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Abstract—Dislocation theory is used to invoke a strain gradient theory of rate independent plasticity.
Hardening is assumed to result from the accumulation of both randomly stored and geometrically
necessary dislocations. The density of the geometrically necessary dislocations scales with the gradient of
plastic strain. A deformation theory of plasticity is introduced to represent in a phenomenological manner
the relative roles of strain hardening and strain gradient hardening. The theory is a non-linear
generalization of Cosserat couple stress theory. Tension and torsion experiments on thin copper wires
confirm the presence of strain gradient hardening. The experiments are interpreted in the light of the new

theory.

1. INTRODUCTION

1.1. Scale effects in plasticity

In this paper we develop a phenomenological plas-
ticity law which accounts for a size dependence on
strength. In conventional plasticity theory no length
scale enters the constitutive law and no size effects are
predicted. However, several observed plasticity
phenomena display a size effect whereby the smaller
is the size the stronger is the response. As examples:
the indentation hardness of metals and ceramics
increases as the size of the indenter is decreased [1];
the strengthening of metals by a given volume frac-
tion of hard particles is greater for small particles
than for large, for the same volume fraction of
reinforcement, as is their rate of work hardening
[2, 3]; and fine-grained metals are stronger than those
with coarse grains [4]. The effect becomes pronounced
when the indent size, grain size or particle spacing lies
below approximately 10 ym.

These effects may not all have the same expla-
nation, but it is clear that all require a length scale for
their interpretation. A natural way to include size
effects in the constitutive law is to postulate that the
yield stress depends both upon strain and straih
gradient. We adopt this approach in the current
paper, and provide evidence for the strengthening due
to a strain gradient by experiments on the tension and
torsion responses of thin copper wires. In tension the
strain is uniform and no size dependence of strength
is observed. In torsion, however, the thinner is the
wire the greater is the gradient of strain for a given
surface shear strain, and the stronger is the response.

Conventional plasticity theories, as we have said,
possess no internal length scale. When the length
scale associated with the deformation field is large,
strain gradients are small and conventional theories
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suffice. On the other hand, when the length scale
associated with the deformation field is small com-
pared to a material length scale explained below, it
becomes necessary to include the strain gradient term
in the constitutive law. The purpose of this paper is
to present a plasticity theory which includes an
internal material length scale, and to provide sup-
porting experimental evidence. The underlying idea is
that material hardening is controlled by the total
density of dislocations, part of which derives from,
and is directly proportional to, the gradient of strain.
The distinction between dislocations stored during
uniform straining and those necessitated by gradients
of strain can be understood as follows.

When a plastic crystal is deformed, dislocations are
generated, move, and are stored; the storage causes
the material to work harden. Dislocations become
stored for two reasons: they accumulate by trapping
each other in a random way or they are required for
compatible deformation of various parts of the crys-
tal. The dislocations which trap each other randomly
are referred to as-statistically stored dislocations [5, 6].
As yet, there is no simple argument to estimate the
density pg of these dislocations, although it has been
measured, as a function of strain, by numerous
investigators.

Gradients of plastic shear result in the storage of
geometrically necessary dislocations [5-8]. Plastic
strain gradients appear either because of the geo-
metry of loading or because the material itself is
plastically inhomogeneous (containing non-deform-
ing phases, for instance). As examples: in the plastic
twisting of a cylinder or bending of a beam, the strain
is finite at the surface but zero along the axis of twist
or of bending [Fig. 1(a, b)]; in the hardness test the
strain is large immediately beneath the indenter but
zero far from it; and in the plastic zone at the tip of
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Fig. 1. Plastic strain gradients are caused by the geometry of deformation (a, b), by local boundary
conditions .(c, d) or by the microstructure itself (e, f).

a crack in an otherwise elastic medium steep gradients
of plastic strain appear [Fig. 1(c, d)]; in the defor-
mation of plastic crystals containing hard, non-
deforming particles local strain gradients are gener-
ated between particles; and in the plastic deformation
of polycrystals, the mismatch of slip at the bound-

aries of the grains can induce gradients of plastic
strain there [Fig. 1(e, f)]. In approximate terms, the
magnitude of the plastic strain gradient is of the order
of the average shear strain in the crystal divided by
the local length scale 1 of the deformation field. These
strain gradients require, for compatibility reasons,
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the presence of geometrically necessary dislocations
of density pg, where [5]

Po R .y
Here, y is the macroscopic plastic shear strain and b
is the magnitude of the Burger’s vector b. The
geometrically necessary dislocations contribute to
hardening and, in the limit that p; > pg, the macro-
scopic shear yield stress T can be written approxi-

mately as
Tt & C'Gb\/pg (1.2)

where G is the shear modulus and C’ is a constant of
order unity. In the torsion test, A is simply the radius
of the cylinder; in bending it is the half thickness of
the beam; in the hardness test it is related to the
indent size; at the crack tip, to the plastic zone size;
and in metals containing non-deforming particles A is
related to the particle separation, approximately r/f,
where r is the radius and f'is the volume fraction of
the particles. In polycrystals one might expect it to be
related to the grain size.

Direct support for the notion that geometrically
necessary dislocations lead to enhanced hardening
comes from the compression tests of Russell and
Ashby [9], Brown and Stobbs [10] and many others.
Here the plate-like 6 precipitates lead to the storage
of geometrically necessary dislocations and the
appearance of lattice curvature, in good agreement
with equation (1.1); and the enhancement in flow
stress scales as the square root of pg, as suggested by
equation (1.2). The well known size effect in hardness
has recently been given a quantitative interpretation
in terms of geometrically necessary dislocations by
Brown [1]. Experimental data [4] confirm that fine
grained metals work harden faster than coarse
grained metals.

