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ABSTRACT

FIBRE COMPOSITES may fail under compression—compression fatigue loading by microbuckling. A detailed
analysis of fatigue failure is presented, based on two alternative constitutive laws : the Mroz plasticity law
and the Armstrong and Frederick ratchetting law. Failure is anticipated to occur by a low cycle fatigue
process in materials which obey the Mroz law, and by plastic instability in materials which exhibit
pronounced cyclic ratchetting. Predictions of the two theories are compared with available experimental
data.

INTRODUCTION

A DESIGN limiting factor in the utilization of aligned fibre composites is their relatively
low compressive strength. This can be less than 60% of one composite’s tensile
strength. The dominant mechanism in the monotonic compressive failure of aligned
fibre composites is microbuckling (ARGON, 1972; Bubpiansky and FLECK, 1993).
Microbuckling is also an important mechanism in the compressive fatigue failure of
polymer matrix and metal matrix-aligned fibre composites (HUANG and WANG, 1989).
In this paper, a theoretical model of compressive fatigue microbuckling is proposed.

The compressive fatigue analysis of this paper is based on a model developed by
Bupiansky and FLECK (1993) to analyse monotonic compressive failure of fibre
composites. This monotonic microbuckling model includes the effects of matrix yield-
ing and initial imperfections in the form of fibre misalignment. The analysis follows
the non-linear plastic collapse response of an imperfect structure. It is not a bifurcation
analysis. Analyses which treat microbuckling as a linear elastic buckling phenomenon
(e.g. ROSEN, 1965) significantly overestimate the critical stress necessary for micro-
buckling. In the Budiansky and Fleck model the assumption is made that a band of
misaligned fibres exists and that the composite exhibits a predilection to microbuckle
uniformly within this band. This band of initial misalignment is not, in general, normal
to the fibre direction. The fibres are assumed to be inextensible and have no bending
stiffness. Recent studies have shown that these are acceptable approximations (FLECK
et al., 1993). The aforementioned assumptions lead to kinematic constraints and
equations of equilibrium which will be used in the fatigue microbuckling analysis of
this paper.

Two different cyclic plasticity theories are used to describe the constitutive behav-
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iour of the composite. The first of these is the Mroz multiyield surface generalization
of Prager’s kinematic hardening rule (MROz, 1967 ; CHABOCHE, 1986) which is fitted
to the Ramberg-Osgood strain hardening relation. It will be shown that proportional
loading is maintained within the kink band, allowing the Mroz flow theory relations
to be integrated in closed form. Fatigue failure is predicted using a Coffin—-Manson
type low-cycle fatigue law (HERTZBERG, 1976). Plastic strain accumulation, hereafter
referred to as ratchetting, does not occur in the Mroz theory. To examine the effects
of ratchetting, a second cyclic plasticity theory is adopted. This is the non-linear
kinematic hardening rule first proposed by ARMSTRONG and FREDERICK (1966), in
which the kinematic hardening variables are governed by a differential equation
(CHABOCHE, 1986). Progressive deformation of the kink band by ratchetting cul-
minates in a plastic instability.

MICROBUCKLING UNDER MONOTONIC LOADING

Microbuckling is a phenomenon in which localized deformation occurs within a
kink band. This kink band is not, in general, normal to the fibre direction and is of
the order of 10 fibre diameters in width. In this paper, the kink band will be modelled
as shown in Fig. 1. The kink band forms an angle f with the direction normal to the
fibres and has a width w. It is assumed that the fibres are inextensible and that the
kink band deformation is given by the fibre rotation ¢. It is also assumed that the
initial composite fibre misalignment can be approximated by an initial kink band fibre
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F1G. 1. Kink band geometry and notation.
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rotation ¢. Two coordinate systems are defined, (e, e,) and (g,, &,), aligned with the
fibre direction outside and inside the kink band; respectively. The only remote loading
considered here is pure axial compression, 6 = —c e e,.

Within the kink band the stress is given by ¢ = g1&,&,+ 01¢,8,+7(€,&,+¢,8,) and
the strain is given by e = er&,8,+ 37(£,8,+ &, ). Expressions for kinematic conditions
and continuity of tractions across the kink band interface have been derived by
Bupiansky and FLEck (1993). In the &, direction perpendicular to the kink band
fibres, continuity of tractions requires

0% cos fsin (p+¢) = tcos (B—p—¢)+or sin (—P—¢). (1)

Anticipating that, in the analyses to follow, small values of ¢ and ¢ will be sufficient
to describe the fatigue microbuckling phenomenon, (1) can be reduced to the approxi-
mate equilibrium statement

[ee]

_Ttortan p

b+¢
Also for small ¢ and ¢, the appropriate kinematic equations relating strains within
the kink band to ¢ are (Bupiansky and FLECK, 1993)

YR P
}. (3)

er ~ ¢ tan f

)

In the absence of shear straining outside the kink band, the kink band angle B
remains constant. Note that (3) imply proportional straining ; proportional loading is
established below. Following BubDiansky and FLECK (1993), a solution scheme for
calculating the critical microbuckling stress o is now outlined. The scheme will then
be extended for the case of fatigue loading.

