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A theoretical study is given of viscoelastic microbuckling of fiber composites. The

analysis is formulated in terms of general linear viscoelastic behavior within the kink
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band. Material outside the kink band is assumed to behave elastically. Two specific
forms of linear viscoelastic behavior are considered:
model and a logarithmically creeping model. Results are provided as deformation
versus time histories and failure life versus applied stress. Failure is due to either

a standard linear viscoelastic

the attainment of a critical failure strain in the kink band or to the intervention of
a different failure mechanism such as plastic microbuckling.

Introduction

Microbuckling has been shown usually to be the dominant
mechanism of compressive failure of aligned fiber composite
materials (Argon, 1972; Budiansky and Fleck, 1993). The form
of microbuckling under consideration here is an event in which
the composite suffers localized buckling within a kink band.
In laminates this is commonly observed in plies with fiber axes
that are parallel to the loading direction. Matrix cracking of
off-axis plies (plies with fiber axes not in the loading direction)
and inter-ply delamination may occur concurrently, but mi-
crobuckling is thought to control failure when the proportion
of off-axis plies is not large (Soutis, 1991). A physical under-
standing of the factors which control microbuckling is there-
fore important in order to design fiber composites of improved
compressive strength.

Several studies of time-independent compressive failure have
been undertaken. A preliminary theoretical analysis by Rosen
(1965) treated microbuckling as an elastic buckling phenom-
enon. Results from this analysis, however, severely overesti-
mate the critical stresses necessary for microbuckling.
Subsequent theoretical analyses which have sought to modify
the Rosen model to account for this discrepancy between pre-
dicted and measured strengths (e.g., Steif, 1988) have met with
limited success. More recent studies by Argon (1972) and Bu-
diansky and Fleck (1993) have included the effects of matrix
yielding, initial fiber misalignment, and fiber extensibility. In
these analyses, the assumption is made that a band of misa-
ligned fibers exists and that the composite exhibits a predilec-
tion to microbuckle uniformly within this band. These latter
studies form the foundation on which the current analysis is
based.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
ofF MEcHANICAL ENGINEERS for presentation at the ASME Winter Annual Meet-
ing, New Orleans, LA, Nov. 28-Dec. 3, 1993.

Discussion on this paper should be addressed to the Technical Editor, Pro-
fessor Lewis T. Wheeler, Department of Mechanical Engineering, University of
Houston, Houston, TX 77204-4792, and will be accepted until four months after
final publication of the paper itself in the ASME JOURNAL OF APPLIED ME-
CHANICS.

Manuscript received by the ASME Applied Mechanics Division, Apr. 3, 1992;
final revision, Dec. 3, 1992. Associate Technical Editor: G. J. Dvorak.

Paper No. 93-WA/APM-16.

802 / Vol. 60, DECEMBER 1993

Many fiber composites are known to exhibit time-dependent
deformation behavior. Two of the more common examples,
carbon fiber-reinforced PEEK and carbon fiber-reinforced
epoxy resin, have been studied at ambient temperature (Ho-
roschenkoff et al., 1988) and at elevated temperatures (Ha et
al., 1991). In this paper, a linear viscoelastic composite be-
havior is assumed in order to examine time-dependent mi-
crobuckling of fiber composites in compression. The solution
is formulated in terms of a general relaxation function and
specific results are given for a standard linear viscoelastic solid
and a logarithmically creeping solid. The logarithmic creep
behavior is derived from the results of Horoschenkoff et al.
(1988).

The results of this study may also be applicable to woods.
Many woods fail by microbuckling in the S, layer of the cell
wall (Grossman and Wold, 1971; Dinwoodie, 1981). The cell
wall is composed of over 90 percent aligned tracheids by vol-
ume, which are natural fibers, bonded together by a weaker
substance consisting principally of pectopolyuronides and lig-
nin (Mark, 1967). These tracheids can be thought of as anal-
ogous to fibers in a fiber composite and the weaker bonding
material as analogous to the matrix. Wood is also known to
behave viscoelastically (Mark, 1967; Dinwoodie, 1981). Thus,
to a first approximation, wood may be thought of as a vis-
coelastic fiber composite.

