial case of simple shear of a conventional power law

creeping solid.

The normalised velocity field u̇x/v and the normalised shear strain rate

hγ̇/v, as obtained by the numerical solution for constrained higher-order

boundary conditions, are plotted in Fig. 5 as a function of z/h, for M = 1/7330

and for selected values of l/h. A comparison between Fig. 2(d) and Fig. 5(b)

reveals that the shear strain rate gradient at the layer/substrate interfaces is

much larger for the compressed sample than for the sheared sample. Moreover,

in compression, a shear strain rate gradient develops at the mid-plane, unlike

the shear case. For the choice of unconstrained γ̇ at the boundaries, the335

solution is one of uniform shear strain rate, and is labelled l/h = 0 in Fig. 5.
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(a)

u̇x/v

z

h

l/h = 0

l/h = 0.1

l/h = 1

(b)

hγ̇/v

l/h = 0

l/h = 0.1

l/h = 1

Fig. 5: Shear problem. Numerical solution for constrained higher-order boundary condition:

(a) u̇x/v and (b) hγ̇/v as a function of z/h for M = 1/7 and for selected values of l/h. The

solution for l/h = 0 corresponds to the solution of the conventional viscoplastic problem or,

equivalently, of the strain-gradient viscoplastic problem with an unconstrained higher-order

boundary condition.

The traction Tx, denoted by T for brevity, is plotted as a function of l/h

in Fig. 6(a). Predictions are given for selected values of M . The traction

increases with increasing l/h, and increases with increasing M except for

small values of l/h. The ratio T/T (l = 0), quantifying the size effect in shear,340

is given in Fig. 6(b), again as a function of l/h and for selected values of M .

The size effect increases with increasing l/h and with increasing M , as for

constrained compression. A comparison of the numerical solution with an

upper bound analytical solution for an assumed velocity field is presented in

Appendix B.345

The differences in the profiles of shear strain rate through the thickness of
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(a)

T
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(
hε̇0
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(b)

T

T (l = 0)
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M = 0.01
1/7
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1

Fig. 6: Shear problem. Numerical solution for (a) (T/σ0)(hε̇0/v)
M and (b) T/T (l = 0)

as a function of l/h and for selected values of M , in the case of constrained γ̇ at the

boundaries.
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the layer in axisymmetric compression and in shear explain why the predicted

size effect in compression is larger than in shear. For example, given M = 1/7

and l/h = 1, and for constrained higher-order boundary conditions, a three

times larger size effect in compression than in shear is observed by comparing350

Fig. 4(b) and Fig. 6(b). A quantitative comparison between size effects

revealed by recent experiments of Stallard et al. (2023) and predicted by the

strain gradient based creep theory for compressed and sheared constrained

lithium layers is now given.

5. Comparison with experiments on lithium355

Axisymmetric compression data for lithium given by Stallard et al. (2023)

are plotted in the form of of p̄(hε̇0/v)
M(h/a)M+1 versus thickness h in Fig.

7(a). Stallard et al. (2023) compressed lithium spheres of initial diameter

D until the lithium specimen could be adequately described by a circular

cylinder of radius a and height h, and they plotted p̄ versus a/h. Volume360

conservation demands that the height h is directly related to the aspect ratio

a/h by h/D = (1/6)1/3(h/a)2/3. Consequently, a plot of p̄ versus a/h can

be transformed into a plot of p̄ versus h for any sample of initial diameter

D. We fit the strain gradient theory with constrained higher-order boundary

conditions to these data in order to determine the material length scale l.365

Predictions are given for selected values of l in Fig. 7(a), with σ0 = 1MPa

and M = 1/6.55 (Masias et al., 2019; Fincher et al., 2020). Best agreement

with experiments is obtained for a value of l on the order of 3µm.