Assume that the composite material is characterized by the quadratic yield condition

(o)) - 4
?y + ;T; = 4)

where 7, and oy, are the plain strain yield stresses in pure shear and pure transverse
tension, respectively. The parameter R = o7y, /1, defines the eccentricity of the yield
cllipse. An effective stress 7., defined by

t. = /124 (01/R)%, ()

is used as a plastic potential for the plastic strain rates, y° and é}. For an increment
of plastic loading, the associated flow theory relations for plastic strain rates, based
on 7, as a plastic potential, can be written as

0
= Fr) St

: (6)
h = F(t,) =14,
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where F(t.) is a measure of the rate of strain hardening. A work equivalent effective
plastic strain rate, y?, is defined by

WP+ oréh = 198 (7
and it follows that
P2 = F(1e)t. = / (*) >+ R*(¢}) . 3

From (8), F(z.) is interpreted as the inverse of the pure shear tangent modulus minus
the inverse of the elastic shear modulus. Substituting (8) into (6) and anticipating that
proportional loading will be established leads to

o (yﬁ) or r &)
eT = 152
7./ R

72 =)+ R ()
Note that the functional dependence of y? on 7. is assumed to be the same as that of
y? on 7 for pure shear, so that

1 1
%:Lum‘5}° (10)

where the function G,(t.) is the pure shear secant modulus. £y and G are the transverse
and shear composite elastic moduli.
Combining the elastic and plastic strain components from (9) leads to

_ (11)
o 1 1 [yP
a=gra=lgrw (b

Equation (11) dictates that the following condition must be satisfied in order for the
kink band material to experience proportional loading :

ET 2 0Ty ’
T Rr= (2 12
¢ % <@> (12
which, along with (11), gives
o
’ Gi(te) i (13)
T RG.(x)

We adopt the simplifying assumption of proportional loading by assuming that (12)
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is satisfied ; this is a reasonable approximation for many polymer matrix composites
(Bubiansky and FLECK, 1993). A total effective strain is defined by

Te
ye = GS(TC) (14)
so that
. T,
Ve =V Rt =10+ 2 (15)

Thus, y. is the sum of an elastic part, t./G, and a plastic part, y2, defined in (9).

The strategy is now to re-express the equilibrium equation (2) in terms of . and
Y.. Substituting the approximate kinematic conditions, (3) into (15) leads to an
expression for the effective strain as a function of ¢,

Ve = g (16)

where

o=./1+R?tan’ . (17)

The numerator on the right-hand side of the equilibrium equation (2) is simplified
via (13)—(16) to give,

7407 tan ff = at.. (18)

Define the pure shear yield strain as y, = t,/G. The equilibrium equation (2) can then
be rewritten as

t
5= (19)
@+1

+

where s* = 0”/G*, t = t/t,, n = y./y, and @ = $/y} are non-dimensional variables
and

G* = °G
} (20)

VY= Yyl

Using an idea first suggested by BATDORF and Ko (1987), and developed by
Bubiansky and FLECK (1993), a Considére diagram can be constructed to represent
(19). On a plot with # as the abscissa and ¢ as the ordinate, the equilibrium state is
represented by a line of slope s* and x-intercept of —@® (see Fig. 2). If, on the same
plot, the constitutive equation for monotonic loading,

G

zmt, (21)

n
is given, where G,(7) = G,(t.), then the critical microbuckling load for monotonic
loading, sZ, is such that the equilibrium line is tangential to the constitutive curve, as
shown in Fig. 2. From (19) and (21), this is expressed by the two simultaneous
equations
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Equilibrium
tC
Constitutive Law
1 n= G t
5T G, (1)
- n
- N
F1G. 2. Considére construction for calculation of the critical microbuckling stress s under monotonic
loading.
1@ [ G ]
s& 0t LG(t) ¢ (22)
G t.

