/TS J. Mech. Phys. Solids, Vol. 42, No. 7, pp. 1067-1085, 1994
5(’3@; P Copyright © 1994 Elsevier Science Ltd
\\gl ergamon Printed in Great Britain. All rights reserved

T
e 0022-5096/94 $7.00+0.00
0022-5096(94)E0020-5

HYDROSTATIC COMPACTION OF CYLINDRICAL
PARTICLES

A. R. Akisanya, A. C. F. Cocks and N. A. FLECK
Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, U K.

(Received 20 October 1993 ; in revised form 3 March 1994)

ABSTRACT

THE EFFECT OF particle contact—contact interaction and pore geometry is studied for the pressure—density
relationship of powders undergoing hydrostatic compaction. The study is restricted to a two-dimensional
array of cylindrical particles. Slip-line field theory is used to analyse the rigid—perfectly plastic response
and the finite element method is used to explore the effect of material strain hardening. For both material
descriptions, contact—contact interaction has a strong influence on the compaction process beyond the
initial stage. The theoretical predictions are compared with experimental results for hydrostatic compaction
of plasticene cylinders.

1. INTRODUCTION
1.1. Industrial perspective

CONSOLIDATED METAL POWDERS are finding increased use in engineering components
due to the advantages which they offer in terms of mechanical properties and ease of
processing. For example, complex shaped components such as gears and cams for
automotive applications can be formed by pressing the powder in a suitably shaped
die. After this stage of the process, the particles are weakly bonded together and the
component is heated to an elevated temperature in a reducing atmosphere, allowing
the particles to bond together. Because of their high strength, intermetallic and
ceramic components are commonly manufactured using a powder route. Densification
of the compact is achieved at elevated temperature with or without the simultaneous
application of pressure.

In any manufacturing process it is important to be able to optimize the procedures
to minimize the cost of production and maximize the reliability of the finished com-
ponent. Currently, the process variables are largely determined in an ad hoc manner,
based on experience of what has worked in the past. Computational simulation of
compaction would considerably ease this process, but before this can be achieved
appropriate constitutive laws for the powder response need to be developed.

1.2. Densification mechanisms

The densification of powder compacts involves various mechanisms: plastic flow,
creep, diffusion and so forth. The densification rate is the superposition of the con-
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tribution from all operating mechanisms. The effects of creep and diffusion are small
at low homologous temperature ; plastic flow becomes the dominant mechanism by
which densification occurs under this condition. Also, plastic flow is the dominant
mechanism of deformation in the early stages of compaction during hot pressing and
hot isostatic pressing (HIPing). In this paper we are concerned with the densification
of powders by plastic flow and leave the other mechanisms (creep and diffusion) for
later treatment.

It is possible to identify two distinct stages of the compaction process of spherical
powders. During the early stages of densification (stage I) the body contains a network
of open porosity, with distinct necks between the particles. As densification proceeds
the pores pinch-off leaving a network of isolated pores within the body. The sub-
sequent response is generally referred to as stage II densification. In the current paper
we examine the response of a two-dimensional array of cylinders, where the pores
always lie along the axes of the cylinders. The above physical distinction of stages I
and I1 is no longer appropriate, but it still proves convenient to separate the response
into two different stages, where now each stage is characterized by the nature of the
slip-line field solution that develops within the particles, assuming a rigid, perfectly
plastic response.

Existing models (KAKAR and CHAKLADER, 1967; ARZT, 1982; SWINKEL ef al., 1983;
HELLE et al., 1985 ; AsuBY, 1990) for the pressure densification of powders by plastic
flow during stage I are based on isolated contacts between the particles and on the
increase of the number of such contacts. The plastic deformation zone is assumed to
be localized around each contact, and there is no interaction between neighbouring
deformation zones. The isolated contact model (AsHBY, 1990) assumes that the mean
pressure on each particle contact is equal to the fully constrained Prandtl punch value
of Py = 2k(1+mn/2) (HiLL, 1950), where k is the shear yield strength of the material
composing the powder particles (P is the load on a contact divided by the contact
area). Material models for stage II are based on idealizing each of the pores as an
independent spherical void surrounded by a spherical shell of material. This ideal-
ization of the porosity in stage II is only valid if surface diffusion is sufficiently rapid
for the pores to adopt an equilibrium shape throughout the deformation process. In
cold compaction of powders (and in the early stages of hot isostatic pressing), the
contribution from diffusion is negligible, and the pores remain cusped (LIU et al.,
1993). Thus, the isolated spherical void model is not appropriate in these instances.