Shear data presented in Stallard et al. (2023) are plotted in terms of

T (hε̇0/v)
M as a function of h in Fig. 7(b). Numerical curves for the con-370
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h [µm]
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(
hε̇0
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D = 574µm
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(b)
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Fig. 7: Comparison between experimental results and numerical solution of the strain

gradient theory with constrained higher-order boundary conditions for (a) axisymmetric

compression and (b) simple shear. Predictions are given for selected values of l. Both

experimental results and numerical solution assume a creep exponent M = 1/6.55.
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strained creep problem, obtained again for σ0 = 1MPa and M = 1/6.55, are

included in Fig. 7(b). The solution of the constrained creep problem slightly

underestimates the measured shear response, for the choice l = 3µm that

gave the best fit to the compression data. It is anticipated that a better fit

to both the compression and shear data can be achieved by the use of a more375

sophisticated gradient theory that involves more than a single length scale,

see for example Smyshlyaev and Fleck (1996). Begley and Hutchinson (1998)

have shown that more than one material length scale is needed in order to

predict the observed size effect in shear tests and in indentation. Specifically,

they showed that indentation gives rise to stretch gradients whereas shear380

tests give rise to rotation gradients, that is, curvature. Different material

length scales can accompany these two modes of deformation.

6. Concluding remarks

The present study highlights the fact that size effects are observed in power

law creeping metals and alloys in addition to the regime of rate independent385

plasticity. The underlying physical mechanisms remain to be resolved but

it is noted here that the material length scale l that is needed to fit strain

gradient plasticity models to observed size effects is on the order of 3µm.

It is conjectured that the relevant material length scale that dictates the

value of l is the steady-state subgrain size λss, which is sensitive to the ratio390

of steady-state flow stress σss to shear modulus G. For lithium tested at

ε̇ss = 10−3 s−1, σss is on the order of 1MPa such that σss/G = 3× 10−4. The

steady-state subgrain size λss is about 15µm for σss/G = 3× 10−4 in the case

of aluminium and 304 stainless steel, see Figs. 18 and 19 of the review article
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by Kassner and Pérez-Prado (2000). Precise values of λss for lithium have395

not been reported in the literature to the author’s knowledge. There remains

the need to relate the material length scale l to the evolving microstructure

in the creep regime. An initial attempt to generate a macroscopic gradient

theory for a periodic composite microstructure made from rate independent,

elasto-plastic solids was achieved by the pioneering study of Triantafyllidis400

and Bardenhagen (1996).

The analysis of the present study reveals that the dominant gradient in

axisymmetric compression is the gradient of shear strain rate through the

thickness of the specimen. Such a gradient of shear strain rate exists for

simple shear of the thin layer when subjected to fully constrained higher-405

order boundary conditions. In contrast, unconstrained higher-order boundary

conditions give no predicted size effect for simple shear and only a mild

size effect for axisymmetric compression. Finally, the analytical models

give useful physical insight into the dominant terms of the velocity field in

both axisymmetric compression and simple shear. The analytical model for410

axisymmetric compression reveals that the size effect can be decoupled in a

multiplicative manner from the effect of plastic constraint associated with

specimen aspect ratio a/h.
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Appendix A. Analytical solution for axisymmetric compression

An analytic solution for the axisymmetric compression problem of Section

3 is obtained for the assumed velocity field of Eqs. (13). The non-vanishing

components of the strain rate tensor follow directly as:

ε̇rr ≡
∂u̇r

∂r
=

v

h

[
C1z̄(1− z̄) + C2z̄

2(1− z̄)2 + C3z̄
3(1− z̄)3

]
(A.1a)

ε̇θθ ≡
u̇r

r
= ε̇rr (A.1b)

ε̇zz ≡
∂u̇z

∂z
= −2ε̇rr (A.1c)

2ε̇rz ≡
∂u̇r

∂z
+
∂u̇z

∂r
=

v

h
ār̂(1−2z̄)

[
C1 + 2C2z̄(1− z̄) + 3C3z̄

2(1− z̄)2
]
(A.1d)

The incompressibility constraint ε̇kk = 0 is satisfied identically by the chosen425

velocity field. Note that only the shear strain rate ε̇rz depends on r. The

non-vanishing components of the strain rate tensor gradient are given by:

ε̇rr,z ≡
∂ε̇rr
∂z

=
v

h2
(1− 2z̄)

[
C1 + 2C2z̄(1− z̄) + 3C3z̄

2(1− z̄)2
]

(A.2a)

ε̇θθ,z ≡
∂ε̇θθ
∂z

= ε̇rr,z (A.2b)

ε̇zz,z ≡
∂ε̇zz
∂z

= −2ε̇rr,z (A.2c)

2ε̇rz,r ≡ 2
∂ε̇rz
∂r

= ε̇rr,z (A.2d)
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ε̇rz,z ≡
∂ε̇rz
∂z

=
v

h2
ār̂
[
−C1 + C2(6z̄

2 − 6z̄ + 1) + 3C3z̄(1− z̄)(5z̄2 − 5z̄ + 1)
]

(A.2e)

2ε̇θz,θ ≡ 2
ε̇rz
r

= ε̇rr,z (A.2f)

Consequently, the only component of ε̇ij,k that depends upon r is the shear

strain rate gradient in the z-direction, ε̇rz,z.