Conventional plasticity laws tacitly assume that
pg < ps and no length scale enters. Figure 2 shows
a comparison of ps and pg as a function of shear
strain y for a variety of microstructural length scales
A for pure copper. The shaded band marked “Single
Crystal” is the measured density pg of statistically
stored dislocations in single crystal copper, oriented
for (initial) easy glide; it is derived from the measure-
ments of Basinski and Basinski [11]. There are three
stages. In stage I, slip is on one system only, dis-
locations trap as dipoles and dislocation storage is
proportional to strain; in the second stage, slips are
induced on secondary systems and the storage
becomes proportional to the square of the strain,
and in the final, third, stage, recovery mechanisms
such as cross-slip deplete the dislocation population,
reducing the rate of storage once more. In polycrys-
tals, stages I and II are absent, and the storage rate
is at first rapid, decreasing to an almost linear
increase with strain (corresponding to parabolic
hardening, ¢ oce®®) above a strain of a few percent, as
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Fig. 2. The density of statistically stored dislocations pg,
and geometrically necessary dislocations p¢ plotted against
shear strain. The single crystal density pg (shaded band) is
taken from the experimental data of Basinski and Basinski
[11]; that for polycrystals is inferred from stress—strain
curves. The density pg is shown as a set of parallel lines for
assumed values of microstructural length scale A, using
equation (1.1).

shown in the shaded band labeled “Polycrystal™. It
is to be emphasized that these are the densities of
dislocations which characterize deformation which is
macroscopically uniform: that is, one in which no
gradients of strain are imposed. When gradients are
present, additional dislocations are required to
accommodate them. The figure shows this contri-
bution, calculated from equation (1.1) for various
length scales A set, as explained, by the particular
aspect of geometry (wire radius or beam thickness),
imposed displacements (the hardness test) or micro-
structural feature (particles or grain boundaries)
which induce them. We note that at 10% strain
pe>ps for 1 <50 um in single crystals and for
A <20 pum in polycrystals. Thus, there is a regime
where the density of geometrically necessary dislo-
cations swamp the statistically stored ones and hard-
ening is strongly dependent upon strain gradient
effects. The smaller the length scale of the gradients,
the more important the effects become.

The main emphasis of the present paper is to
develop a continuum theory of plasticity which cap-
tures the transition from behavior which is indepen-
dent of strain gradients to that dominated by strain
gradient effects. There have been previous attempts to
include strain gradients within a plasticity formu-
lation, notably those of Aifantis [12], Muhlhaus and
Aifantis [13, 14] and Zbib and Aifantis [15]. One
application these authors have in mind is to bring in
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a length scale associated with localization phenom-
ena. The theories proposed until now have not
involved geometrically necessary dislocations, but are
mainly based upon ideas on the thermally activated
diffusion of dislocations under a potential gradient.

In order to motivate the full 3D theory of geo-
metrically necessary dislocations we use physical
arguments to deduce the density of geometrically
necessary dislocations in a beam subjected to non-
uniform shear.

1.2. Non-uniform shear of a beam

Consider a beam made from a single crystal and
aligned with the Cartesian axes (x;, x;, x;), as shown
in Fig. 3. Assume that the beam suffers non-uniform
shear, such that the displacement field is

(1.3)

where the ‘“‘curvature” x is a constant. Further,
neglect elastic straining and assume that this displace-
ment field is achieved by a combination of plastic slip
y on a single slip system, and lattice rotation. The
relative proportion of slip and lattice rotation
depends upon the orientation of the slip system. For
the case where the normal to the slip plane m is
aligned with the x; direction and the slip direction s
is in the x, direction, the displacement field is
achieved by a slip distribution y(x,,x;)=kx,
accompanied by zero rotation of the lattice, see
Fig. 3. In the language of dislocation theory, no
storage of dislocations is required since the displace-
ments can be achieved by the passage of dislocations
from one surface to the other.

Alternatively, consider the case where the normal
to the slip plane m is parallel to the x, direction and
the slip direction s is along the x, direction, as shown
in Fig. 4(a). The displacement field (1.3) may be
rewritten

=0, u=3kx?, u;=0

U= —KxX X +kx;%,=0 (1.4a)
u, = jrx} (1.4b)
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Fig. 3. A beam subjected to non-uniform shear. Plastic slip

is assumed to occur on a single slip system with unit normal

m aligned with the x, axis, and slip direction s aligned with
the x, axis.
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Fig. 4. Sketch showing that a gradient of slip in the x,
direction causes a density p; of geometrically necessary
dislocations to be stored. Plastic slip is assumed to occur on
a single slip system with unit normal m aligned with the x,
axis, and slip direction s aligned with the x, axis.

and

u; =0 (L.40)
where the particular choice of trivial decomposition
in (1.4a) will become apparent shortly. The term
(—kx,x,) in (1.4a) and the term (3 kx?) in (1.4b) may
be interpreted as the displacement field associated
with a lattice rotation ¢ of xx,; the axis of rotation
is along the x; direction. The remaining term (xx, x,)
in (1.4a) is due to plastic slip on the assumed single
slip system; thus y = xx;. That this slip distribution
requires the storage of geometrically necessary dis-
locations can be seen as follows. Start from the
assumption that the shear strain due to slip on the slip
system depicted in Fig. 4(a) is given by y =«Xx,; a
compatibility argument is used to calculate the den-
sity of dislocations pg; and the displacement field
(1.3).