-~ [, = d
Gi(t) © s

a0

for s and the effective strain at which microbuckling occurs, 7.. BUDIANSKY and
FLECK (1993) have shown that for a Ramberg—Osgood composite material response,
where the constitutive equation is

G

= 14 3! 23
Gs(t) +7 s ( )

with n a material parameter, (22) lead to the microbuckling solution

_[ 7% ]“" )
= 13m=1)

1 . (24)
sF =

¢ 3 1/n @ (n— 1)/n
1 -
+n<7> <n_l> /

This form of Considere diagram will be utilized in the following analyses to illustrate
the local kink band response to remote cyclic loading.

FATIGUE MICROBUCKLING
Mroz cyclic plasticity law ; no ratchetting

In the analyses of compression—compression fatigue to follow, it is presumed that
the remote axial load is initially increased monotonically from zero to sg,, and then
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p = Sn:in/sr:ax

min

— time

F1G. 3. Compression—compression fatigue loading history. Constant amplitude loading is assumed.

o]

cycled steadily between sy, and sq;, (see Fig. 3). The fatigue ratio p is defined as p =
spn/se . During the initial loading, the composite constitutive behaviour is given by
the composite monotonic response, as defined by (21). This equation and the equi-
librium equation (19) can be used to determine the effective stress and strain within
the kink band, 7 and #, as a function of s during this initial loading phase. The peak
stress and strain, corresponding to sg,,, are defined as 7, and #,. The kink band stress—
strain history is shown on a Considére diagram in Fig. 4. The segment of the history
corresponding to the initial loading is labelled (1). It follows a path given by the
constitutive equation (21) and terminates at the intersection with the line representing
equilibrium when s* = sp,,, i.e. a line with slope sg,, and x-intercept —@. This
intersection occurs at the peak levels of stress and strain, 7, and #,. The corresponding
segment of the remote axial load history in Fig. 3 is also labelled (1).

During unloading, when the remote axial load is reduced from sg,, to smy,, the
composite constitutive behaviour is given by the Mroz multiyield surface hardening
rule (CHABOCHE, 1986). Since proportional loading is maintained, this response can
be integrated up into the form of a deformation theory, giving

slope =5,
-
-
-
-
’/
t, =
-
-
-
-
-
-
-
-
- 1 — ™
-~ @ @ @ S1I0P€ =Sy
/” _—f-—-—"
/”__—ﬂ"ﬁ - -
= n
- N, N,

F1G. 4. Determination of the cyclic stress—strain history in a kink band using the Mroz plasticity law and
a Considére construction.
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p=me— (). ©3)
()

2

Equation (25) is consistent with Masing’s rule for fully reversed cyclic loading. The
effective stress and strain in the kink band during this unloading phase of the cycle
can be determined by combining (25) and the equilibrium equation (19). The minimum
effective stress and strain, corresponding to the axial load sy, are defined as ¢, and
.. On the Considére diagram (Fig. 4), this phase of the kink band stress—strain
history is labelled (2). Similarly, the reloading phase of the stress—strain history, when
the remote axial load is increased from s%;, t0 si,,, 1s characterized by the constitutive
relation

2G l—t,) 26)

=7+
= ~<t—t,)< 2
Gl —

2

and is labelled (3). The segments of the remote axial loading history shown in Fig. 3
are labelled as they correspond to segments of the stress—strain history of the Considere
diagram in Fig. 4. Note that the constitutive equations (25) and (26) result in a closed
cycle in the stress—strain space of the kink band, i.e. there is no ratchetting.

For the Coffin—-Manson low-cycle fatigue law to be used, it is necessary to know
the change in plastic strain per load cycle,

AP =n5—nf = (n2— 1) —(m, —1)). (27)
Using (25) and (26), (27) can be rewritten as
2G (At
AnP = <~2—> —At (28)

~ [ At
Gs(?)

where At = t,—1t,. The peak effective stress, 7,, is determined by combining the
monotonic composite material response, (21), with the equilibrium condition, (19),
where s* = s%,.. Thus, 7, is the solution of the equation

G
t2 Smde:G( 7) t'? +CU:] 0. (29)

The minimum effective stress, ¢,, comes from combining (25) and (19) with s =
sein. Thus, 7, is the solution of the equation

2G ,—1, _
. “{ﬁ’ suu—mwm< 2 >+wJ=°' (30)

Rewriting (30) in terms of Az,
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Sovin 2G Ar\
At — (l — &?moa—x)lz + ——_GS(At/Z) <~2—>Smin =0. (31)

For a Ramberg—Osgood composite material response as given by (23), then (29), (31),
and (28) become respectively,

tz_Siax(t2+%t};+a_)) :0a (32)
At—(l — Sggi“>t2+sgfm(m+ (A" +a) =0, (33)
and
6 [AtY
A == ).
n 7<2> (34)

o8]

To obtain AP as a function of sg.,,, spin, @ and n, we solve (32) for ¢, and then (33)
for Az. Finally, we use (34) to calculate Ag®.