The velocity field given by Eqs. (13) is chosen to be of a form that satisfies430

the boundary conditions u̇z = 0 on z = 0 and u̇r = 0 on both z = 0 and

z = h. The prescribed velocity u̇z = −v on the upper surface z = h imposes

an algebraic constraint between the scaling factors C1, C2 and C3 such that

C3 = 70

(
1− C1

3
− C2

15

)
(A.3)

Note that ε̇rr = ε̇θθ = ε̇zz = 0 on z = 0 and on z = h for any choice of C1

and C2; this is a direct consequence of the no-slip boundary condition and435

incompressibility constraint. There remains choice in the assumed higher-

order boundary condition on z = 0 and z = h, as follows. The kinematically

constrained higher-order boundary condition demands that ε̇rz = 0, while the

unconstrained higher-order boundary condition corresponds to a vanishing

higher-order traction trz. In the constrained case, C1 vanishes from Eq.440

(A.1d). Alternatively, in the unconstrained case, a vanishing value of trz on

the upper and lower boundaries implies that ε̇rz,z = 0 via Eqs. (7b) and

(12b); consequently, C1 equals C2, as demanded by Eq. (A.2e).

The effective strain rate in Eq. (9) is written in terms of the strain rate

components in Eqs. (A.1) and of the strain rate gradient components in Eqs.445

(A.2). Define the creep potential of the body Φ as the volume integral of the

creep potential Up(Ėp) in Eq. (10) over the body. Consequently, Φ is of the
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form

Φ = (πa2h)
σ0ε̇0
M + 1

(
v

ε̇0h

)M+1

fc
(
C2,M, l̄, ā

)
(A.4)

where l̄ = l/h and the non-dimensional function fc reads

fc = 2

∫ 1

0

∫ 1

0

{
4
[
C1z̄(1− z̄) + C2z̄

2(1− z̄)2 + C3z̄
3(1− z̄)3

]2

+
ā2r̂2 + 14l̄2

3
(1− 2z̄)2

[
C1 + 2C2z̄(1− z̄) + 3C3z̄

2(1− z̄)2
]2

+
4ā2l̄2r̂2

3

[
−C1 + C2(6z̄

2 − 6z̄ + 1) + 3C3z̄(1− z̄)(5z̄2 − 5z̄ + 1)
]2
}M+1

2

r̂dr̂dz̄

(A.5)

Recall that C3 depends upon C1 and C2 via Eq. (A.3); moreover, C1 = 0450

in the constrained case and C1 = C2 in the unconstrained case. The value

of the remaining integration constant C2 is obtained by minimisation of the

rate potential of the body (Fleck and Willis, 2009; Niordson and Hutchinson,

2011). Given values of M , l̄ and ā, minimisation of fc with respect to C2

gives the optimal value of C2.
2 The corresponding value of Φ, called Φmin, is455

used to determine the average pressure p̄ such that

p̄ =
1

πa2
∂Φmin

∂v
= σ0

(
v

hε̇0

)M

min
C2

{
fc
(
C2,M, l̄, ā

)}
(A.6)

The non-dimensional average pressure (p̄/σ0)(hε̇0/v)
M , given by Eq. (A.6), is

plotted in Fig. A.1(a) as a function of l/h, for M = 1/7 and for selected values

of a/h. For comparison purposes, the numerical solution given previously in

Fig. 3(a) is included in Fig. A.1(a). Excellent agreement is observed between460

2To find the optimal value of C2 for given values of M , l̄ and ā, the function fc is

numerically evaluated in MATLAB, version R2020A, for each integer value of C2 in the

range −1000 < C2 < 1000. The function vpaintegral is used for numerical integration.
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analytical and numerical solutions. We emphasise that the analytical solution

is an upper bound to the numerical solution, and slightly overpredicts the

numerical solution by less than 10%.