Divide the crystal up into small rectangular cells of
side dx,, dx,, three of which are shown in Fig. 4(a).
A gradient of shear deforms the cells by different
amounts. If they were not stuck together they would
appear as shown in Fig. 4(b), and the displacement
field u; would be discontinuous or incompatible. Imag-
ine that a shear strain y in each cell is produced by
generating dipoles of Burger’s vector b within each
cell, and by allowing the dipoles to expand outward
to the surfaces as shown in Fig. 4(b). The number of
such dipoles » in a cell is given by a Burger’s circuit
construction as

nb = yéx, (1.5)

where b is the magnitude of b. (We assume that » is
large, although only a small number of dislocations
are shown in Fig. 4 for the sake of clarity.) Now
rejoin the cells, allowing cancellation of the positive
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dislocations at the surface of one cell with the nega-
tive ones of the neighboring cell, see Fig. 4(c). An
excess An of dislocations is left at each cell wall, given
by

Anb = 6y, = 2L 5%, 6%,

o, (1.6)

Thus a density of geometrically necessary dislo-
cations pg of

10y

“box, (1.7

PG

is stored on the single slip system. Since y = xx, the
density of dislocations is pg=x/b via (1.7). An
additional rotation of the lattice is required in order
to ensure that gaps do not develop. Each cell is
rotated by an amount 6¢ = dy = pgbdx; by -(1.6).
Thus the lattice adopts a curvature K = d¢ /0x, given
by
K =psb=x. (1.8)

The displacement field (1.3) follows immediately.

The above examples illustrate several inherent
features of geometrically necessary dislocations. They
are associated with gradients of slip and their density
can be calculated directly by geometry, once the
active slip systems have been defined. The same
displacement field may or may not give rise to
geometrically necessary dislocations, depending upon
the distribution of active slip systems. Lattice
rotation (and elastic stretching of the lattice) is
usually needed in order to ensure compatibility of
displacement.

2. TORSION EXPERIMENTS ON COPPER WIRES
1

In order to obtain direct experimental evidence for
strain gradient hardening, the tensile and torsional
responses were measured for polycrystalline coppgr
wires (99.99% purity) ranging in diameter from 12 to
170 pm. In uniaxial tension strain gradients are neg-
ligible and hardening is due to the accumulation of
statistically stored dislocations. In torsion of a circu-
lar wire the shear strain y varies with radius r from
the axis of twist, such that y = kr, where « is the twist
per unit length of the wire. The strain gradient
dy/dr =k induces a density p; of geometrically
necessary dislocations of order x/b. Thus the wire is
hardened by both statistically stored and geometri-
cally necessary dislocations. For a given shear strain
at the surface of the wire (or, equivalently, for a given
average strain across the section) the thinner wire has
the greater strain gradient dy/dr and the higher
density of geometrically necessary dislocations. We
therefore expect faster work hardening in the thinner
wire. The experiments reported below confirm this
expectation.
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Fig. 5. True stress o vs logarithmic strain ¢ tension data for

copper wires of diameter 24 in the range 12-170 um. There
is a negligible effect of wire diameter on the behavior.

2.1. Test method

Tension and torsion test were performed on com-
mercially pure, cold drawn copper wires of diameter
in the range 12 to 170 um. All the wires were
annealed, giving grain sizes between 5 and 25 um, the
larger diameter wires having the larger grain sizes.
The tension tests were performed at a strain rate of
10~*s~!, and the torsion tests were performed such
that the shear strain rate at the surface of the wire 7
was also 1073s~!. Details of the test method and
apparatus are given in Appendix A.

2.2. Experimental results

Uniaxial tension data for the copper wires are
shown in Fig. 5 and the torsion response is given in
Fig. 6. Typical responses are given for each wire
diameter 2a; generally, we performed at least four
tests of each type for each diameter of wire. We
conclude from Fig. 5 that there is only a minor
influence of wire diameter on tensile behavior. No
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Fig. 6. Torsional response of copper wires of diameter 2a

in the range 12-170 pm. If the constitutive law were inde-

pendent of strain gradients, the plots of normalized torque
Q/a® vs ka would all lie on the same curve.
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systematic trend between tensile stress—strain curve
and diameter emerges for diameters in the range 12
to 30 um. The data for 2a = 170 um is approximately
10% below that of the other curves, perhaps because
the grain size was significantly larger here than in the
other wires.

The torsion data in Fig. 6 have been displayed in
the form Q/a® vs ka, where Q is the torque, a the wire
radius and x the twist per unit length. The non-
dimensional group ka may be interpreted as the
magnitude of the shear strain at the surface of the
wire. The group Q/a® gives a measure of the shear
stress across the section of the wire in some averaged
sense. Dimensional analysis establishes the fact that
Q/a’ is a function of ka but is otherwise independent
of a for any constitutive law which does not contain
a length scale. Thus, if the local shear stress at any
point in the wire were to depend only upon shear
strain and not strain gradient, the curves of Q/a® vs
ka would superpose. Plainly they do not. There is a
systematic increase in torsional hardening with
decreasing wire diameter. For example, at xa = 0.3,
the value of Q/a® for 2a = 12 um is approximately
three times the value of Q/a’ for 2a = 170 um. This
supports the notion that strain gradient strengthening
plays an increasingly dominant role with decreasing
wire diameter.

A log-log plot of Q/a® vs ka for all diameters of
wire is given in Fig. 7. The lines are approximately
straight and parallel, and display an average slope of
0.20, indicating a power law relationship,
Q/a® o (ka)", between the variables with a value for
the hardening exponent N of 0.20.