Note that the peak load in the fatigue cycle must be less than the critical load for
monotonic microbuckling given in (24), sy, < s&. If this condition is not satisfied,
(32) will not have a real, positive solution. In general, (32) has » solutions, but the
positive real solution of smallest magnitude is the only one of interest here. This
solution is readily obtained using a standard root finding algorithm and a modicum
of care. The same applies for solving (33).

Once the change in effective plastic strain experienced by the kink band during a
cycle of fatigue, Ay®, has been calculated, a Coffin—-Manson type low-cycle fatigue
relationship is used to determine the number of cycles at failure ;

An® v )

2T, (2Ny) (35)
where y; and ¢ are material parameters and Ny is the number of cycles at failure. The
more usual Coffin—Manson relationship is for normal uniaxial straining and takes the
form (HERTZBERG, 1976)

P
2 Ny (36)
where A¢P is the change in normal plastic strain experienced during a cycle of fatigue
(not normalized by the yield strain). The material fatigue parameter ¢; is associated
with (but not generally equal to) the normal strain at failure under monotonic uniaxial
loading ¢. Examples of typical parameter values for metals are & = 0.95 and
¢ = —0.64 for SAE 1015 steel and ¢f = 0.42 and ¢ = —0.65 for 2014-T6 aluminium
(HERTZBERG, 1976). To make use of tabulated values for the fatigue material par-
ameters in (36), they need to be related to those in (35). We assume that the exponent
parameters c in each equation are equivalent and that y¢/ef = y;/e; where y; is the pure
shear failure strain.

An approximate relation between y; and & can be established by assuming a von
Mises type failure surface in stress space that depends only on the second stress
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invariant J,. Then, ¢; = ﬁrf where o; and 1, are the monotonic normal and shear
failure stresses, and the failure strains & and y; are related by the work statement
ocer = T¢Y¢. Hence,

Ve _ v _ 0

ot =./3. (37)

& & Tf

Predictions of the Mroz plasticity law

The predictions of the model for the parameter values ¢ = —0.65, y¢/y, = 360 and
@ = 100 are given in Fig. 5. These values are illustrative of those for long aligned
fibre—metal matrix composites, as detailed below. Ramberg-Osgood parameter values
of n =3 and 5 and fatigue ratio values of p =0, 0.25 and 0.5 are considered. The
results are presented as the range of cyclic loading, As™ = s7,— Smin, versus the
number of cycles at failure, N;. An upper limit on the values of As* which are
consistent with fatigue microbuckling (as opposed to monotonic microbuckling) is

given by
As* < (1—p)sZ (38)

where s is the monotonic microbuckling load given by (24). The transition from
fatigue to monotonic microbuckling, as As™ is increased, is represented in Fig. 5 and
in subsequent figures by a cross; to the left of the cross runs a horizontal line
As* = (1—p)sZ. This transition does not generally occur at Ny = 1. The reason is
that monotonic microbuckling and microbuckling by low cycle fatigue are different
phenomena. Monotonic microbuckling involves plastic collapse while the results
shown in Fig. 5 are based on the idea of localized fatigue failure (described by a
Coffin-Manson low-cycle fatigue relationship) within the kink band. The model

ODL l T T T
X transition to plastic collapse
n=3 c=-0.65
0.03 -—--n=5 5/8,=360 |

® =100
As™

0.02

00 N ™ -

0.00 | | ! |
102 103 104 105 106 107
Nf

F1G. 5. Effect of load ratio p and strain hardening index n upon the low cycle fatigue response. The

amplitude of remote cyclic loading As* is plotted against the predicted fatigue life N, using the Mroz

plasticity law and a Coffin-Manson low cycle fatigue law. The horizontal lines to the left of the crosses
represent the level of As* above which monotonic microbuckling (N; = 1) occurs by plastic collapse.
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predicts that as As™ increases there is a discontinuous jump in the number of cycles
to failure Ny at the transition from fatigue to monotonic microbuckling.

Provided that the peak remote load s3,, is not near the monotonic microbuckling
load, the number of cycles to failure is nearly independent of the fatigue ratio, p.
There is a strong dependence on the Ramberg—Osgood parameter, n: the fatigue
resistance increases strongly with increasing n. The dependence of the fatigue micro-
buckling predictions on the Coffin—-Manson composite fatigue parameters is exam-
ined in Fig. 6. The range of cyclic loading versus the number of cycles at failure is
given for n = 3, @ = 100 and p = 0 with fatigue parameter values of ¢ = —0.5 and
—0.8 and y¢/y, = 100, 200 and 400. These values for ¢ and y¢/y, span the expected
range for metal matrix composites. There is a strong dependence on the parameter ¢
and a weaker dependence on 7¢/y,. The number of cycles at failure Ny increases as
yt/y, increases and as ¢ approaches zero.