1.3. The role of particle contact—contact interaction

The isolated contact model in stage I neglects the details of the particle geometry
and also the possible interaction of the deformation zones emanating from each
contact. The interaction of the deformation zones may occur early during densi-
fication, and thus render the isolated contact model invalid. Furthermore, the finite
particle geometry imposes an upper limit on the ratio of contact size to particle radius
for which the mean contact pressure in stage I equals the fully constrained Prandtl
value.

The interaction of the deformation zone emanating from a contact with another
deformation zone can lead to softening, where the local indentation pressure drops
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below the Prandtl value. This is exemplified in Fig. 1, for the representative case of
two opposite contacts, each of width 2x and a-distance 2H apart. Interaction of the
plastic zones occurs when x/H > 0.1. Softening is not always observed, however
interaction can sometimes lead to a hardening of the system response. We can dem-
onstrate this effect by considering, for example, the row of indenters of width 2x and
a distance 2H apart, as shown in Fig. 2(a). If x < H, then Hill’s fully constrained slip-
line field can develop under the indenters and P.q; = 2k(1+n/2). As the indenters get
closer together, the material squeezed out from under the indenters is forced to extrude
up through an ever decreasing gap between the indenters, increasing the constraint
on the deformation process. This leads to an increase in the value of P.; required to
drive the deformation process as demonstrated in Fig. 2(b).

Itis evident from the above discussion that models that account for particle contact—
contact interaction are required to predict accurately the densification pressure for
powder compaction.

1.4. Statement of the problem

In this paper we investigate the effect of particle contact—contact interaction and
of pore geometry upon the densification of powders. As a preliminary investigation,
we evaluate the response of an idealized two-dimensional array of cylindrical particles.
The compaction of two-dimensional particles is of practical importance in the manu-
facture of fibre-reinforced composites where both the fibre and the matrix can be
cylindrical in geometry. Moreover, a two-dimensional model provides a useful, sim-
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F1G. 1. Effect of finite particle geometry on the mean contact pressure for a particle with two opposing
contacts. Py is the mean contact pressure, k is the shear yield strength of the particle, 2x is the contact size
and 2 H is the contact-contact distance. The inserts show the slip lines for the different modes of deformation.
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F1G. 2. The hardening response for an array of indenters due to contact—contact interaction.

plified way of examining the main aspects of the densification of spherical and other
three-dimensional particles, such as the interaction between particle contacts.

The densification of cylindrical particles by creep and/or diffusion has been con-
sidered by various authors (MATSUMURA, 1971 ; SWINKEL and ASHBY, 1981 ; WILLIAM-
SON et al., 1992). In the present study, we focus on the densification of cylindrical
particles by rate independent plasticity. We consider the plane strain compaction of
a hexagonal array of circular cylinders subjected to a macroscopic hydrostatic pressure
P, asshownin Fig. 3. The pressure versus density response for the array is determined
using plane strain slip-line field theory for a rigid—perfectly plastic solid. The effect of
material strain hardening upon densification is explored using a finite element analysis.
Experimental results are presented for the hydrostatic compaction of plasticene rods ;
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F16. 3. A schematic diagram of hexagonal array of cylinders subjected to an external hydrostatic loading
P.,.

the deformation characteristics of plasticene are similar to those of metals, and
plasticene therefore serves as a good model material.

2. GEOMETRICAL RELATIONSHIPS

In this section we develop equations for the relative density D (= density of porous
solid/full density of solid constituent) of the hexagonally packed array of cylinders
(Fig. 3) due to plastic flow. As in the densification of spherical particles we identify
two stages of compaction: stages I and II. During the initial stage (stage I), the
individual cylindrical particles are still recognizable and the pores remain cusped in
shape. The densification in stage I is therefore modelled by the growth of particle—
particle contacts. In the later stages of densification (stage II) the pores formed
between the contacting particles are surrounded by a zone of plastically deforming
material. It is now more instructive to model the geometry as an array of pores which
shrink in size as the relative density of the compact increases. Two types of pore cross-
sectional geometries are considered : circular and triangular. If densification occurs
by plastic flow, as in cold compaction, the pores remain cusped, and the actual pore
geometry is best approximated by a triangularly shaped pore. However, when the
densification involves other mechanisms, such as diffusion, the pores can become
rounded and a circularly cylindrical shape more closely approximates the actual pore
geometry. We shall show that the pore geometry in stage II has a significant effect
upon the densification process. First we discuss the particle geometry for the two
stages of densification.