3. SINGLE CRYSTAL FORMULATION FOR
GEOMETRICALLY NECESSARY DISLOCATIONS

The relationship between plastic strain gradient
and dislocation density has been explored by Nye [7]
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Fig. 7. Logarithmic plot of Q/a> vs ka for the copper wires
in torsion.
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and Kroner [16-18]. We summarize the theory for the
case of small deformations. (A precise framework for
formulating elastic—plastic single crystal constitutive
relations at finite strains has been laid down by Hill
and Rice [19]; the theoretical development given
below can be extended to the finite strain regime in
a fairly straightforward manner.) It is re-emphasized
that the concern is with the characteristics of a
distribution of large numbers of dislocations, and not
with individual dislocation interactions.

In order to calculate the density of geometrically
necessary dislocations, a crystal lattice is embedded
within the solid. We assume that the material flows
through the crystal lattice by dislocation motion, and
that the lattice (and attached material) undergoes
rotation and elastic stretching. Consider the relative
displacement du; of two material points separated by
dx;, in the Cartesian reference frame of Fig. 8. The
relative displacement du; is decomposed into

du; = du$ + du® + du® (3.1a)
where
duf =7y, dx (3.1b)
duf = ¢, dx; @.1¢)
and
duf = €5l dx;. (3.1d)

Here, dus is the relative displacement due to slip, du®
is due to lattice rotation and duf is due to elastic
stretching of the lattice; du? is linearly related to dx;
via the slip tensor y;, du} is related to dx; via the
rotation tensor ¢;;, and duf is related to dx; via the
elastic strain tensor €.

A particular slip system, «, is specified by the
vectors (s®, m®) where s® is the slip direction and
m® is the slip plane normal. The slip tensor 7, is
associated with an amount of slip y on each of the
active slip systems, hence

Y= Z y@s gu)m,('u)

3

(3.2)

where the summation is taken over all active slip
systems.

The density of geometrically necessary dislocations
is related to the net Burger’s vector B, associated with
crystallographic slip. Make a cut in the crystal in

o m o s'
'—. s L. s \x
duf [ E, duR
i I / dui” + duf
h ) L
lattice plastic elastic stretching
planes slip and rotation of

lattice

Fig. 8. The elastic—plastic deformation of a single crystal.
Here, du? is illustrated for single slip while in the text du$
is defined for the general case of multi-slip.
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order to produce a surface S of outward normal n.
Define B, as the resulting displacement on completion
of a Burger’s circuit around the periphery I' of the
surface S. In other words, B; completes the circuit
when I is traversed in the sense of a right-handed
screw motion along n. Thus, B, is

B,.=§ du,$=§ y,; dx;
r r

which may be rewritten using Stokes’ theorem as

(3.3)

B= J o, n, dS (3.4)
N

where
(3.5)

Oy = enkj'Yij,k .

In (3.5) e, denotes the alternating tensor. The tensor
a is Nye’s dislocation density tensor or torsion—flexure
tensor and gives a direct measure of the number of
geometrically necessary dislocations. Kroner’s a ten-
sor, here labeled ay, is related to Nye’s tensor a by
ax = —aT, where the superscript T denotes the trans-
pose. Nye [7] has related a to the distribution of
individual dislocations within a crystal as follows.
Suppose there exist dislocations with length parallel
to the unit vector r and with Burger’s vector b. Let
there be N of these dislocations crossing unit area
normal to r. The number crossing a unit area normal
to the unit vector m is Nn-r, and the associated
Burger’s vector is N(n - r)b. Hence in suffix notation
B;= Nn;r;b; and from (3.4)

o, = Nb,r,. (3.6)

If there are other sets of dislocations present with
different values of N, b and r, then the total «; is
obtained by summing the values of Nb,r; from each
set.

We emphasize that the net displacement §du,» van-
ishes along any closed path within the material, and
that the incompatibility in displacement B, = § du? is
exactly matched by an equal and opposite displace-
ment mismatch §(du}+du?), as demanded by
(3.1a). It is clear from (3.1a) and (3.4-3.6) that the
density of geometrically necessary dislocations is
defined unambiguously only when a crystal structure
is embedded in the material. We treat a; as the
fundamental measure of the total density of geomet-
rically necessary dislocations.

An alternative version of the expression (3.5) for a;
may be derived through introduction of the unit
vector ¢ =s x m. Note that (s,m, t) forms a right-
handed triad with t in the slip plane and orthogonal
to s. Substitution of the relation m=t x s in (3.2)
gives via (3.5)

to= Y sHPP0 —1PsH). ()
The dependence of « upon the slip gradient in the slip
direction s, and in the transverse direction t, is made
explicit by (3.7). Note that a slip gradient in the m
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direction does not contribute to a, as illustrated in
Fig. 3.

4. PRELIMINARIES IN THE DEVELOPMENT OF A
PHENOMENOLOGICAL CONSTITUTIVE LAW
FOR STRAIN GRADIENTS

In the following sections a generalization of classi-
cal J,-deformation theory will be developed in order
to include strain gradient effects. Just as in the
classical theory, the strain gradient deformation the-
ory is limited to applications where loading is pro-
portional or close to proportional. We motivate the
theory by first considering the nature of the constitu-
tive law for slip on a single system.

4.1. Slip on a single system

Consider slip on a single system of a single crystal,
and assume that hardening is governed by the sum of
the densities of statistically stored dislocations, ps,
and geometrically necessary dislocations, pg. The
simplest possible dimensionally correct relationship
between flow stress T on the slip plane and total
dislocation density is

Tt =CGb \/ps+ pg “.1)
where, as before, G is the shear modulus, b is the
magnitude of the Burger’s vector and C is a constant
taken to be 0.3 by Ashby [5]. The contribution to flow
stress from the Peierls—Nabarro or lattice-friction
stress has been dropped from (4.1), as we shall focus
on applications where strain hardening dominates the
response. Other couplings between ps and pg are
possible; equation (4.1) gives one particular form of
non-linear interaction between flow stress 7 and
dislocation densities pg and pg. We shall sub-
sequently modify this functional relationship in order
to develop a phenomenological theory which fits
within the well-established general framework of
plasticity theory.