Comparison with experimental data

Experimental results on compressive fatigue microbuckling of a 50 volume percent
alumina (Al,O;) fibre, aluminium-lithium alloy (Al-2.5% Li) matrix composite have
been presented by HuANG and WANG (1989). These results can be compared to the
model predictions by choosing material properties and parameters which match, as
nearly as can be determined, those of the actual composite. The data from Huang
and Wang are presented as the number of cycles to failure N; as a function of applied
axial load o5, with p = a5, = 0. In order to compare the data with the non-dimen-
sional predictions of the model, a value for G* is required. Assume first that R = 2
and S = 20° so that o = 1.24. These values are typical for many unidirectional fibre
composites. Young’s moduli for the fibre and matrix, respectively, are E; = 380 GPa
and E,, = 80 GPa (HuAaNG and WANG, 1989). Assuming Poisson’s ratio is v = 0.3
(and ignoring elastic anisotropy) for both the fibre and the matrix, the respective
shear moduli are then G; = 150 GPa and G,, = 30 GPa. The approximate rule of

0. OL T T T T T T

0.03

oo

As

" v
x transitionto '\

0.021-"" piastic collapse <
c=-05 h:
-——-c¢c=-0.8
0.01+ =100 N
p=0 SN
n=3 TR
0.00 1 ! 1 ( i T

100 10 102 103 104 105 108 107
f
F1G. 6. An examination of the dependence of the model predictions on the Coffin-Manson fatigue law

parameters. The horizontal lines to the left of the crosses represent the level of As™ above which monotonic
microbuckling (N; = 1) due to plastic collapse occurs.
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mixtures formula, 1/G =~ v¢//G;+ (1 —v;)/G,,, where v; = 0.5 is the fibre volume fraction,
is used to obtain the shear modulus for the composite examined by Huang and Wang:
G = 50 GPa. The adjusted shear modulus, by (20), is then G* = 77 GPa. For the
fatigue law, (35), the index c is taken to be the same as that for aluminium, ¢ = —0.65.
A knock down factor of (1 —v;) is imposed on the value of ¢ for aluminium, to
account for the presence of rigid fibres; thus ¢f = 0.42(1 —v;) = 0.21 and, from (37),
/7, = 360 where the shear yield strain has been taken to be y, = 0.001.

A direct comparison is made with the experimental results of HUANG and WANG
(1989) in Fig. 7. A range of initial fibre misalignment @ = 50-200, which corresponds
to ¢ =2.3-9.2°, is considered. The experimental results indicate a much more
rapid increase in the fatigue life N; as the amplitude of fatigue loading is decreased
than is predicted by the model. There is also no evidence of a discontinuous jump
in the number of cycles at failure as the failure mechanism goes from monotonic
microbuckling to fatigue microbuckling. There is insufficient agreement between any
of the model prediction curves and the experimental data to draw firm conclusions
about appropriate values of @ and n. Experience with polymer matrix composites
suggests a value for ¢ in the range 2-4° which with y, = 0.001 and « = 1.24 cor-
responds to @ in the range 43-86. This is consistent with the results shown in Fig. 7.

It is possible to choose the fatigue law parameter y¢/y, so that, when s5,, = s, the
number of cycles to failure is Ny = 1. Such a choice of y¢/y, bears no relationship to
tabulated values of fatigue law parameters based on uniaxial fatigue tests, and will be
different for each value of Ramberg—Osgood parameter » and fatigue ratio p. The
value of y¢/y, is based on a comparison between the fatigue response and micro-
buckling by a plastic collapse mechanism ; these phenomena appear to be distinct.
Thus, choosing y;/y, in this manner is essentially a curve fitting procedure. The results
are shown in Fig. 8 with the value of ye/y, indicated for each curve. The fatigue
parameter ¢ = —0.65, the initial fibre misalignment & = 100, fatigue ratios of p = 0

0.06 T T T T T T

® Huang & Wang

0.05

0.04
AsT T
0.03

0.02]