Strain gradient effects are absent for the choice l = 0, conventional rate

dependent plasticity is recovered and no higher-order boundary condition can465

be imposed. In this limit it is necessary to minimise fc with respect to both

C1 and C2. Therefore, for conventional rate dependent plasticity:

p̄(l = 0) = σ0

(
v

hε̇0

)M

min
C1,C2

{
fc
(
C1, C2,M, l̄ = 0, ā

)}
(A.7)

The prediction of Eq. (A.7) and the finite element solution for l = 0 are

plotted in Fig. A.2 as a function of a/h and for selected values of M . The

upper bound analytical solution overpredicts the numerical solution by less470

than 8%, and its accuracy increases with increasing M . For completeness, the

viscous analytical solution of Cheung and Cebon (1997) for the compression

of a thin power law creeping film is included in Fig. A.2. Their formula reads

p̄

σ0

=
1

M + 3

(
2√
3

)M+1(
2M + 1

2M

)M (
v

hε̇0

)M (a
h

)M+1

(A.8)

and converges to the numerical solution for l = 0 at large aspect ratio a/h.

Convergence with respect to a/h is attained more quickly as M is increased.475

The effect of strain rate gradients upon the required force for axisymmet-

ric compression of the sandwich layer with higher-order constraint can be

quantified by taking the ratio of Eqs. (A.6) and (A.7):

p̄

p̄(l = 0)
=

min
C2

{
fc
(
C2,M, l̄, ā

)}

min
C1,C2

{
fc
(
C1, C2,M, l̄ = 0, ā

)} (A.9)
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Fig. A.1: Axisymmetric compression problem. Numerical solution (black lines) and ana-

lytical solution (red data points) for constrained and unconstrained higher-order boundary

conditions: (a) (p̄/σ0)(hε̇0/v)
M and (b) p̄/p̄(l = 0) as a function of l/h for M = 1/7 and

for selected values of a/h.
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a/h

p̄

σ0

(
hε̇0
v

)M

Numerical sol.
Cheung and Cebon (1997)

Analytical sol.

M = 0.01

1/7

1/3

1

Fig. A.2: Non-dimensional average pressure (p̄/σ0)(hε̇0/v)
M as a function of a/h for

conventional power law creep: the viscous solution Eq. (A.8) of Cheung and Cebon (1997),

the numerical solution of Section 3 for l = 0 and the analytical upper bound solution Eq.

(A.7).

This pressure ratio is plotted in Fig. A.1(b) as a function of l/h, for the

choice M = 1/7 and for selected values of aspect ratio a/h, alongside the480

numerical solution that is taken from Fig. 3(b).

Now consider the case of large aspect ratio, ā = a/h ≫ 1. Except for

small values of r̂ = r/a ≪ 1, the shear strain rate in Eq. (A.1d) and the

shear strain rate gradient in Eq. (A.2e) dominate all other components of the

strain rate tensor and of the gradient of the strain rate tensor, respectively.485

Therefore, the effective strain rate in Eq. (9) can be simplified by including
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only the contributions from Eqs. (A.1d) and (A.2e). Consequently, Eq. (A.4)

reduces to

Φ = (πa2h)
σ0ε̇0
M + 1

(
v

ε̇0h

)M+1
āM+1

M + 3
gc
(
C2,M, l̄

)
(A.10)

where

gc = 2

∫ 1

0

{
1

3
(1− 2z̄)2

[
C1 + 2C2z̄(1− z̄) + 3C3z̄

2(1− z̄)2
]2

+
4l̄2

3

[
−C1 + C2(6z̄

2 − 6z̄ + 1) + 3C3z̄(1− z̄)(5z̄2 − 5z̄ + 1)
]2
}M+1

2

dz̄

(A.11)

As before, C3 is given by Eq. (A.3), C1 vanishes in the constrained case and490

C1 equals C2 in the unconstrained case. For any specified values of M and

l̄, minimisation of gc with respect to C2 gives the optimal value of C2. The

corresponding value of Φ, called Φmin, gives the average pressure p̄ such that

p̄ =
1

πa2
∂Φmin

∂v
= σ0

(
v

hε̇0

)M
āM+1

M + 3
min
C2

{
gc
(
C2,M, l̄

)}
(A.12)

It is clear from Eq. (A.12) that the contribution of ā and of l̄ upon p̄

decouples in a multiplicative manner. Also, Eqs. (A.8) and (A.12) give the495

same functional form of the dependence of non-dimensional average pressure

p̄ upon aspect ratio ā. In the limit of a conventional, rate dependent solid,

Eq. (A.7) becomes

p̄(l = 0) = σ0

(
v

hε̇0

)M
āM+1

M + 3
min
C1,C2

{
gc
(
C1, C2,M, l̄ = 0

)}
(A.13)

