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Abstract—The effect of transient creep on the indentation behaviour of a creeping solid has been
investigated for a strain hardening primary creep law. Numerical analyses have been performed to
obtain the full field solution for a frictionless ball indenter. The functional form of the relationship
between the uniaxial response of the solid and the indentation behaviour of the material is explored.
The implications of the results are discussed with regard to displacement- and load- controlled
indentation creep tests, and the time hardening creep law. Experiments on primary creep indenta-
tion of lead support the indentation theory.

1. INTRODUCTION

Indentation tests provide a quick, cheap and effective way of determining a range of
mechanical properties of engineering materials. At elevated temperatures, tests of this type
can be used to determine the creep properties of a material. The standard test involves
applying a constant load to the indenter and measuring the change in the area of contact as
a function of time. An indentation test can also be conducted by pressing the indenter into
the material at a prescribed speed and measuring the load as a function of time. The
interpretation of the results of these tests (Bower et al. [1]; Hill [2]; Matthews [3];
Mulhearn and Tabor [4]; Sargent and Ashby [5]) have been largely based on steady-state
creep laws. Such laws are designed to predict the creep deformation of a solid subjected to
a constant stress and at long times after the effects of transients arising from primary creep
and stress redistribution from the elastic state become negligible.

In reality, an indentation test is a short term test with the stress state changing in
magnitude and in direction at each material point during the course of a test. Clearly, it is
important to employ constitutive laws that adequately describe the material response over
the range of stress histories experienced by material elements during an indentation test. It
is often found that the indentation test overestimates the stress exponent for power law
creep; see for example Sargent and Ashby [5].

A major source of error in the interpretation of creep properties from indentation tests
has been the neglect of primary creep. In the current paper, primary creep is included in
a rigorous indentation analysis and tests on lead confirm the significance of primary creep.
We consider the response of a creeping solid when a rigid spherical indenter is pushed into
its surface. In order to address the role of transient creep, two different approaches are
adopted. In the first approach, we employ the classical strain hardening primary creep law
in the analysis. The structure of the strain hardening law allows the scaling procedure of Hill
[2] and Bower et al. [1] to be extended to predict the response for this class of constitutive
law. In the second approach, the indentation creep response is determined for a time
hardening material. This is done simply by a suitable choice of time variable and makes
direct use of the steady-state creep analysis of Bower et al. [1]. Of the two descriptions of
creep behaviour, the strain hardening hypothesis permits a more accurate modelling of the
material response, but, in general, it is easier to use the time hardening law in any
component analysis. Marriott and Leckie [6] have shown that, in structural problems where
the load is held constant and stress redistribution from the elastic state occurs well within
primary creep, the two types of models predict comparable results. In the class of problem
considered here, however, the stresses change continually throughout a test and it is
instructive to examine the extent to which the time hardening law can be used to predict the
component response.

1179



1180 N. Ogbonna, N. A. Fleck and A. C. F. Cocks

2. DESCRIPTION OF PRIMARY CREEP UNDER UNIAXIAL STRESS

As a material creeps, microstructural processes which involve the generation and re-
arrangement of dislocations occur in the material. These changes in microstructure modify
the response of the material to the applied stress. It follows that the creep rate is a function
of the applied stress and the temperature in addition to the microstructural state of the
material. From the physical viewpoint, the complete description of creep behaviour requires
a coupled set of rate equations

&= f(O', T, Si)’
Si = gi(a, T, Sy), (1)

where §; represents a set of macroscopic state variables which describe the microstructural
state of the material. In the above equations, é is the creep rate, ¢ is the stress, T is the
temperature, and S; is the time rate of change of the state variable S;. The functions f and
g; are given by any physical model or empirical description of the creep response.