2.1. The initial stage : stage 1

Consider a unit cell of the array consisting of a three-sided cusped pore within an
equilateral triangular block of material of length 2y, as shown in Fig. 4(a). Here 2y
is the centre—centre distance of two contacting particles; 2y = 2R, at the start of
deformation, where R, is the initial particle radius, i.e. the particles are in point
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Fi1G. 4. The compaction of a hexagonal array of cylinders illustrating the unit cell. (a) The unit cell in stage

I; the pore has a cusped shape. (b) The unit cell in stage II; the porosity has been approximated by a

triangular pore of length s, and (c) the unit cell in stage II with a circularly cylindrical pore of radius a. In
all cases, 2y is the particle centre—centre distance.

contact initially. We do not follow the evolution of the shape of the particle during
the deformation process, but assume that at any instant during stage I the free surface
of the pore can be represented by a circular arc of radius R with its centre of curvature
coincident with the centre of the particle. Under a macroscopic hydrostatic loading
in which the unit cell volume decreases, the particle centres move toward each other
and contacts are formed between the particles. Deformation occurs in individual
particles by radial flow of material into the void space along the axis of symmetry
between two neighbouring contacts. This assumed mode of deformation ensures that
the voids remain cusped ; and is consistent with the observed void geometry in cold
compaction and in the early stages of hot-isostatic pressing (SWINKEL et al., 1983).

The contacts appear as flat rectangular faces on each particle ; the contact size 2x
is taken as the width of a rectangular face. The particle radius at any stage of the
deformation, R, is related to the contact size 2x and the instantaneous centre—centre
distance 2y by R = (x*+y?)'/%. The volume of a unit length of a cylindrical particle
at any stage of the deformation, V,, is given by [see Fig. 4(a)]

V,=nR*—Z(R*0—xy), (1)

where Z is the number of contacts per particle (Z = 6 for a close packed array of
rods), and 6 = tan™' (x/y). By equating ¥, to the initial volume of a unit length of
the particle V, = nR? (R, is the radius of the particle at zero deformation), we obtain
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The relative half contact size x/y varies from a value of x/y =0 at the start of
densification to a value of x/y = 1 /\/ 3 at full density. Figure 5 shows a plot of R/R,
against x/y; R~ R, for x/y <0.1.

The relative density D is defined as the ratio of the volume of material in a unit cell
to the total volume of the unit cell. For the unit cell shown in Fig. 4(a), the relative

density D can be shown to be
Do - Ro y2 ) ( a)

where D, = 0.906 is the value of D at x/y = 0. For values of x/y in the range
0 < x/y < 0.3, the expression for the relative density given by (3a) can be approxi-
mated by a linear relationship

D 3 x
EZI—{_%;’ (3b)

which is within +0.5% of the exact solution.

2.2. The final stage : stage 11

During the final stage, the pores are idealized as regularly spaced holes surrounded
by plastically deforming material. Two pore geometries are considered: triangular
and circular cylindrical pores. The unit cell for each pore geometry is chosen to be
representative of that for the whole compact.

The unit cell for the triangular pore is similar to that shown in Fig. 4(a) but with
the cusped shaped pore in stage I replaced by an equilateral triangular pore of length
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F1G. 5. The normalized instantaneous particle radius R/R, as a function of normalized half contact size
x/y. R, is the initial particle radius and 2y is the particle centre—centre distance.
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s, as shown in Fig. 4(b). Straightforward geometrical considerations give the relative
size of the triangular pore s/y in terms of the relative contact size x/y,

5__1_<1_£> 4@
y 3V )

The relative density D is now given by

D=1—%<1—ﬁ5>2. (5)

Y

The unit cell when the pores are circular [Fig. 4(c)] consists of a circular pore of
radius a within a deforming equilateral triangular block of length 2y. The relative
pore radius a/y is related to the relative contact size x/y by

X 1 a
St ©)
y 3 )

and the relative density D is given by

T x\?
D=1— 1—/3—]. 7
3\/§< fJ’) @

The size of both the triangular pore, s, and the radius of the cylindrical pore, a,
decrease with increasing densification : both s/y and a/y vanish as full density (D = 1)
is approached.