0.01

0.00 ‘
100 10 10? 13 10 10° 106 107
N¢

F1G. 7. Comparison of predicted fatigue lives by the Mroz plasticity law with measured fatigue lives of an

alumina—aluminium alloy composite (HUANG and WANG, 1989). In presenting the experimental results it

is assumed that a = 1.24. For the theoretical curves the transition point between low cycle fatigue and

plastic collapse is not shown explicitly. The horizontal lines represent the level of As* above which
monotonic microbuckling (N; = 1) due to plastic collapse occurs.
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0.04 T T T T T T
n=3
i {p= o " _
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Fi1G. 8. Predicted fatigue life using the Mroz plasticity law and a Coffin-Manson low cycle fatigue law. The
parameters of the model have been adjusted so that failure occurs in fatigue at a life Ny = 1 at the same
load as the plastic instability load.

and 0.5, and Ramberg-Osgood parameter values of n = 3 and 5 are considered. The
fatigue curves in Fig. 8 indicate a more rapid increase in Ny with decreasing As® than
was previously the case, but with a greater dependence on the fatigue ratio p. The
model predictions, for different values of initial fibre misalignment & and Ramberg—
Osgood parameter n, are compared with the experimental results (HUANG and WANG,
1989) in Fig. 9. The predictions for Ramberg—Osgood parameter » = 5 and initial
fibre misalignment & = 50 (y¢/y, = 0.39) provide the closest agreement with the data
of Huang and Wang among those combinations of parameters that were considered.
The correspondence is generally better than for the unmodified version of the model
but still predicts a steeper fatigue life curve than observed experimentally.

0.05 T T T T T T

{(IJ:SO — _n=3 4
=341
—————— n=5
0.04+ -
0 ) ® Huang & Wang
i c=-0.65 §
003 p = 0 —
As™ _ 4
w =150
0.02 ¥/3,=9.4 =
@=100 " B
0.0 T~ ‘\i}j!?y =0.78 -
3/3, =1.2} ‘‘‘‘‘‘‘
0.00 L

| ] 1 1 1 -
100 10 102 103 104 105 108 107

t

F1G. 9. Comparison of predicted fatigue lives with measured fatigue lives of an alumina—aluminium alloy

composites (HUANG and WANG, 1989). The parameters of the model have been adjusted so that failure

occurs in fatigue at a life Ny =1 at the same load as the plastic instability load. In presenting the
experimental results it is assumed that o = 1.24.
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Armstrong and Frederick cyclic plasticity law ; ratchetting

As an alternative to the Mroz cyclic plasticity law, a non-linear kinematic hardening
rule (ARMSTRONG and FREDERICK, 1966 ; CHABOCHE, 1986) is used to incorporate
ratchetting within the kink band. For this proportional loading application, kinematic
hardening means that the yield condition can be expressed as

lt—X| =1 (39)

where X is defined as the centre of the yield surface. The strain hardening rule proposed
by ARMSTRONG and FREDERICK (1966) can be expressed as

dx dt
for a positive increment of plastic strain and
dx dr .

for a negative increment of plastic strain. The strain hardening parameters 4 and p
are material constants. If a material element described by (40) and (41) experiences
cyclic loading with a non-zero mean stress, and p # 0, then ratchetting occurs. If
u = 0, then ratchetting does not occur and the material has a linear strain hardening
response. Equations (40) and (41) can be integrated to give the following solution for
plastic straining

1
11=t+11p=t+;7%—;ln —_— when 7= X+1 (42a)

1
n=t+np:t+n%+ﬁln —_— when (= X-—1 (42b)

where X, and »§ represent a point in the plastic stress—strain history not separated
from the current point by a reversal in plastic straining. For example, for positive
plastic straining when 1 = X+ 1, X; and #{ in (42a) represent some point in the current
interval of positive plastic straining. Note that, regardless of the value of X and #§,
the requirement for finite 7,

2
X < R (43)

always holds.
As in the previous analysis of the Mroz cyclic plasticity law, the remote uniaxial
loading history is as shown in Fig. 3. During initial loading, when s* is increased
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monotonically from zero to sp,,, the material response is initially elastic, # = ¢, until

= 1. Then the response is given by (42a) with X, = #§ = 0. Referring to the equi-
librium equation (19), if 52, < (1+@) ' then the material in the kink band will not
reach the yield condition. At the other extreme, s must be less than sg;, the critical
load for monotonic microbuckling. s can be calculated by equating (42a) and the
equilibrium equation (19),

I - 1 3.“
—d =1, ——In|1—2"(1,—1 44
S({?fi) w tcl U n[ 2)“ (t(.l ):|a ( )

and their derivative with respect to ¢ [see (22)],

L=1+[?ﬂﬁmm—wﬂ, 45)