A number of state variable models with the above structure have been proposed to
describe creep throughout the entire life of a component. Here, we are interested in the early
stages of the creeping process and select state variables that can describe the initial shape of
the creep curve. The simplest constitutive relationships with the structure Eqn (1) are the
strain- and time-hardening constitutive laws. In each case, the material response is de-
scribed in terms of a single state variable, with S; being either strain ¢ or time ¢. These
constitutive laws can be readily generated from a series of uniaxial creep curves obtained at
different stresses, as shown schematically in Fig. 1. More elaborate models of the creeping
process have been developed. Ion et al. [7] and Derby and Ashby [8] give models based on
the different types of dislocation processes that can occur during primary creep, while
empirical models have been developed by, for example, Evans and Wilshire [9], Chaboche
and Rousselier [10], Pugh and Robinson [11] and Mroz and Trampczynski [12]). Each of
these models are expressed in the form of Eqn (1), employing isotropic and kinematic
variables to describe the material response. The single state variable models employed in the
current study are isotropic in character. They do not provide the most general description of
transient creep, such as the phenomenon of an incubation time under a step decrement in
stress. However, they readily allow the major features of the indentation process to be
identified and the influence of primary creep on the deformation response to be evaluated.

Here, we restrict our consideration to situations where, during a uniaxial creep test at
constant stress, the strain rate decreases continuously throughout the primary stage of
creep. Figure 1(a) shows three primary creep curves. Consider the situation where the
material is allowed to creep for a time ¢, at a stress o,; the accumulated strain is designated
&. Now increase the stress to g3. The strain hardening hypothesis assumes that the
subsequent creep response is given by translating the g5 creep curve horizontally until it
intersects the o, curve at ¢ = ¢,. This translation is shown in Fig. 1(a) and the resulting creep
response is shown in Fig. 1(c). The time hardening hypothesis requires translation of the
03 creep curve vertically until it intersects the o, curve at t = t, as shown in Fig. 1(a), with
the subsequent response again indicated in Fig. 1(c). It is evident from Fig. 1(c) that the
strain hardening model predicts the faster creep and, therefore a “softer” creep response.
A similar argument can be constructed for a step decrease in stress. If the stress is decreased
to a stress g, after creeping for a time ¢, at stress a,, the time hardening model predicts the
faster subsequent creep rate. The response resulting from a step decrease is illustrated in Fig.
1(d). This feature of the material behaviour is considered in more detail in Section 5, where
we compare the indentation response resulting from the two different descriptions of the
material.

Constitutive laws for primary creep typically involve either power law or exponentially
decaying functions of time. A critical survey of primary creep laws has been given by Derby
and Ashby [8]. In particular, the Norton-Bailey-Andrade uniaxial creep behaviour can be
expressed in time hardening form as

&= & [<i> <5>M] WeE, (0 <M. N < 1), 2)
(1)) to
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Fig. 1. Predicted response using strain- and time-hardening theories; (a) creep curves under constant
stress, (b) stress histories, (c) response to step increase in load and (d) response to step decrease in
load.

where ¢, is the strain after a time t, at a constant stress ¢,. Leckie and Hayhurst [13] have
demonstrated that, if ¢, is suitably chosen, Eqn (2) provides an appropriate description of
the creep response for time varying stress states. Equation (2) can be differentiated to
provide the creep rate, which we write in the following form

é M+N t N
=) () ¥

where &, = (3)(3*4xy). Substituting for ¢ in Eqn (3) gives, via Eqn (2), the primary creep
response under constant stress ¢ in the strain hardening form

e
&0 Eo

Typically, M and N are taken to range from zero to unity. When M = 0, Eqn (4) gives the
power law response of a strain hardening plastic solid; N = 0 corresponds to the special



1182 N. Ogbonna, N. A. Fleck and A. C. F. Cocks

case of a steady state creeping solid. Relations (3) and (4) give the same strain-time response
under constant stress, but different responses under varying stress as discussed in Section 1.