Viscoelastic Microbuckling

In microbuckling of uniform, aligned fiber composites, a
kink band is formed in which the composite undergoes local-
ized catastrophic failure. This kink band is on the order of ten
fiber diameters in width and is generally not normal to the
fiber axes. A schematic of the kink band is shown in Fig. 1.
The kink band is at an angle 3 to the transverse direction and
is of width w. It is assumed that the fibers are inextensible and
that deformation within the band can be represented by the
change in fiber direction ¢. It is also assumed that an initial
imperfection, or misalignment, can be represented by ¢. Var-
iations along the kink band are ignored. Let two cartesian
coordinate systems, (e),e;) and (¢;,€), aligned with the fiber
direction outside and inside the kink, respectively, be defined
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Fig. 1

as shown in Fig. 1. For simplicity, remote loading
a” = —0e.e, + 77 (e, +ee)) is restricted to be proportional
and prescribed by the parameter e=7"/¢". We neglect remote
loading perpendicular to the fibers.

A uniform state of stress and strain, related by a linear elastic
response, is assumed to exist outside the kink band. Within
the kink band the stress is given by o=o0.€€; +0r€26;
+7(€1€62 + €26;) and the strain is given by e=eree
+ (1/2)y(e1€2 + €2€1). Expressions for kinematic conditions and
continuity of tractions across the kink band interface have
been derived by Budiansky and Fleck (1993). In the ¢,-direction

perpendicular to the kink band fibers, continuity of tractions -

requires
0™ [cosBsin( + ¢) + ecos(B + ¢ + ¢)]

=7c0s(8— 6 — ¢)+orsinB-¢—¢). (1)
For small ¢ and ¢ the approximate kinematic equations, re-

lating strains within the kink band to ¢, are (Budiansky and
Fleck, 1993)

eo”
< )]

er=¢tanf 3)

where v~ is the shear strain outside the kink band and G is
the composite shear modulus. The kink band angle 8 changes
with remote shear strain ¥~ according to

tan@=tanfB,— vy~

where (3, is the initial value of 8. For small v~, 8= f,.
Within the kink band, the composite is assumed to have a
linear viscoelastic response with independent transverse and
shear constitutive relations; if lim y(f)= lim er(¢) =0 then
{— -

[—

Y=o+ =0+

t
f(t)=S K (t—5)v (s)ds=Ks(0)y(1)

+S Ks(t—s)y(s)ds (@)

t
or(t) =Ky(0)er(t) + S Kr(t—s)er(s)ds )

where ¢ is time and f(t)s-;itf(t). K, (t) and K1(¢) are the

composite relaxation functions in shear and transverse strain-
ing, respectively. Substituting Eq. (2)-(5) into (1) gives
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Kink band geometry and notation

stiffness, &,

—ANVWW—

stiffness, k,

— (j,a

Lppprpzzzzizz

viscosity, 1L

Fig. 2(a) Representative diagram for standard linear viscoelastic solid

viscosity, i
time constant, f,

stiffness, k

A
Fig. 2(b) Representative diagram for logarithmically creeping solid

0™ [cosBsin(d + ¢) + ecos(8+ ¢ + ¢)] - {KS(O) <¢ + %)

ed” (s)
G

+S Ks(t—s)[¢(s)+

] dS} cos(B— ¢ — )

- {¢KI(0) + S Kr (t—s)qb(s)ds} tangsin(8 — ¢ — ¢)=0.
©)

Given composite relaxation functions and any loading history,
¢ (¢) with lim ¢%(z) =0, Eq. (6) can be solved numerically

= —00
for the kink band deformation history, ¢(¢). Note that the kink
band angle, 8, is not determined by this analysis. In fact, 8 is
a required independent variable. Typically, in carbon fiber
composites 3=20 deg. Specific forms of the relaxation func-
tions are now considered.