Previous material models for stage I densification assume a unit cell which consists
of a circularly cylindrical pore surrounded by a cylindrical shell of material. We shall
show in the following section that the slip-line field solution within the plastically
deforming region around each cylindrical pore is the same as that given by the thick-
walled cylinder model.

3. DENSIFICATION PRESSURE: SLIP-LINE FIELD APPROACH
3.1. Stage 1

If the cylindrical particles are free to slide on each other so that the contact surface
cannot support any shear stresses, the deformation can be modelled by considering
the indentation of a long cylindrical material by a smooth rigid flat punch. The
material is assumed to be rigid and perfectly plastic, and the length of the cylinder is
assumed to be much greater than the diameter so that a plane strain analysis is
applicable.

For the hexagonal array of cylinders, the deformation is modelled by six equally
spaced smooth, rigid flat punches of equal width indenting a rigid—perfectly plastic
cylinder. Slip-line field theory (HiLL, 1950) is used to evaluate the indentation pressure.
When the externally applied loading P., is hydrostatic (as shown in Fig. 3) symmetry
conditions dictate that only 1/12 of the cylinder needs to be considered (the primitive
cell of Fig. 4). Typical slip lines for the indented cylinder are shown in Fig. 6, with



Compaction of cylindrical particles 1075
x

Rigid /
‘A '\/A axes of
130° axes of :30°% symmetry

symmetry

X i
(a) (b)
FiG. 6. The slip-line fields for stage I. (a) Isolated contact, and (b) contact—contact interaction.

displacement of the material occurring symmetrically about the punch during the
indentation.

At the start of densification, when the contacts are much smaller than the particle
radius, the deformation is localized and there is no interaction between the contacts.
The slip lines at this stage are Prandtl fields (HiLL, 1950), see Fig. 6(a). The field
assumes a triangular zone of dead material adheres to the punch and moves as a rigid
body with the punch. The uniform pressure P, on the flat punch, neglecting the small
curvature of the particle, is P = [(24—71)/\/5]0y = 2.970,, where the material is
assumed to obey Von Mises yield condition and ¢, is the uniaxial yield stress of the
material composing the cylindrical particles.

As densification progresses and the contact size increases, the distance between
neighbouring contacts decreases and the contacts begin to interact when the contact
size is no longer small compared with the distance between the contacts. Typical slip
line fields when the contacts interact with each other are shown in Fig. 6(a). A
triangular zone of dead material is attached to the punch surface and the nets of
orthogonal slip lines starting from the corner of the punch intersect the axes of
symmetry at 45° (JOHNSON, 1958). The material in the centre of the indented cylinder
is rigid while that on the outer side of the slip lines moves as a rigid body outward
along the axis of symmetry with progressive deformation. The uniform pressure P.g
on the punch surface is evaluated using Hencky’s equations and the condition that
the net force on the zone of dead material along the axis of symmetry between
neighbouring punches is zero. The pressure P is given by Py = c(x/y)o, for the case
of contact—contact interaction, where ¢ is a dimensionless function of x/y, and
¢ < 2.97. Thus, the interaction between contacts results in a net softening of the
material response.

The transition from the case of isolated contacts to that of contact—contact inter-
action occurs when the slip-line field of Fig. 6(b) provides a value of P.4/o, equal to
the Prandtl value of 2.97. Based on this condition, we note that the transition occurs
at a value of x/y ~ 0.1. The slip-line field of Fig. 6(b) is admissible provided the angle
between the outermost slip line emanating from the corner of the punch and the
stress-free particle surface is greater than or equal to 45° (JOHNSON et al., 1970). We
observe that this condition is satisfied for values of x/y < 0.27. In the current paper
we identify the condition where x/y = 0.27 as the end of stage I. We therefore
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conclude (based upon the assumed mode of deformation shown in Fig. 6) that stage
I densification terminates at x/y = 0.27, which corresponds to a relative density of
D = 0.95.