3. STATEMENT OF THE PROBLEM

The following boundary value problem is considered. A frictionless rigid spherical
indenter, of diameter D, is driven into a half space at a constant speed h, where h is the
indentation depth. The configuration is shown in Fig. 2. The half space is taken to be the
strain hardening creeping solid (4). The solid is considered to be isotropic and plasticially
incompressible. Under multiaxial loading relation (4) generalizes to

2 (e \V [ \M e
Sij—goo(;) (5) g, (5)

where a Cartesian reference frame x;, and standard index notation, have been adopted.
Here, S;; is the deviatoric part of the Cauchy stress tensor and ¢¥] is the plastic part of the
Eulerian strain rate; ¢o, &, and o, are normalizing material constants. The effective strain

rate &, is
. 2. .
Ee = '3‘ Eij&ij, (6)

and is integrated at each material point with respect to time ¢ to give the effective strain

o = f i dt ()

In this study, we use the finite element method to calculate the identation response of the
half space. For computational convenience, the solid is assumed to suffer an additional
elastic strain rate &; of

1+v§ +1——2v
U 3E

sel _

Eij = E

0ij G @)

where v is Poisson’s ratio, E is Young’s modulus and S; is the Jaumann stress rate measure.
Before presenting the finite element analysis, a scaling procedure is used to simplify
presentation of the results. Details of the method are given in Appendix A. The procedure
suggests a relation between the non-dimensional load L/na%a,, the dimensionless punch

Fig. 2. Configuration for half-space indented by a rigid sphere.
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velocity h/aé, and the non-dimensional contact radius a/Deg, of the form

L Ah\M/ a \V
Mz%—F(Q—%) (m;>’ ®

with the contact radius a given by

a= c\/Bﬁ. (10)

The constants F and ¢ are independent of punch depth and depend only upon M and N.
In Eqn (9), the non-dimensional punch velocity £ and the dimensionless contact radius  can
be regarded as appropriate average measures of the strain rate and the strain beneath the
indenter. The value of c2, obtained from Eqn (10), gives the ratio of the true to nominal
contact area under the punch.

4. NUMERICAL ANALYSIS

Symmetry arguments are used to confine attention to a quarter plane, defined in
cylindrical polar coordinates r and z by (0 <r <00, —o0 <z < 0) (see Fig. 2). The finite
element mesh is shown in Fig. 3. It consists of four-noded bilinear displacement, quadrilat-
eral elements, with a relatively small number of three-noded triangular elements used for the
purpose of mesh grading. All elements are axisymmetric and of the hybrid type, with
independent interpolation schemes for the displacement and pressure variables to permit
the modelling of incompressible behaviour. The boundary conditions on the bottom
boundary are taken to be u, = 0 and o,, = 0. Along r = 0, symmetry conditions of zero
radial displacements apply. The boundary on the right-hand side is traction-free and
unconstrained in either direction. The ball indenter of diameter D is modelled by a spherical
rigid surface and the contact between the deforming half space and the rigid sphere is
monitored using rigid surface interface elements. A preliminary convergence study showed
that an element size of 0.0035D in the fine mesh region is adequate.

An axisymmetric finite element analysis has been performed using a commercial finite
element code, ABAQUS'. The spherical indenter is pressed into the solid at a constant rate
h, and the indentation load L is determined as a function of time ¢. Since the problem is
non-linear and history dependent, the solution is obtained incrementally.

The data used for the calculations are 64/E = 1073, v = 0.3, ¢ = 0.001 and é, = 1.0s ™.
Calculations are performed for values of the strain rate index M between 0 and 1, and for
values of the strain hardening index N between 0 and 0.3. Smooth contact is assumed, and
the analysis assumes finite strains and finite deformations. Details of the solution algorithm
can be found in the ABAQUS reference manual.

5. FINITE ELEMENT RESULTS AND DISCUSSION

First the indentation response is given for a strain hardening solid (4) with M = 0 and
0 < N < 0.3. Results are then given for a strain hardening creep solid (4) with finite M and
N. These results are compared with the predictions of the more approximate time hardening
creep model.

5.1. Ragte independent case
When M = 0, Eqn (4) reduces to

€o

= a0 (—B—>N, O<N<1), (11)

which is constitutive relation for a strain hardening plastic solid. Numerical solutions for
the indentation response of the half space have been obtained for this case using both
J,-deformation theory (non-linear hyperelastic solid) and J,-flow theory (incremental
plasticity with isotropic hardening).

tABAQUS, version 5.2, HKS, Inc (1992).
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Fig. 3. Finite element mesh showing (a) boundary conditions (b) fine mesh region.