In order to define pg precisely for the case of a
single slip system we assume that slip occurs in a
direction s aligned with the x, axis, and the normal
to the slip plane is along the x, axis as shown in
Fig. 4(a). Thus the Burger’s vector b of dislocations
inducing the slip is codirectional with s. A gradient of
slip dy/0x, gives rise to a density

1 0y
b ox,

of geometrically necessary edge dislocations lying
along the x, direction. Likewise, a gradient of slip
0y |0x, gives rise to a density (1/b)(dy/0x;) of screw
dislocations lying along the x, direction. As shown in
Fig. 3, a slip gradient in the m direction involves no
storage of dislocations.
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4.2. A continuum measure of geometrically necessary
dislocations

Now consider the case of a polycrystal containing
many slip systems. The appropriate measure of the
density of geometrically necessary dislocations is
Nye’s dislocation density tensor «, defined by
equation (3.5). Note that « can only be defined with
reference to specified slip systems. For the purposes
of developing a phenomenological isotropic theory
freed from the context of a crystal lattice an alterna-
tive approximate measure of dislocation density is
proposed.

Split the usual strain measure ¢;; = %(u,., j+u;;)into
elastic and plastic parts, €5} and €5}, respectively. The
symmetric part of y; in (3.2) is the plastic strain %,
that is

€l =30y + ). (4.2)

Now introduce the curvature tensor y, defined by

4.3)

—_ 1 —_
Xni = on,i = 2@ Uk ji = Cui€ijx

where 0, = je,;u,, is the rotation vector associated
with a displacement field ;. Since the divergence of
0 vanishes y,, = 0. Also note that in general y;; # y;.
Decompose x into its elastic and plastic parts,
1 =1+ " where

(4.42)

Xni = Cnig€Si
and
(4.4b)

pl pl
Xni = €nkj€ijg-

Note that x™ is related to € in an analogous manner
to the relationship between a and 9. The tensor 3™ will
be used here as an approximate measure of the
density of geometrically necessary dislocations. It
remains a meaningful quantity when no crystal struc-
ture is embedded in the material since it is defined in
terms of a plastic strain €™ and not the slip tensor y.
The magnitude of x™ will be used as the scalar
measure of the density of geometrically necessary
dislocations. Thus, with a magnitude definition

Ze=~/3A0xD
we take the density of geometrically necessary dis-
locations to be

“4.5)

g e

G— b .
A scale factor of order unity is of no concern in (4.6)
since it will be absorbed in the length scale / intro-
duced later. In this simplest generalization of J,-de-
formation theory, the role of the other invariants of
z™ is not considered. Note that y, is related to y™ in
the same manner that the effective plastic strain ¢, is
related to the plastic strain €™

= /2Pl pl
€ = /3€} €.

In a similar manner, an appropriate measure of the
density of statistically stored dislocations is

4.6)

@.7
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€.

. 4.8
Ps Wb 4.8)
in stage I, and
2
€
== 4.9
Ps b 4.9)

in stage II, where 4; and A are fixed slip distances of
the order of 4, =1 mm in stage I and A; = 10 um in
stage II, as can be inferred from the data for copper
shown in Fig. 2. It is thought that these numerical
values for 4; and A, are correct to within an order of
magnitude for other f.c.c. metals in addition to
copper.

5. A CANDIDATE STRAIN GRADIENT PLASTICITY
LAW

The above considerations lead naturally to a phe-
nomenological theory in which material hardening is
dependent upon both €™ and ™. A linear elasticity
theory in terms of € and y has been developed by
Toupin [20], Mindlin and Tiersten [21] and Koiter
[22]. This couple stress theory is summarized in
Appendix B. We extend their theory to a deformation
theory version of plasticity. In a deformation theory
there is no formal distinction between the elastic and
plastic components of displacement and of strain,
and we write €, = \/} ¢, €, and x. = \/3 x;7;;- The work
conjugates of € and y are the symmetric Cauchy stress
tensor ¢ and the couple stress tensor u. Following
Koiter [22], and as emphasized in Appendix B, we
may legitimately assume that y,, = 0. Thus the devi-
atoric couple stress tensor m equals the couple stress
tensor p. The solid is also taken to be incompressible.
On equating the incremental work of deformation to
the increase in elastic stored energy w we get

5.1)

where s is the deviatoric part of the symmetric stress
tensor o.

Consider again a polycrystal containing both stat-
istically stored and geometrically necessary dis-
locations. Motivated by equations (4.1) and
(4.7)-(4.9), we postulate that the strain energy den-
sity function w depends only upon ¢, and y.. In
particular, it is mathematically convenient to assume
that w depends only upon the single scalar strain
measure &, where

ow =0 0¢;; + p; Oy = 8, 0€;; + my; Oy,

Y

Er= €2+ %2, 5.2)
The length scale / is a material length scale, and is
required on dimensional grounds. When the strain
field € in the polycrystal varies over a length scale on
the order of or less than /, strain gradient effects
become significant. An effective stress measure T
which is the work conjugate to & is defined by

_dw(&)

z
dé

(5.3)



FLECK et al.:

The stress measure X is a unique function of the strain
measure &, and vice versa.