Figure 7 shows the normalized contact pressure (or inter-particle pressure) Peg/o,
as a function of the relative contact size x/y; P.s/o, = 2.97 for x/y < 0.1 (isolated
contact) and it decreases with increasing contact size to a value of Pg/o, = 2.36 at
x/y = 0.27, due to particle contact—contact interaction. We observe that the isolated
contact model considerably overestimates the inter-particle mean contact pressure P.q
for values of relative contact size x/y in the range 0.1 < x/y <0.27 (i.e.
0.915 < D < 0.95). The results of P./o, in the range 0.1 < x/y < 0.27 can be fitted

to a function of the form
Py 6 (D—D, -l ®)
o, 5\ D, ’

which is within + 5% of the slip-line field solution. The relative density D is related
to the relative contact size x/y as given by (3) and D, (=0.906) is the initial relative
density. A variety of more accurate functions can be fitted to the slip-line field
solution ; such functions are, in general, complex and difficult to use. In the present
study, we assume the function given by (8) gives a reasonable description of the slip-
line field solution especially when many material properties (for example, the yield
stress and the strain hardening exponent) can only be measured to within 20% of
their actual values.

3.2. Stage 11

The three-sided cusped pore at the end of stage I is approximated firstly by a
triangular pore, and secondly by a circular pore. First we discuss the fields for the

5 - —=—— FEM,elastic/perfectly plastic
p Slip-line field solutions
?ef-f —e—Stage I
Y —a—Stage II;triangular pore
L  —o—Stage I;circular pore ?
\ i
\ 1
\ /.
31»——\50—0\ g,
\\.\ /
o 33:.“';:“_:‘—‘?
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Fi1G. 7. The effect of relative contact size x/y on the normalized mean contact pressure P.r/c,. The finite
element results are for elastic—perfectly plastic material with o,/E = 10™*, where o, is the yield stress of the
material and E the Young’s modulus.
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triangular pore. The slip-line field is shown in Fig. 8(a). A triangular zone of dead
material is attached to the surface of the triangular pore and the centre-fan field is
extended to intersect the contact surface and the axis of symmetry between the
contacts at 45°. The deformation is therefore localized around the pore and the
contact, and a rigid region exists at the centre of the particle. The mode of deformation
shown in Fig. 8(a) is strictly valid for values of half contact size, x, greater than or
equal to the triangular pore size, s. Geometric considerations dictate that the assumed
field is valid for x/y > 0.37, i.e. for D > 0.966. Recall that the slip-line field of Fig.
6(b) is only valid for D < 0.95. We therefore regard the region 0.95 < D < 0.966 as
the interval of transition from stage I to stage II; the precise mode of deformation in
this interval is yet to be determined.

In contrast with the stage I behaviour, the normal pressure on the contact surface
is not uniform across the contact. In presenting the results for the contact pressure,
P.qis taken as the average normal pressure over the contact surface. The normalized
average pressure P.;/o, on the contact surface is included in Fig. 7 as a function of
the relative contact size x/y; P.q/0, increases with x/y and an infinite value of P/o,
is required to attain full density (x/y = l/\/ 3 at full density). An empirical fit to the
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(b)
F1G. 8. The slip-line fields for stage I1. (a) Triangular pore geometry, and (b) circular pore geometry.
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results for the triangular pore plotted in Fig. 7 is given by

Peff

)

y

1/21-3/2 1
= 0.6[1—2(1—D)"?]=*In <4(1_D)>,

which is within + 1% of the slip-line field solution. The relative density D is given as
a function of x/y by (5).

Now consider the case of a circular pore of radius a surrounded by an equilateral
triangular block of length 2y. The slip lines for the circular pore geometry are
logarithmic spirals, and are shown in Fig. 8(b). As in the case of a triangular pore,
the deformation is concentrated around the pore and the contact surface; the centre
of the particle remains rigid. There is an overlapping of the slip-line fields of two
neighbouring pores on the contact surface to account for the effect of void-void
interaction. The stress field in the plastically deforming region is similar to that in a
thick-walled cylinder. The traction where the slip line meets the contact surface is
purely normal and is determined analytically from the equilibrium equation for a
thick-walled cylinder, and the yield condition:

2
Ggp = % [1 +In (2)] (10)

where r is the radial distance from the centre of the pore. Thus, the normal pressure
o4 varies over the contact. By writing P.; as the average normal pressure over the
contact, we have for the circular pore

1 a+ x l—D 1/2771—1
Py=— j Gopdr = 2L [1 —3(—) } In <+> (11
x Jq 3 m 3./3(1—D)

where D is given as a function of x/y by (7). P/o, is plotted in Fig. 7 as a function
of x/y for the circular pore; P./c, increases with x/y and an infinite value of Peg/o,
is required to attain full density, as in the case of a triangular pore geometry. When
employing this geometric description of the circular pore we assume, as before, that
(8) for stage 1 is valid for D < 0.95, so that (11) is valid for values of D greater than
this. '

3.3. Density—pressure relationship for stage I and stage 11

If we assume that the mean contact pressure P.; is equivalent to the inter-particle
pressure, equilibrium dictates that the macroscopic hydrostatic loading P., applied to
the hexagonal array of cylinders (Fig. 3) be related to P.; by

X
Po=./3 P (12)

where 2x is the contact size and 2y is the particle centre—centre distance. In stage I,
Pz = 2.970, for isolated contacts, x/y < 0.1 (i.e. D <0.915) and P is given as a
function of D by (8) for the case of contact—contact interaction. The mean contact
pressure P in stage II is given as a function of D by (9) for the triangular pore and
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by (11) for the circular pore. The relative density D is related to the relative contact
size x/y by (3), (5) and (7). Thus, we can determine the macroscopic pressure P, as
a function of the relative density D by using (12). In each case

P = f(D)ay, (13a)
where
( 3(D—D,) ]"? D < 0.915, forisolated contacts
297 ——— .
D, instagel
8\/5 D—D,\*? 0.915 < D < 0.95, for contact—
. D, contact interaction in stage I
JD) = 5

D > 0.966, for the triangular

611 —2(1 — D)/21-172 -
0.6[ ( )] In (4(1_1))) poreinstage I1

| i | D > 0.95, for the circular
In _
L \ﬁ 3\ﬁ (1-D) poreinstage II.
(13b)

Figure 9 shows the normalized external hydrostatic pressure P., /o, as a function of
the relative density D. An infinite external pressure is required for both the triangular
and the circular pore geometries to attain full density. The results show that the
triangular pore is more compressible than the circular pore at lower values of D. This
is consistent with previous theoretical and numerical studies on the compressibility
of pores (ZIMMERMAN, 1986; O’DONNELL and STEIF, 1989). Also, the detailed dis-
tribution of porosity has a strong influence on the material response. The pressure—
density curves for the two pore geometries nearly converge as full density is
approached. Conventional models of stage II compaction, which employ a thick-
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FI1G. 9. The normalized macroscopic hydrostatic pressure P, /o, as a function of the relative density D.
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walled cylindrical (or spherical) shell as a unit cell, assume that the entire body
deforms plastically as it densifies. With the more realistic arrangement of voids and
selection of unit cell considered here, it is found that a large central region of a
particle remains rigid with deformation confined to a band of material around the
circumference of the particle. This, combined with a more accurate description of the
pore shape, results in a smoother transition from stage I to stage II than conventional
models, and in a much higher compressibility. It is further evident from the results
plotted in Fig. 9 that the isolated contact model considerably overestimates the
macroscopic hydrostatic pressure required to attain a given density. For example, at
a relative density of 0.95, the isolated contact model overestimates the macroscopic
hydrostatic yield pressure by about 25%.

4. EFFECT OF MATERIAL STRAIN HARDENING: FINITE ELEMENT STUDY

Finite element analyses were carried out to investigate the effect of material strain
hardening, and to supplement the slip-line field solutions discussed above. Due to the
symmetry of the problem, we consider only a 30° segment of the circular particle as
shown for example in Fig. 6(a). The finite element mesh contains approximately 444
8-noded plane strain elements. A uniform displacement is applied to the flat rigid
punch which is free to slide on the contact surface. The symmetry planes are con-
strained to have zero-normal velocity and the results are obtained for finite strain
deformation theory as implemented in ABAQUST finite element code.