Standard Linear Viscoelastic Model. The standard linear
viscoelastic material is sketched in Fig. 2(@). The material re-
sponse satisfies the differential equation
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k 1 B .
l+—)o+— o=pe+ke 7
< k2> k ® 1 ©)]
where o is stress, ¢ is strain, k; and k, are elastic moduli, and
 is viscosity. The relaxation function X (¢) is defined as the
solution, o(?) for an ‘input’ e=H(t) where H(¢) is the Heav-
iside step function. Thus, the relaxation function is

ke 4 _kitk _t
K= {1 <1 . >exp[ u(k1+k2):|}H(t).
®

Let (G,,Gy,us) and (E),E,up) be the material properties
(ky,k,,p) for shear and transverse deformation, respectively.

Using Eq. (8), Eq. (6) can be rewritten for the standard
linear viscoelastic model. The six dimensional material con-
stants can be reduced to the following four nondimensional
constants

E, psEy =_Gi+G, = E+E,
A=—, 9= , G= , E= . 9
G, prGi G, E, ©)
With the additional nondimensional substitutions
— Ucn 3 1 - Gl
=—, t=—1, §=—3, 10
G, us Ks (10)

Eq. (6) becomes
5% [cosBsin(¢ + ¢) + ecos(B+ & + $)]
. —
- {¢+€3°°— § Ks(t—s5)[¢(5) +e0” (3)]d§}COS(l3-¢—¢)

—x{¢—n§ ?r(7—§)¢(§)d§}tan6sin(6—75—¢)=0 (11)
where

Ks(f) = (G- 1)exp(—t G)

K1(1) = (E - exp(—nt E).

12)
13)

Logarithmically Creeping Model. A logarithmically creep-
ing model for composite behavior is proposed based on the
results of Horoschenkoff et al. (1988). This material model is
shown in Fig. 2(b). The response of the system must satisfy

l+l_]__ 0= ¢
ko p\t+1t - ¢

where ¢ is stress, € is strain, & is an elastic modulus, u is
viscosity, and #, is a material time constant. The name for this
constitutive law comes from the logarithmic nature of the creep
function, i.e., the solution e(f) when o(¢) = H(t), given by

C()= [%+i ln<t£0+ 1)]H(t).

The required relaxation function is

t —-k/n
K(t)=k<—+l> H(?).
)

14

15)

Let (G,us,tos) and (E1,u1,207) be the material properties (k,u,%)
for shear and transverse deformation, respectively.

For the logarithmically creeping model, the four nondi-
mensional material constants are

E ts = G = E
A==, 9=, G=—, E=—, (16)
G tor s BT
and the nondimensional substitutions are
® -t _ s
_“EU—, t=—, 5=—. a1
G tos tos
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Rewriting Eq. (6) once again yields (11), but with new kernel
functions

Ks(1)=G(i+1)"°"!
Kr(1)y=Emi+1)~E-!,

(18)
(19

Material Properties. Both of the proposed viscoelastic
models require four nondimensional material constants. The
physical interpretation of these constants is similar for each
model. The first constant, A, is the ratio of the instantaneous
transverse stiffness to the instantaneous shear stiffness. Ex-
perimental measurements suggest A=2 (Hull, 1981). The sec-
ond material constant, 7, is the ratio of viscoelastic time scales
in the shear and transverse directions. This ratio is taken to
be unity (y=1) for simplicity. The third and fourth constants,
G and E, measure the viscoelastic response in comparison to
the initial elastic response for the shear and transverse direc-
tions, respectively. Assuming that G = E, what are appropriate
ranges of values for analysis? Based on the studies of Ha et
al. (1991) and Horoschenkoff et al. (1988), carbon fiber-rein-
forced epoxy resins are modeled as standard linear viscoelastic
materials with a range of G of 1.5-10.0 and carbon fiber-
reinforced PEEK’s are modeled as logarithmically creeping
materials with a range of G of 0.1-0.4.

Failure Criterion. Failure is associated with debonding of
the fiber-matrix interface, matrix microcracking, or with other
mechanisms which result in a sharp decrease in the load bearing
ability of the kink band. Several failure criteria are possible.
It is proposed here that failure occurs when the following
simple empirical criterion is satisfied:

e 2 2
CRR
ery, Y,

where e7y is the transverse failure strain and v, is the shear
failure strain. It is further assumed that er;<<+, so that, with
Eq. 3),

20

ey
tanB
where ¢y is the critical kink band deformation angle at failure.
For the purposes of this paper, er;=0.02. All of these as-
sumptions are in acceptable agreement with experimental evi-
dence (see, for example, Hull, 1981).