The pressure ratio is again defined by p̄/p̄(l = 0), and reads

p̄

p̄(l = 0)
=

min
C2

{
gc
(
C2,M, l̄

)}

min
C1,C2

{
gc
(
C1, C2,M, l̄ = 0

)} (A.14)
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This ratio is plotted in Fig. 4 as a function of l/h for selected values of M ,500

for both constrained and unconstrained higher-order boundary conditions. A

comparison of Eq. (A.14) with finite element results obtained for a/h = 10 is

given in Fig. A.3. Its accuracy is adequate for present purposes.

Appendix B. Analytical solution for shear

In order to obtain an analytical solution for the shear problem, it is505

convenient to introduce the Cartesian coordinate Z = z− h/2, with origin on

the mid-plane of the sheared layer. Assume fully constrained higher-order

boundary conditions such that γ̇ = 0 on Z = ±h/2. A strain rate field γ̇(Z)

(a)

l/h

p̄

p̄(l = 0)

M = 0.01

M = 1

unconstrained

(b)

l/h

M = 0.01

M = 1

constrained

Fig. A.3: Axisymmetric compression problem. Average pressure p̄ normalised by p̄(l = 0)

as a function of l/h, for selected values of creep exponent M , as given by the numerical

solution for a/h = 10 (black lines) and by the asymptotic solution for large aspect ratio

a/h ≫ 1 in Eq. (A.14) (red data points). (a) Unconstrained and (b) constrained higher-

order boundary conditions.
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that satisfies this requirement is

hγ̇

v
= C1

(
Z̄2 − 1

4

)
+ C2

(
Z̄2 − 1

4

)2

(B.1)

where Z̄ = Z/h and C1 and C2 are unknown integration constants. Integration510

gives
u̇x

v
= C1

(
Z̄3

3
− Z̄

4

)
+ C2

(
Z̄5

5
− Z̄3

6
+

Z̄

16

)
+ C3 (B.2)

and symmetry requires that u̇x/v = 1/2 at Z = 0, such that C3 = 1/2. The

velocity boundary conditions of u̇x = 0 at Z = −h/2 and u̇x = v at Z = h/2

require that C2 = 5C1 + 30. Consequently, the tangential velocity, shear

strain rate and its gradient for the constrained case are:515

u̇x

v
= C1

(
Z̄5 − Z̄3

2
+

Z̄

16

)
+ 6Z̄5 − 5Z̄3 +

15

8
Z̄ +

1

2
(B.3a)

hγ̇

v
= C1

(
5Z̄4 − 3

2
Z̄2 +

1

16

)
+ 30Z̄4 − 15Z̄2 +

15

8
(B.3b)

h2γ̇,z
v

= C1

(
20Z̄3 − 3Z̄

)
+ 120Z̄3 − 30Z̄ (B.3c)

The effective strain rate, as defined in Eq. (9), reduces to Ė2
p =

(
γ̇2 + l2γ̇2

,z

)
/3.

The creep potential Up(Ėp) in Eq. (10) is used to obtain the rate potential

per unit length in the x-direction and per unit depth, Φ =
∫ h/2

−h/2
Up(Ėp) dZ,

and consequently

Φ = h
σ0ε̇0
M + 1

(
v

ε̇0h

)M+1

gs
(
C1,M, l̄

)
(B.4)

where l̄ = l/h and520

gs =

∫ 1/2

−1/2

{
1

3

[
C1

(
5Z̄4 − 3

2
Z̄2 +

1

16

)
+ 30Z̄4 − 15Z̄2 +

15

8

]2

+
l̄2

3

[
C1

(
20Z̄3 − 3Z̄

)
+ 120Z̄3 − 30Z̄

]2
}M+1

2

dZ̄ (B.5)
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The function gs is minimised numerically with respect to C1 and the cor-

responding minimum value of Φ is denoted as Φmin. The shear stress σxz,

corresponding to the traction Tx at Z = ±h/2, see Eq. (7a), is denoted as T

for convenience of notation and reads

T =
∂Φmin

∂v
= σ0

(
v

hε̇0

)M

min
C1

{
gs
(
C1,M, l̄

)}
(B.6)