For comparison purposes, solutions were obtained for an elastic—perfectly plastic
material. The elastic strain is chosen to be very small so as to mimic a rigid—perfectly
plastic behaviour, a,/E = 10~*, where o, is the uniaxial yield stress of the material, £
1s Young’s modulus and Poisson’s ratio v = 0.33. The finite element calculations give
the half contact size, x, the half centre—centre distance, y, and the average normal
pressure over the contact, P, as a function of the depth of punch indentation.

Figure 10 shows the variation of the normal pressure along the contact surface for
selected values of relative contact size x/y. Slip-line field solutions suggest the normal
pressure in stage I (x/y < 0.27) is uniform over the contact surface. However, we
observe a slight numerical oscillation in the values of the normalized normal pressure
Pr/o, over the punch surface evaluated by the finite element method for x/y < 0.27
[see Fig. 10(a)]. For a given calculation, the value of the normal contact pressure P.q
reported for the finite element analysis both in stage I and in stage II is the average
of the normal pressure over the whole contact surface. The variation of the normal
pressure over the contact surface in stage I1 as predicted by the slip-line field analysis
is in close agreement with the prediction from the finite element analysis for the
triangular pore, see Fig. 10(b).

The results of P.g/0, versus x/y for the elastic—perfectly plastic material are included
in Fig. 7; there is good agreement between the finite element solutions and the slip-
line field solutions. The initial high value of P.x/c, for the finite element analysis is
attributed to the elastic response while the slightly lower value of P4/, in the isolated

+ HiBBITT, KARLSSON and SORENSON (1984).
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F1G. 10. The variation of the normal pressure P.; on the contact surface with distance » from the punch

axis of symmetry. The normal pressure has been normalized by the yield stress of the material, o,, and the

distance r has been normalized by the half contact size x. (a) x/y = 0.23 and (b) x/y = 0.46, where 2y is
the particle centre—centre distance.

contact region (x/y < 0.1) is attributed to the curvature of the particle, which was
neglected in the slip-line field analysis. The external pressure P, versus relative
density D, from the finite element analysis is plotted in Fig. 9. Again there is good
agreement between the slip-line field and finite element solutions. The stage II solutions
from the finite element analysis are in closer agreement with the slip-line field solutions
for the triangular pore than with those for the circular pore. This suggests that the
approximation of the pore geometry as triangular is a fairly good one, since the finite
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element analysis maintains the cusped shape of the pore; typical pore shapes are
shown in Fig. 11.

In order to investigate the effect of material strain hardening, we consider a
Ramberg-Osgood deformation theory solid with a constitutive relation

=2 +a<i>w, (14)

&y Oy Oy

where o, is the initial yield stress corresponding to a yield strain ¢, = o,/E, E is
Young’s modulus, « is a dimensionless constant and N is the strain hardening exponent
with a value in the range 0 < N < 1. For very small values of N, the plastic strain
remains small until ¢ exceeds o,. In the limit N = 0, (14) describes an elastic—perfectly
plastic solid. For all the cases considered in the present analysis, the value of the
dimensionless constant « was chosen such that ¢ = g, is the flow stress at an offset
strain e,q (=ae,) of 0.1%.

The external pressure versus density response for ¢, = 10~* and for various values
of the strain hardening exponent N is shown in Fig. 12. The external pressure P, has
been normalized by the initial yield stress, o,. The compressibility of the array
decreases with increasing value of the strain hardening exponent.

A further study was carried out to examine the effect of the initial yield strain

FE.M. Slip-line field Experiment
FiG. 11. Schematic of typical pore shapes at a relative density D = 0.983.
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FiG. 12. The effect of material strain hardening exponent N upon the density—external pressure curves.
o,/E = 107* where o, is the yield stress at 0.1% offset strain. The experimental results are for the hydrostatic
compaction of plasticene cylinders; N = 0.5 and a,/E = 0.02 for plasticene.
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¢, = 0,/E upon the densification process. We find no effect of the initial yield strain
on the pressure—density response for N = 0.1 and 10™* < ¢, < 0.005. Previous studies
of compaction of a hexagonal array of cylinders using a linear hardening constitutive
relation showed a significant effect of the initial yield strain on the pressure—density
response. In particular, the finite element solutions of O’DONNELL and STEIF (1989)
showed an increasing compressibility of the array with decreasing values of the initial
yield strain. The difference between the present results and those of O’DONNELL
and STEIF (1989) suggest the possibility that the pressure versus density response is
dependent upon the particular form of constitutive relation used.