Constancy of ¢ and F. The scaling law presented in Appendix A suggests that the load
factor F and the ratio ¢ of true to nominal contact radius are functions of the material
parameters M and N only, and are independent of indentation depth. We examine the
accuracy of the scaling law by comparing its predictions with the finite element calculations
for both the flow theory solid and the deformation theory solid. The quantities F and ¢ have
been calculated for a range of constant size a/D using Eqns (9) and (10). Results for F are
given in Fig. 4(a) and results for ¢ are shown in Fig. 4(b). The data show a slight fluctuation
for a/D < 0.03. As a/D increases beyond 0.03, both F and c settle to constant values.
Johnson [14] has suggested that, for ball indentation of an elastic—perfectly plastic solid, the
effects of elasticity may be neglected if Ea/[Doy(1 — v?)] > 25. With regard to the present
analysis, this implies that elasticity effects are negligible for a/D > 0.025. Thus, the initial
fluctuation in the data could be due to the effects of elasticity (and also due to numerical
errors in convergence). It is concluded that ¢ and F remain essentially constant during
indentation, as suggested by the scaling procedure.

Several test runs have been made using the small strain formulation within the ABAQUS
program instead of the finite strain option. No significant difference in results was obtained
over the range of a/D values employed in the study (0 < a/D < 0.2).

Indentation load and contact size. The indentation load L is of primary importance in
interpreting the results of an indentation test. It is expressed in terms of the load factor
F defined by Eqn (9). Numerical results for F are given in Table 1 for a range of values of N.
The predictions of both deformation and flow theories are compared in Fig. 5(a). Of the two
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Fig. 4. Rate independent response (M = 0). (a) Variation of load factor F with normalized contact
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Table 1. Results for frictionless ball indentation of a rate

independent solid

Deformation theory Flow theory

N ¢(N) F(N) ¢(N) F(N)
00 1079 2754 1.179 2976
0.1 1.021 2.512 1.094 2.694
02 0975 2341 1.035 2.452
03 0939 2.109 0.988 2220
04 0902 1.897 0.942 1.998
05  0.866 1.716 0.895 1.796
06 0837 1.575 0.859 1.645
08 0765 1.353 0.784 1.423
10 0702 1.042 0.707 1.148
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Fig. 5. Rate independent response. (a) Variation of load factor F with strain hardening index N. (b)
Ratio of true to nominal contact radius c as a function of the strain hardening index N.

theories considered, the flow theory gives a slightly stiffer response, the difference being of
the order of 10%. This is not surprising as the flow theory takes into account the history
dependence of the response of the material while the deformation theory does not. Similar
observations have been made by Ponter and Martin [15] who compared the deformation
and flow theory descriptions of mechanical behaviour using extremal properties and energy
theorems. They concluded that material response is stiffer for flow theory than for deforma-
tion theory when loading is non-proportional.

Hill et al. [16], Matthews [3] and Tabor [17] have presented solutions for the indenta-
tion load on the surface of a strain hardening solid indented by a rigid sphere. Hill et al.
modelled the indentation response using non-linear elasticity theory. Matthews adopted
a pragmatic approach and was guided by the exact solutions for a linear elastic solid and
a rigid perfectly plastic material. Tabor’s result was obtained by curve fitting to experi-
mental data. For comparison, the values of F obtained from their solutions for the mean
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contact pressure are also plotted in Fig. 5(a). The solutions given by Tabor and Hill et al. are
in close agreement with the numerical results for the deformation theory solid. The response
predicted by Matthews agrees with the flow theory result for all values of N, to within the
numerical accuracy of the flow theory results.

It is expected that the results for the deformation theory solid are in good agreement with
the calculation of Hill et al. [16] as the same boundary value problem is addressed in both
cases. It appears that the deformation theory solid is in better agreement with the experi-
mentally deduced result of Tabor [17] than the flow theory solid. This is consistent with the
notion that the deformation theory solid is better able to capture the vertex formation on
the yield surface of a polycrystalline solid (see for example Hutchinson [18]).