The symmetric components s; of the deviatoric
stress tensor and the deviatoric components m;; of the
couple stress tensor follow from (5.1) and (5.2) as

ow 08 2%
s,

U=a;= %ij_—-ggeij

(5.4a)

and
_ ow _ 08 2
v ani B ani "3

Substitution of (5.4a) into the relation €2 = %e,.jeij, and

(5.4b) into the relation 2 =3y, gives, via (5.2)

>

m l ng,-.

(5.4b)

2r=g2+ 1 2m? (5.5a)
where
0. = \/%s,j—s,] (5.5b)
and
m,=\/3m;m;. (5.5¢)

The effective stress g, and effective couple stress m,
are the work conjugates to ¢, and J, in the sense that
dw = o, de, + m, dy..

For the purpose of some specific calculations in the
following section we shall adopt a simple power law
relationship between X and &

=38 =X (2 + Iy HVA. (5.6)

It is instructive to compare (5.6) with the constitu-
tive law suggested by dislocation theory. Upon
substituting (4.6), and (4.8) or (4.9) into (4.1) we find

© = CG./(be./A) + by, (5.7a)
for stage I behavior and
T = CG/(be?[Ay) + by, (5.7b)

for stage II behavior. If instead of taking the arith-
metic mean (ps + pg) of the dislocation densities in

(4.1), we adopt the harmonic mean 3./p% + p3, then
(5.6a) and (5.6b) are replaced by

© = CGl(be, /4)* + b 21" (5.7¢)

and
7 = CG[(be? [Ay)* + by 21" (5.7d)

Equation (5.6) most closely mimics the relation
(5.7¢). The exact form of the coupling between hard-
ening due to statistically stored dislocations and
geometrically necessary dislocations is not known.
Here, we adopt a pragmatic approach, exploiting the
nice mathematical consequences which follow from
the assumed form, and take (5.6) as representative of
the coupling between strain hardening and strain
gradient hardening. In the limit of /y, <¢,, strain
gradients become insignificant and strain hardening is
due only to statistically stored dislocations. Then the
above relations reduce to their counterparts for a
conventional power law J,-deformation theory solid.
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At the other extreme, strain gradients dominate; then,
the geometrically necessary dislocations overwhelm
the statistically stored dislocations, and on taking
N = 1/2 equation (5.6) reduces to all of the versions
in (5.7).

6. TORSION OF A CIRCULAR CYLINDRICAL BAR

We consider torsion of a circular cylindrical bar as
an example of the application of the strain gradient
theory introduced above. The analysis is used in the
following section to interpret the results from exper-
iments on thin copper wires.

We take the x, axis of a Cartesian co-ordinate
system (x,, X,, X,) to lie along the axis of the bar. For
later convenience, a cylindrical polar co-ordinate
system (r, 6, x;) is also introduced, as shown in the
insert of Fig. 9 with the radius of the bar as a. Let x
be the twist per unit length of the bar, taken to be
positive without loss of generality. Start by assuming
the same displacement field as in classical torsion

(6.1)

The associated non-vanishing components of strain
€; are

U= —KXX3 Uy=KX X3 Uy=0.

(6.2)

and the non-vanishing components of the curvature
tensor y are

— — 1 — =1
€13 = €33 = —3KX; €33 = €3 = 7KX

n=Xn= —%K A3 = K. (6.3)
Values for the effective curvature y, = . /%x,.jx,.j=tc,
effective strain ¢, = /Z¢ ¢, = (1/3/3)xr, and strain
measure & = /e2+1%2 = k. /3r?+ I? follow directly
from (6.2) and (6.3). We assume that the stress
measure X is related to & via (5.6).
The non-vanishing components of the deviatoric
couple stress tensor are, via (5.4b) and (5.6)

my=my=—T 8V Pk my=3%,6"""1k. (6.4)

The mean stress § o, vanishes, and the non-vanishing
components of the symmetric stress tensor are, via
(5.4a)

R | N-1
O3=03=—3%,6" KX,

=1 N-1
Op=03=3206" KX|.

(6.5)

The anti-symmetric components 7;; of the stress

tensor follow from the equilibrium relation [see

Appendix, equation (B10)]
(I1-N)

- 1
T3 = —3My 1 =

Tol36N 3x,  (6.6a)

and

(I1-N)
18

The fundamental equations of equilibrium (B9) are

satisfied by the above solution. The boundary trac-
tions T; and §; also vanish on the cylindrical surface

5, 2K3€x,.  (6.6b)

=1 —
Ti3=3Myny =
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Fig. 9. Effect of non-dimensionalized bar radius a/l and strain hardening index N upon the torsional
rigidity of a circular bar.

of the bar, by (B16) and (B17). Hence the displace-
ment field (6.1) satisfies all requirements.

The relation between the torque Q and the twist per
unit length « is deduced most simply by noting that
the strain energy for a unit length of the bar is given
by

j w(é”)dV:J (rz(éﬂ)dé">dV=rQ(x)dx.
| 4 |4 0 0

6.7)

Since X and Q are homogeneous and of degree N in
& and «, respectively, we may re-write (6.7) as

26
w@dy = | =2 _qy-_2¢_
, SNF1 N+1

Now substitute for & = k,/3r + I? and for £ = Z,&Y
into (6.8), and integrate over the volume to get

(6.8)

Q= —N6z 3 ZoxMG a2+ V2 _ N3 (6.9)
The formula (6.9) may be derived alternatively by
integration of the stress tractions and couple stress
tractions over the surface of the bar.
The torque may be re-written in the non-dimen-
sional form Q, where

Q 61.[ 1 l 2T)(N+3)/2 l N+3
zw%mw=N+3ﬂs+cﬁ] _&> ]'
(6.10)