5. COMPARISON WITH EXPERIMENTS

Hydrostatic compaction tests were performed on a hexagonal array of plasticene
cylinders, in order to compare with the predictions of the finite element analysis.
First, uniaxial compression tests were performed on plasticene cylinders at room
temperature in order to measure the material properties. The cylinders used for the
uniaxial test were of diameter 15 mm and of length 25 mm. The nominal stress—strain
curves are shown in Fig. 13; the cylinders deformed by localized shear. The 0.1%
offset yield stress of the plasticene g, is 0.08 MPa at a nominal strain rate of 7 x 107*
s~'. For straining beyond ¢, ~ 0.02, the true stress (o) versus true strain (¢) curve of
the cylinder can be described by a power law ¢ = 4¢%°, where 4 = 0.66+0.03 MPa.
Thus, the plasticene exhibits appreciable strain hardening.

Hydrostatic compaction tests were performed on the hexagonal array of plasticene
cylinders using an isostatic cell, with water as the pressurizing medium. Plasticene
cylinders of length 76 mm and of diameter 5 mm were made by extrusion, and left
for about a week to age at room temperature. The surface of the cylinders was coated
with talcum powder to allow them to slide with respect to each other, and arranged
in a close-packed form inside a thin flexible rubber membrane. The array had an
initial average diameter of about 38 mm. The flexible membrane containing the
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F1G. 13. The uniaxial stress—strain curves in compression for plasticene. The tests were conducted at room
temperature (~20°C) and at a nominal strain rate of 7x 107*s~".
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cylindrical particles was carefully placed inside the cell and pressurized to a set value
of pressure. Each pressure was held for about 5 min and then removed. The diameter
of the array after the pressure had been applied was measured at six different points
along the length of the array. The relative density was evaluated from the ratio of the
volume of solid cylinder in the array to the total volume (including void spaces) of
the array. The length of the array remained approximately constant ; the maximum
contraction was less than 1% of the initial value.

The scatter band in measured P, /o, versus D response is shown in Fig. 12: data
are from three nominally identical tests. The upper limit of the experimental results is
approximately along the finite element prediction for particles with a strain hardening
exponent N = 0.2 and a yield strain &, = 10~*, while the finite element predictions for
N = 0.5, ¢ = 0.02 lie within the band. The wide range in the experimental results
between a strain hardening exponent N =0.2 and N = 0.5 is in agreement with
previously determined values of N for plasticene. The strain hardening exponent N
was found to have a value of N = 0.21 by CHunwa et al. (1980) and N = 0.35 by
McCLINTOCK (1968) ; the uniaxial test on the plasticene used for the present study
gave a value of N = 0.5. The deformation characteristics of plasticene are, however,
very sensitive to slight changes in temperature and moisture content. We conclude that
the experimentally measured values of the macroscopic yield pressure for hydrostatic
compaction of the cylindrical plasticene particles are in fair agreement with the
theoretical predictions to within the range of values of the strain hardening exponent
quoted in the literature.

The typical shape of a pore in stage II is compared with that obtained from the
finite element analysis and the assumed shape in the slip-line field study in Fig. 11. It
is interesting to note that the actual shape is closer to the triangular form assumed in
the slip-line field analysis than that obtained from the finite element simulation. This
observation further supports the view that the assumption of a triangular shaped pore
adequately models the stage II response.

6. CONCLUDING DISCUSSION

The results of the slip-line field and finite element calculations indicate that inter-
action between contacts and pore shape influence the pressure—density relationship
of a regular array of cylinders. The simplifications used in the present study do not
allow us to address the features arising from particle rearrangement. The cusp-shaped
pore, which is typical of the cold compaction of powders, can be modelled reasonably
well by a triangularly-shaped pore. Circularly cylindrical pores give a stronger macro-
scopic response than triangularly shaped ones.

In this paper, we have examined the role of contact—contact interaction on the
densification of cylindrical particles by hydrostatic loading. Deviatoric stressing
results in shape change and in unequal contact sizes. The role of deviatoric stressing
in the densification of spherical powders has been explored in a separate study by
FLECK et al. (1990) using an isolated contact model. The modelling of the effect of
contact—contact interaction in the presence of deviatoric stress is in progress.
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