Sel

where #, 1s the critical effective stress within the kink band corresponding to sg.
Combining (44) and (45), 1., is given by the solution to

tcl 1 3/" -
4+ —-Inj 11— (ty;—1) |- =0 46
S =1

and s3 is then given by (45). If (1+d) ! < s%,, < 5%, then ¢, and 5, are defined as
the effective stress and strain within the kink band at the peak remote load sg,,
during the initial loading. This point in kink band stress—strain space is labelled
(11, t,) in the Considere diagram shown in Fig. 10. Equating the equilibrium equation
(19) and the constitutive equation (42a), ¢, is given by the solution to

1 1 3
= — o= | 1= = 1) [+5 =0 (47)
Snoiux H 2)"

and 7, is given by the equilibrium equation (19).
During the subsequent unloading phase of the fatigue cycle, when the remote

2A
—_— 1 —_ = —_ = —_ =
3u
slope =5,
(n3,t3) -
My,t) -
- -7 y Slope _smin
- s |\ S S e emmmm T
e z g
-e (nz,m/ \(m,t4)

F1G. 10. Determination of the cyclic stress—strain history in a kink band using the Frederick—Armstrong
ratchetting law and a Considére construction.
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uniaxial load is reduced from s5,, to s%,, the kink band response is initially elastic,
n=mn,—t +tuntil t = ¢, —2. Thus, if
. t,—2 48

Smm> 171—2—|—d')’ ( )
then the first unloading, and all subsequent fatigue cycling, will involve only elastic
deformation of the kink band and no ratchetting will occur. Otherwise, ratchetting
will occur and plastic strain will accumulate until the kink band suffers a plastic
collapse. In the analysis to follow, consecutive points in kink band stress—strain space,
corresponding to values in the remote loading history of s, and s5;,, are numbered
sequentially (see Fig. 10). During fatigue cycle j, the values of stress and strain in the
kink band when s* = s7;,, are 5, , and 5,,_, and the values when s* = s, are 1,,
and 1,;.

During the loading phase of a fatigue cycle j, the kink band constitutive response
is given by (42a) with X, = t5;_,+1 and n§ = #y;_1y—t2;—1). The values of #,;_,,
and #,(,_ |, correspond to stress and strain in the kink band when s* = s, during the
previous fatigue cycle and are assumed to be known. The critical load for plastic
collapse of the kink band during this loading phase, s, and the corresponding
effective stress, ¢, are given by the solution to the equations

3u
—=(t.,—1
L 2/1( D - (49)
ﬁ“ﬂ _’72(,i71)+t2(_ifl)+ﬁ]n TW —0=0
3"_,“(&-_/“]) (tv(; n+1)
* =1 ! (50)
LS‘C/ -_ 2}/ .
=D+

If s < sqax then the kink band experiences plastic collapse during this fatigue cycle.
If not, the peak effective stress during this cycle, 7,;_,, is given by the solution to the
equation

1 1 ) 5 (=)
max 2*/1(1‘2(‘/; ”+ 1)

and the corresponding effective strain, #,; ,, is given by the equilibrium equation
(19). Note that (46), (45) and (47) can be recovered from (49), (50) and (51),
respectively, by letting j = l and to = o= — 1.

During the unloading phase of a fatigue cycle j, the kink band constitutive response
is given by (42b) with X, =1t,, ,—1and #§ =n,,_,—1,;_,. The values of #,;_, and
2, 1 are known from the previous analysis of the loading phase of fatlgue cycle j.
The minimum effective stress at the end of this fatigue cycle, ¢,;, when s = sy, is
given by the solution to the equation
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3
1 L] 1+ e
(1—w)tz.f+’72_/~l*f2.i—l+“ln td=0 (52)
min H 3’“
1+ﬁ(lzj_1*1)

and the corresponding effective strain, #,;, is given by the equilibrium equation (19).
To determine the number of fatigue cycles to failure, N;, for given values of sg,,,
Siin, A, u and @, first determine that s5,, < s as determined by (45) and (46);
otherwise, the kink band will experience plastic collapse before fatigue cycling can
commence, i.e. Ny = 1. Use (47) to determine ¢, and 5. If the condition given by (48)
is satisfied, then N;— oo, so long as fatigue failure is assumed to be caused by the
plastic collapse mechanism (as opposed to a Coffin—Manson fatigue law of the type
used in the non-ratchetting analysis). Use (51) and (52) to proceed sequentially
through fatigue cycles, calculating extreme values of effective stress and strain in the
kink band. For the loading phase of each fatigue cycle j, use (49) and (50) to determine
whether the kink band suffers plastic collapse. If so, then this is the cycle at which
failure occurs and N; = j. It is an interesting feature of this model that as plastic strain
accumulates, the rate of ratchetting increases. Referring to Fig. 10, it can be seen that
as n becomes larger, both the mean level of local stress and its amplitude increase
resulting in larger increments of accumulated strain with each cycle of fatigue.