A consequence of failure is the concept of failure time or
viscoelastic life. Up to this point, only kink band deformation
as a function of time, ¢(f), has been discussed. As time, ¢,
tends to infinity, ¢(¢) reaches a finite limit in the standard
linear viscoelastic model or becomes unbounded in the loga-
rithmically creeping model. Failure occurs at a finite time, ¢,
when ¢ = ¢, given by Eq. (21).

b= @n

Results

Equation (11) is a nonlinear Volterra integral equation of
the second kind with well-behaved difference kernels. This
equation can be solved numerically by discretizing the integrals
using Simpson’s rule and stepping forward discretely in time,
t,=nAt where At is the step size. At each step, n, aroot finding
algorithm is used to calculate the deformation angle ¢,=¢(z,)
since the discrete solutions from previous steps, ¢;
(i=0,1,2,...,n—1), are known. It is assumed that the solution
is bounded by 0=¢ < /2. Techniques for the numerical so-
lution of integral equations can be found in Baker (1977).

Consideration is restricted to loading histories of the form

o™ (1) =0"H(?) 22)

with e=0 (i.e., 7°=0). Remote shear stress can be included
but does not affect the qualitative features of the results. As
previously discussed, A=2, n=1, and G=E. The kink band
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Fig. 3 Applied axial load versus time till failure for the standard linear

viscoelastic model (A\=2, =1, §=20 deg and 0 deg, ¢ =2 deg, ¢;,=3
deg, e=0, E= G)
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Fig.4 Kink band deformation angle versus time for the standard linear
viscoelastic model (\=2, n=1, =20 deg, ¢ =2 deg, e=0, E= G=10)

angle is taken to be 3=20 deg. The critical kink band defor-
mation angle is ¢,=3 deg via Eq. (21). The case =0 deg is
also considered, for comparison, but with ¢,=3 deg retained.
An initial misalignment angle of ¢ =2 deg is chosen in agree-
ment with measurements on several composites (Budiansky
and Fleck, 1993). Results for the standard linear viscoelastic
model representing carbon fiber-reinforced epoxy resins are
shown in Figs. 3 and 4 and those for the logarithmically creep-
ing model representing carbon fiber-reinforced PEEK’s are
given in Figs. 5 and 6.

The applied axial stress ¢~, as defined in Eq. (22), versus
the failure time, #;, is shown in Figs. 3 and 5 for representative
G values. Experimental results (Ha et al., 1991; Horoschenkoff
et al., 1988) indicate timescales #os and us/ G, both on the order
of one hour. The necessary load for instantaneous failure (#,=0)
is the same for both models and corresponds to the elastic
microbuckling load with initial misalignment as calculated by
Fleck and Budiansky (1991). The applied axial stress versus
failure time for the standard linear viscoelastic model, when
plotted on a logarithmic time scale (Fig. 3), has an ‘‘S”’ shaped
profile. The applied axial stress versus failure time for the
logarithmically creeping model, when plotted on a logarithmic
time scale (Fig. 5), is nearly linear over a wide range of failure
times. The evolution of kink band deformation, ¢(#), is shown
in Figs. 4 and 6 for different loads at a given G. The ordinate
of these plots is terminated at the critical fiber rotation angle
¢y=3 deg. '

For the standard linear viscoelastic model there exists a crit-
ical stress, 0%, below which ¢(f) < ¢, for all ¢ and failure never
occurs. At ¢ =07, ¢(t— ®)=¢,. For small ¢ and ¢, the crit-
ical stress in nondimensional form, 0% = 0%,/ G, follows from

Eq. (11) as
1+x@tanzﬁ

($+¢f)+e<l—%>
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Fig. 5 Applied axial load versus time till failure for the logarithmically
creeping model (\=2, n=1, =20 deg and 0 deg, ¢ =2 deg, ¢,=3 deg,
e=0, E=G)