This is plotted in non-dimensional fashion in Fig. B.1(a) as a function of l/h,525

for selected values of M , alongside the numerical solution previously given

in Fig. 6(a). The analytical solution is an upper bound to the numerical

solution and overestimates the latter by less than 9%. The accuracy of the

analytical solution increases with increasing M , consistent with the case of

compression, as noted above.530

Now consider unconstrained higher-order boundary conditions. The shear

strain rate is uniform, γ̇ = v/h; consequently, the gradient theory reduces to

the conventional theory for a power law creeping solid and the shear traction

is

T (l = 0) = σ0

(
v

hε̇0

)M
(√

3

3

)M+1

(B.7)

Finally, the ratio of Eq. (B.6) to Eq. (B.7), which gives a measure of the535

strengthening in shear due to the constraint of vanishing shear strain rate at

the boundaries in the strain gradient theory, is

T

T (l = 0)
=

(√
3

3

)−M−1

min
C1

{
gs
(
C1,M, l̄

)}
(B.8)

This ratio is plotted in Fig. B.1(b), alongside the numerical solution of Fig.

6(b): agreement is again adequate.
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(a)

T

σ0

(
hε̇0
v

)M

M = 0.01
1/7

1/3

1

(b)

T

T (l = 0)

l/h

M = 0.01
1/7

1/3

1

Fig. B.1: Shear problem. Numerical solution (solid lines) and analytical solution (red

data points) for (a) (T/σ0)(hε̇0/v)
M and (b) T/T (l = 0) as a function of l/h, for selected

values of M . The constrained higher-order boundary condition γ̇ = 0 is assumed.

36



References540

Ashby, M.F., 1970. The deformation of plastically non-homogeneous materials.

The Philosophical Magazine: A Journal of Theoretical Experimental and

Applied Physics 21, 399–424.

Begley, M.R., Hutchinson, J.W., 1998. The mechanics of size-dependent

indentation. Journal of the Mechanics and Physics of Solids 46, 2049–2068.545

Cheng, E.J., Sharafi, A., Sakamoto, J., 2017. Intergranular Li metal prop-

agation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte.

Electrochimica Acta 223, 85–91.

Cheung, C.Y., Cebon, D., 1997. Thin film deformation behavior of power-law

creeping materials. Journal of Engineering Mechanics 123, 1138–1152.550

Dahlberg, C.F.O., Ortiz, M., 2019. Fractional strain-gradient plasticity.

European Journal of Mechanics - A/Solids 75, 348–354.

Danas, K., Deshpande, V.S., Fleck, N.A., 2010. Compliant interfaces: A

mechanism for relaxation of dislocation pile-ups in a sheared single crystal.

International Journal of Plasticity 26, 1792–1805.555

Fincher, C.D., Ojeda, D., Zhang, Y., Pharr, G.M., Pharr, M., 2020. Me-

chanical properties of metallic lithium: from nano to bulk scales. Acta

Materialia 186, 215–222.

Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain

gradient plasticity: Theory and experiment. Acta Metallurgica et Materialia560

42, 475–487.

37



Fleck, N.A., Willis, J.R., 2009. A mathematical basis for strain-gradient

plasticity theory. Part II: Tensorial plastic multiplier. Journal of the

Mechanics and Physics of Solids 57, 1045–1057.

Herbert, E.G., Hackney, S.A., Thole, V., Dudney, N.J., Phani, P.S., 2018.565

Nanoindentation of high-purity vapor deposited lithium films: A mechanis-

tic rationalization of diffusion-mediated flow. Journal of Materials Research

33, 1347–1360.

Hutchinson, J.W., Fleck, N.A., 1997. Strain gradient plasticity. Advances in

Applied Mechanics 33, 295–361.570

Iliev, S.P., Chen, X., Pathan, M.V., Tagarielli, V.L., 2017. Measurements of

the mechanical response of indium and of its size dependence in bending

and indentation. Materials Science and Engineering: A 683, 244–251.

Janek, J., Zeier, W.G., 2016. A solid future for battery development. Nature

Energy 1, 1–4.575

Kasemchainan, J., Zekoll, S., Spencer Jolly, D., Ning, Z., Hartley, G.O.,

Marrow, J., Bruce, P.G., 2019. Critical stripping current leads to den-

drite formation on plating in lithium anode solid electrolyte cells. Nature

Materials 18, 1105–1111.
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