Evidently, the non-dimensional torque { is a func-
tion only of //a and N. In the limit of / =0 couple

0=

stresses vanish and the non-dimensional torque, des-
ignated by Q, is

s _0U=0) _

2n

07 3 (ka)V N+ 3)(\/§)N+l )
The significance of couple stresses upon influencing
the torque carried by the bar may be gauged from a
plot of /0, vs a/lfor 0 < N < 1, see Fig. 9. It is clear
from the figure that §/Q, increases with decreasing
a/l and with increasing N. For a bar of radius a equal
to the microstructural length scale / the ratio Q/0,
equals 2.804 for N =0, and equals 7 for N = 1. The
strain gradient effect dominates the response for
a/l <1, and has a mild influence for a// > 3. For
large a/l, Q/Q, is given asymptotically by

Q" 1\2 J\N+3

==1+3WN+ 3)(—) + o(-) . (6.12)
Qo a a

This formula shows that the strain gradient effect

diminishes rapidly with increasing a/! for large a/l.

(6.11)

7. COMPARISON WITH EXPERIMENT

The experiments clearly demonstrate an influence
of wire diameter on torsional hardening, an effect not
observed in the tensile tests. We have attributed this
to an added, geometrically necessary component of
the dislocation density stored during deformation.
The relevance of texture has not been investigated in
this study. Further work is needed to elucidate the
degree to which texture might influence the results.
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We fit the predicted Q/a® vs ka response (6.10) to
the experimental data in order to deduce a value for
the microstructural length scale /. (It is realized that
the torsion tests were carried out to large strains and
that the theory of the previous section is a small
strain theory.) In order to estimate /, the following
procedure is adopted.

For each diameter of wire we record from Fig. 6
the value of Q/a® at ka = 0.3. A useful measure of the
degree of strain gradient strengthening associated
with each diameter of wire is the ratio R =(Q/a%)/
(Q/a%)4 = 170 um Where Q/a® (measured at ka = 0.3) is
for a wire of diameter 2a, and (Q/a%),,- 170 um (also
measured at xa =0.3) is for the wire of diameter
2a = 170 pm. Note from equation (6.10) that

a

R Q& 0
(Q/aa)2a= 170 pm (Q)2- 170 pm '

The parameter X, does not enter into the ratio R.
Predicted values of the ratio R = 0/(Q)s,- 170,m are
evaluated from (6.10) and plotted in Fig. 10 as a
function of / for the wire diameters 2a = 12-30 um.
We use these theoretical curves to estimate values for
! from the observed values of R. The estimated values
for I are shown for each wire diameter by the arrows
in Fig. 10. We find that / is in the range 2.6-5.1 um,
with a mean value of 3.7 um. This is of the expected
order of magnitude, and is in rough agreement with

(7.1)
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the value A;=10um at a shear strain of 0.3,
measured by Mader [25].

8. CONCLUDING DISCUSSION

In this paper we have developed a phenomenolog-
ical plasticity law whereby the stress is a function of
both strain and strain gradient. Several observed
plasticity phenomena display a size effect such that
the greater is the imposed strain gradient the greater
is the degree of hardening. For example, hardness,
when measured on a micron scale, is greater than that
at the millimeter scale; a few volume percent of
micron scale non-deforming particles dramatically
raises the rate of work hardening in metals, those of
millimeter scale do not; and, as we have shown here,
wires with diameters of a few tens of microns work
harden, when twisted, faster than those of millimeter
diameter.

In addition to elucidating these scale-dependent
phenomena, a strain gradient plasticity theory has
other potential applications. One is that of develop-
ing a fuller understanding of crack tip plasticity,
where gradients are particularly strong. Another is
the modelling of shear bands. As is well appreciated,
the thickness of a shear band must be related to an
internal length scale.

The theory of geometrically necessary dislocations
introduced by Ashby [5, 6] and developed further in

ST T T T T T T T T
i /

2.5
B 2a=12um 15Sum
R | /

20um 307m

gl /1

:é//

L (pm)

Fig. 10. Non-dimensional torque vs microstructural length / predicted by the phenomenological plasticity
law. The arrows show the experimental data used to estimate the value of / for copper.
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the current paper suggests that strengthening is as-
sociated with a first order gradient in plastic strain.
There appears to be little reason to consider higher
order strain gradients when considering low tempera-
ture crystal plasticity. Zbib and Aifantis [15] assume
that strain gradient strengthening is associated with
the invariants V%, and |Ve,|. Their approach has a
number of similarities with the present theory, but
is based on a different variational principle [27].
In earlier papers, Muhlhaus and Aifantis [13, 14]
assume instead that strengthening is associated with
terms of order V2, and V,; in torsion these higher
order strain gradients vanish and no size effect is
predicted.
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Fig. Al. Schematic of torsion test rig.

APPENDIX A

Apparatus for Tension and Torsion Tests

The tension tests were performed on a 50 mm gauge length
of copper wire, using a conventional screw driven test
machine and a specially designed sensitive load cell. The
load cell consisted of a 0.5mm thick cantilever beam of
rectangular section; it was loaded transversely at its free end
by the copper wire. Strain gauges were placed near the
built-in end of the beam and were used to detect the load
on the copper wire.

The torsion tests were performed using a specially de-
signed screw driven torsion machine sketched in Fig. Al.
The bottom end of the copper wire specimen (of gauge
length 2 mm) was glued to a lower grip, and the top end to
a 60 mm long glass filament; the glass filament acted as a
torsional load cell. The free end of the glass filament was
twisted using a gear drive train and electric motor. The twist
along the length of the glass filament was measured by two
needle pointers and protractors, and gave a measure of the
torque. Calibration of the glass filament load cell was
carried out separately using a dead weight and pulley
arrangement. The torsional strength of the copper wires
roughly scales with diameter to the third power: to maximize
sensitivity of the torsional load cell glass filaments were used
of diameter in the range 55-250 um.