@ (deg)
1.5

1

05

00.1 1 10 100
t/tos

Fig. 6 Kink band deformation angle versus time for the logarithmically

creeping model (A\=2, y=1, =20 deg, ¢ =2 deg, e=0, E= G=0.4)

Note from Eq. (23) that 5%, decreases linearly with decreasing
é7 and decreases with increasing G. A graphical construction
can be used to calculate 5. when 3=0 deg and e=0 (see Fig.
7). The constitutive Eq. (1) reduces, for small ¢ and ¢, to
—_ T

TP+ P)=—. 24

0 (o+9) G (24)
This equation is represented on the (¢,7/G>) plane by a line
of slope ™ and intercept (— ¢,0). At =0, the instantaneous
elastic response gives

- 25)

G,
which defines a line of slope unity going through the origin
on the (¢,7/G,) plane. At t— oo, the response is

T_$

G, G
which defines a line of slope 1/G going through the origin on
the (¢,7/G>) plane. At t=0, the 7— ¢ state of the kink band
material is given by the intersection of the lines defined by
Egs. (24) and (25). With increasing time, the 7— ¢ state moves
along the ray defined by Eq. (24). For ¢~ sufficiently small
(e.g., o7 in Fig. 7), ¢(t— =)< ¢, and failure does not occur;
as t— o the 7 — ¢ state moves to the intersection of lines defined
by Egs. (24) and (26). At high values of 5 (e.g., o5 in Fig.
7), ¢ attains ¢, at a finite time and failure occurs. At
o~ =0%, ¢ at the intersection of lines (24) and (26) equals ¢,.

(26)

Discussion

No mention has been made so far of plastic yielding within
the kink band. An alternative failure mechanism to viscoelastic
microbuckling is plastic instability by plastic microbuckling.
A typical critical stress for plastic microbuckling in both PEEK
and epoxy systems is ¢~ =0.3 (Fleck and Budiansky, 1991).
This stress level is shown in Figs. 3 and 5 as a dashed horizontal
line. Above this line, failure is due to plastic microbuckling
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o Fig.7 Stress-strain diagram for the standard linear viscoelastic model

when 8=0 deg and e=0

and failure times from the viscoelastic analysis do not apply.
Thus it is seen in Fig. 3 that a carbon fiber-epoxy composite,
modeled as a standard linear viscoelastic material, will either
fail by plastic microbuckling or not at allif G=1.5. For G=3.0
and G=10.0, viscoelastic microbuckling can occur at stress
levels below the plastic microbuckling stress. In order to max-
imize viscoelastic strength for this material, ¢, should be max-
imized and G should be minimized. Figure 5 shows that a
carbon fiber-PEEK composite, modeled as a logarithmically
creeping solid, fails at low stress levels by viscoelastic micro-
buckling, for all G. For example, for 6=, viscoelastic micro-
buckling requires a minimum of 100 hours (fs=1 hour) at
G=0.2.

The microbuckling analysis of Budiansky and Fleck (1993),
on which this paper is based, follows the collapse response of
an imperfect structure. It is not a bifurcation analysis. The
effects of fiber bending stiffness are neglected, with the result
that there is no length scale in the analysis. Previous studies
have shown that this is a valid approximation (Budiansky,
1979). Fibers are implicitly assumed to be broken at the kink
band interface, but without fiber bending stiffness this is not
an issue. The issue of kink band initiation, in which the kink
band might be imagined to begin at some region of local com-
posite weakness or stress concentrator and then propagate out,
has not been addressed. This is an important topic and kink
bands are seen to form and grow in this way under certain
conditions, e.g., at notch tips. However, the nature of the
analysis presented here is that the kink band is treated as a
one-dimensional structure. No variations in stress or defor-
mation are allowed along the length of the kink band. The
relative importance of kink band initiation is a topic for future
investigation.

There is a dearth of experimental studies of viscoelastic
failure in fiber composites under compression. In part this may
be explained by the experimental difficulties that arise from a
lack of knowledge of the time scales and loads involved. This
situation is aggravated by the inevitable scatter in mechanical
properties from one sample to the next. A load that may trigger
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plastic microbuckling in one sample may be insufficient to
cause viscoelastic microbuckling in another. Hopefully, this
study will help to alleviate these problems.
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