The relation between the contact radius a and the indentation depth h is also of interest. It
has been shown that a is related to h through the constant ¢ defined by Eqn (10). Numerical
results for ¢ are given in Table 1. The variation of ¢ with N for the deformation theory solid
and the flow theory solid is shown in Fig. 5(b) along with the values of ¢ given by Matthews
[37 and Hill et al. [16]. The values of ¢ predicted by the flow theory are slightly higher than
those obtained using the deformation theory. Matthews’ solution is in close agreement with
the flow theory results. For the deformation theory, an empirical relation is suggested for c,

c=—l—<1 +EN)%“. (12)

NASE

As seen from Fig. 5(b), Eqn (12) is an adequate approximation to the numerical results. It is
exact in the limit N = 1 when ¢ = lﬁ.

Contact pressure profile. Representative profiles of the contact pressure are presented in
Fig. 6 for a/D = 0.1. In this figure the pressure p(r) has been normalized by the representa-
tive flow stress o.¢, Where

N
Oetf = 0o (%) s Eeff = 0-4%, (13)
0

and ¢ is termed the representative strain beneath the indenter. Tabor [17] and Johnson
[14] suggest that this choice for ¢ and ¢ gives an accurate estimate of the representative
stress and strain beneath the indenter. The deformation theory predicts a convex shape

4 T v
a/D=0.1 — Flow theory

- - Deformation theory

rla

Fig. 6. Normalized contact pressure distribution p(r)/o for deformation and flow theory solids.
Results are shown for a/D = 0.1.



1188 N. Ogbonna, N. A. Fleck and A. C. F. Cocks

for the normalized pressure for all value of N, including the perfectly plastic limit (N = 0). In
contrast, the contact pressure profiles predicted by the flow theory are flattened, the
maximum pressure occurs near the edge of the contact, and lower pressures are observed
towards the centre of contact than for the deformation theory solid. In particular, the ratio
p(r)/o is essentially constant at a value of about 3 in the limit of perfect plasticity for the
flow theory solid. Finite element studies by Hardy et al. [19], Sinclair et al. [20], Yap [21]
and experimental studies by Johnson [22] have shown that, for indentation of an elastic
—perfectly plastic solid by a rigid punch, the contact pressure tends towards a uniform value
of about 3 as the fully plastic regime is approached. While this trend is evident from the flow
theory results, it is lacking in the case of a deformation theory solid.

Contours of effective and equivalent strain under the indenter. The effective strain e,
defined by Eqn (7), is the total accumulated plastic strain increment for a given material
element. In deriving the scaling law we have used the equivalent strain e., = \/3¢;;¢;;, which
is the magnitude of the total plastic strain. Figures 7(a)—7(c) show the contours of ¢, and &.q

EFORMATION THEORY FLOW THEORY
. L od
I -
——_—/-—-(
————— s

(a)

pr - -

(b)

(c)

—C€e:, ===t (€., a/D =045

Fig. 7. Contours of ¢, and &, for (a) N =0.3, (b) N =0.1 and (c) N = 0. Results are shown for
a/D = 0.15.
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under the indenter for N =0, 0.1 and 0.3. Clearly, the strain field under the indenter is
different for deformation and flow theories. For the deformation theory solid, contours of
&.q are kidney-shaped, with the maximum always located on the axis of symmetry as in Hill
et al. [16]. A local maximum in ¢, and in &, is observed near the edge of contact for the flow
theory solid at sufficiently high values of strain hardening N: see the case N = 0.3 shown in
Fig. 7(a). Similar observations have been made by Sinclair et al. [20] for an isotropic
hardening flow theory solid.

The differences in behaviours of the deformation theory and flow theory solids are
a consequence of non-proportional straining in the following manner. Remote from the
contact region the contours of constant ¢, for the flow theory solid are close to those for
constant &, and here the shape of the contours are similar in form to those for the
deformation theory material. This reflects the near proportional stress histories experienced
by elements of material in this region for both types of material. Now consider an element of
material on the surface of the body at a radial distance b from the axis of symmetry. When
the contact radius a is such that a < b, 6, = 0 and o, is the maximum compressive principal
stress. As the edge of the contact region passes over this point, the local stress state rotates
around the yield surface until ¢, becomes the maximum compressive stress. This rotation of
the stress vector in stress space occurs more abruptly for the flow theory solid, as evidenced
by the contact pressure distributions of Fig. 6. This sharper transition for the flow solid is
a direct result of the history dependence of the deformation process. Similar non-propor-
tional stress histories are experienced by sub-surface elements as the edge of the contact
zone passes over them. Different stress histories are required by the two different types of
material to maintain compatibility of strain. As a result, the ¢, contours differ in the vicinity
of contact for the two solids and the contours of constant ¢ and ¢, for the flow theory solid
diverge.