Predictions of the Armstrong and Frederick ratchetting law

The results for this plastic ratchetting model of fatigue microbuckling are shown
in Figs 11 and 12. The range of remote loading is plotted against the number of fatigue
cycles to failure. In Fig. 11 an initial fibre misalignment & = 100, the fatigue ratio
values of p = 0, 0.25 and 0.5 and strain hardening parameter values of A = 0.5 and
1.0 and u = 0.05 are considered. In Fig. 12 strain hardening parameter values of
u = 0.04,0.05 and 0.06 are considered while p = 0 is kept fixed. The strain hardening

010 T T T
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F1G. 11. The amplitude of remote cyclic loading As™ versus the predicted fatigue life N; based on the
Frederick—-Armstrong ratchetting law and failure by a plastic collapse mechanism. The effect of load ratio
p and hardening parameter A on fatigue response is explored.
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F1G. 12. The amplitude of remote cyclic loading As™ versus the predicted fatigue life N; based on the
Frederick—-Armstrong ratchetting law and failure by a plastic collapse mechanism. The effect of the
Frederick—Armstrong cyclic plasticity parameters A and u on fatigue response is explored.

parameters used were chosen to represent a range of likely values for an aluminium
alloy matrix composite as inferred from experimental studies on copper (u = 0.30,
/.= 0.55) and rail steel (u = 0.0083, 1 = 0.42) reported by Bower (1989). Directly
measured values for either the aluminium-lithium matrix composite or its constituents
are not available. The resulting fatigue life curves are approximately bi-linear on a
logarithmic-linear scale. As the remote loading amplitude is reduced from the level
of monotonic microbuckling, the logarithmic number of cycles to failure increases
nearly linearly until the threshold level of infinite fatigue life is reached. At and below
this threshold loading amplitude the composite experiences only elastic straining. This
threshold loading amplitude is nearly independent of the strain hardening parameters
and the fatigue ratio. At a given loading amplitude As®, the fatigue life N; increases
rapidly as the strain hardening parameter A increases and as either the parameter p
or the fatigue ratio p decreases.

Comparison with experimental data

The experimental results of HUANG and WaNG (1989) are given in Fig. 13 along
with those of the ratchetting model. In the absence of directly measured values for
aluminium alloy matrix composites, the strain hardening parameters u = 0.05 and
0.07 and 4 = 0.5 and the initial fibre misalignments & = 100, 150 and 200 where
chosen partly on the basis of inferences drawn from the strain hardening parameters
of other materials and partly in order to match the experimental results. The best
match, for these strain hardening parameters, is obtained when @ = 150 cor-
responding to ¢ = 7°. In particular, the monotonic microbuckling load and the fatigue
threshold are well matched. HUANG and WANG (1989) interpreted their experimental
results as bi-linear in nature (on a log-linear scale), which is in agreement with the
model predictions, though the experimental results for the number of cycles at failure
increase more rapidly as the remote loading amplitude is decreased. The ratchetting
model predictions agree reasonably well with the data of Huang and Wang.
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F1G. 13. Comparison of predicted fatigue lives, based on the Frederick~Armstrong ratchetting law and
failure by a plastic collapse mechanism, with measured fatigue lives of an alumina-aluminium alloy
composites (HUANG and WANG, 1989). In presenting the experimental results it is assumed that o = 1.24.

CONCLUDING DISCUSSION

Two models have been presented for compressive fatigue microbuckling ; the models
are differentiated by the particular forms of cyclic plastic law used. Which of these is
the more appropriate to some extent depends upon the composite under consideration.
For the Al-2.5% Li matrix composite a comparison between experimental data
(HuaNG and WANG, 1989) and the model predictions, Figs 9 and 13, suggests that the
cyclic plasticity law which includes ratchetting behaviour is the more appropriate.
However, for polymer matrix composites, woods or other metal matrix composites
this need not necessarily be the case. Unfortunately, there is a paucity of explicit
experimental studies on compressive fatigue failure in fibre composites. The theoretical
analysis presented here suggests that it is an important mode of failure. Short fatigue
lives N; are predicted at remote loading amplitudes As™ significantly below that
required for monotonic microbuckling. This is borne out by the experimental results
of HUANG and WANG (1989) who measured a fatigue life of only N;~ 1000 at a
loading amplitude 65% of the monotonic microbuckling load. It remains to be
established under which circumstances microbuckling is the dominant compressive
fatigue failure mechanism. Huang and Wang reported microbuckling to be the domi-
nant mechanism in their tests, but there are doubtless other competing mechanisms
which may be important.
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