The relative twist of the two ends of the copper wire was
measured by the needle pointer attached to the top end of
the wire (the other end was fixed to the lower grip of the test
machine which could translate but not rotate). During a test
the wire elongated by a few percent, causing the glass
filament to bow. This was corrected for by translating the
lower grip of the test machine via a gear drive.

APPENDIX B

Couple Stress Theory

The Cosserat theory [23] of couple stresses in elasticity was
further developed in the early 1960’s notably by Toupin [20],
Mindlin and Tiersten [21], Mindlin [24, 25] and Koiter [22].
Here, the main results are summarized and the development
closely follows the lucid account given by Koiter [22]. The
classical theory of elasticity (neglecting couple stresses)
assumes that the transmission of loads on both sides of an
infinitesimal surface element dS within the material is
described completely by a force vector T dS acting on the
surface element. In couple stress theory it is assumed that a
surface element d.S may transmit both a force vector T dS
and a couple vector q dS.

We consider an arbitrary volume ¥ of the body bounded
by a piecewise smooth surface S. Equilibrium of forces on

the body gives
J TdS =0 (B1)
s
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and equilibrium of moments gives

J(rxT+q)dS=0
s

where r is the radius vector from an arbitrary fixed point,
and body forces and body couples have been neglected.

Now introduce Cartesian co-ordinates x; with the origin
at this fixed point. Let o, and 7;; be the symmetric and
anti-symmetric parts of the Cauchy stress tensor, respect-
ively. Then (o;; + 7;;) denote the components of T; on a plane
with a unit normal »;

T;= (o + ;). (B3)

Similarly, let y;; denote the components of g; on a plane with
a unit normal n,

(B2)

g = Wih;.- (B4)

We refer to p as the couple stress tensor.

Application of the divergence theorem to (Bl) and (B2),
using (B3) and (B4), gives the usual force equilibrium
equation

0;;+ ;=0 (BS)
and the moment equilibrium equation
€T+ Wi = 0. (B6)
It is convenient to split p into its spherical part, p
= %/‘kk (B7)
and its deviatoric part, m
my= W;— ”6:]' (B8)

Equations (B5-B8) may be combined to give a single triple
of final equations of equilibrium

(B9)

The anti-symmetric part of the stress tensor T may be
expressed in terms of u by rearranging (B6) to the form

(B10)

1 =
Crun,m — 2€imnMi, jm = 0.

1
Tn = 2 €Cimn i, j+
Principle of virtual work

The principle of virtual work is conveniently formulated
in terms of virtual velocities. Let #; denote the Cartesian
components of a continuously differentiable virtual velocity
field. The angular velocity vector 0, has the components

(B11)

Denoting the rate at which work is absorbed internally per
unit volume by w, the equation of virtual work reads

f W dV=J Ty, + ¢,6,dS
|4 N

where the volume V is contained within the closed surface

=le 4
0,- = Ze,-jkuk,j.

(B12)
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S. Using the divergence theorem, the right hand side of
(B12) may be re-arranged to the form

j T4+ qiéi ds = f (aji.j + 7,00+ (eijkfjk + .uji,j)ai
s v

+ (03 + t)éy + i AV (B13)
where the strain tensor ¢, = %(u,_j+ u;;), and the curvature
tensor x; =0, ;. Consider the right hand side of (B13). The
first term vanishes by force equilibrium (B5), and the second
term vanishes by moment equilibrium (B6). Since the strain
tensor is symmetric, we have (o;; + 7;;)é;; = 6,,¢,;; the curva-
ture tensor is deviatoric in nature, and SO p;¥; = m;.
Thus, (B13) reduces to

j Tu;+ q,-(?,-dS =J Gyéy+ m,-]-x'j,-dV.
s v

Now consider the left hand side of (B14). If 4; is specified
on the surface S, the normal component of 6§, cannot be
prescribed independently. The two tangential components
of 6, may be specified, giving a total of five kinematic
boundary conditions. This implies that at any point of a
smooth part of the surface we may specify three reduced
stress tractions T}, and two reduced couple stress tractions
g; which are tangential to the surface. The rate of work of
surface tractions may be rewritten

j T+ q,6,dS =J T+ g,0,ds +Z§ Ou;t;dl
N N o« JCa

(B14)

(B15)
where
T,=T,- %ehki(anj),knh
=oun,+ %ehkinh [my ;— (mrsnrns),k] (B16)
and
4= q;,— qmn; = myn,— (m,n.n)n;. (B17)

The last term on the right hand side of (B15) requires further
explanation. The piecewise smooth surface can be divided
into a finite number of smooth parts S, each bounded by an
edge C,. Integration is conducted along the arc length / of
each edge C, in the direction ¢ of the edge. The measure 0
may be viewed as a line load per unit length of edge, and
equals half of the difference (¢;n,), — (¢g;n,)_ of the normal
component of the couple traction at each side of the edge.
Thus

0= %(Qi”i)+ - %(‘Ii”i)— = %(mijninj)+ - %(mijninj)— . (B18)
We note that the first invariant 3y of the couple stress tensor
does not appear in the basic equations of equilibrium (B9),
the virtual work equation (B14) or the boundary conditions
(B16-B18). Thus, u is indeterminate in the theory, and
without any loss of generality we may put u =0; then,
my; = ;.



	
	
	
	
	
	
	
	
	
	
	
	
	