5.2. Rate dependent case

Constancy of c and F. The establishment of the invariance of ¢ and F with indentation
depth is essential for validation of the scaling law for the general primary creep law (5). In
Fig. 8 we have plotted F and ¢ against a/D for M = 0.1,0.5 and 1,and N = 0.1 and 0.3. For
a/D > 0.025, both F and c settle to reasonably constant values. The initial discrepancy in
the range a/D < 0.02 is attributed to the effects of elasticity, and to numerical inaccuracies
associated with small contact size in relation to element size. We conclude that the initial
variation of F and ¢ with a/D is due mainly to elastic effects.

Indentation load and contact size. Values for the load factor F are given in Table 2 for
arange of values of M and N. The dependence of F upon M is shown in Fig. 9(a) for N in the
range 0-0.3. In the limit N = 0, we obtain the power law viscous solution. As shown in Fig.
9(a), the calculated results are in good agreement with the values of F obtained by Bower
et al. [1] using a different numerical procedure. For N = 0, the curious feature is observed
that F shows a maximum at M = 0.1. As N increases from zero, F decreases from its
steady-state creep solution and the value of M corresponding to the local maximum in
F shifts towards M = 0. The relations (9) and (10) suggest that the mean indentation
pressure p = L/na? for the primary creeping solid (4) scales with d/D and a/D according to

p— B 2 M d M a N
2=r(3) (55) () 9

where F and ¢ have already been given as functions of M and N. For ball indentation of
a power law strain hardening plastic solid, Tabor [17] found that the indentation pressure
p scales with a/D in accordance with

a N
PR 3055, Oetr = 0o (0.4 E(;) .
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Fig. 8. Primary creep response. (a) Variation of load factor F with normalized contact radius a/D.
(b) Ratio of true to nominal contact radius c as a function of normalized contact radius a/D.

Storakers and Larsson [23] have shown that for indentation of a power law creeping solid
by a sphere, p scales with d/D according to

< \M
53336y, Our = 0o (—“—) . (0.125<M < 1),
DEO

These considerations suggest that the indentation pressure p for the primary creeping solid
is given to a good approximation by

5= Coour, o =00l <L) (0.4-2) 15)
14 p Oeff> eff 0 Dé, . Dég s (

where C, is a constant. A comparison of Eqns (14) and (15) suggests that

2 M
Cp = Plows = F (c—) 04" (16)
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Table 2. Results for frictionless ball indentation of
a rate dependent solid

M N  ¢(M,N) F(M,N) C,
0.0 1.179 2.976 2976
0.1 1.094 2.694 2953
00 02 1.035 2452 2.945
0.3 0.988 2.220 2922
0.0 1111 3.096 3.249
0.1 1.044 2726 3.175
01 02 0.989 2.403 3.101
0.3 0.940 2.097 2.995
0.0 1.052 2971 3.344
0.1 0.995 2.532 3.194
02 02 0.948 2210 3.115
0.3 0.902 1.935 3.049
0.0 0.905 2.177 3.402
0.1 0.865 1.835 3.288
05 02 0.823 1.553 3.205
0.3 0.782 1.331 3.169
0.0 0.708 0.867 3.469
0.1 0.666 0.726 3.588
10 02 0.637 0.585 3.463
0.3 0.608 0.484 3.447

The calculated values of C, are included in Table 2. C, varies slightly with M and N, with
C, = 3.2 + 0.3. For the primary creeping solid, it appears that the approximation p ~ 30
(where oo is defined by Eqn (15)) is accurate to within 10% for 0 <M <1 and
0 < N < 0.3. By analogy with the established results for a strain hardening plastic solid
(Tabor [17]) and a power law viscous solid (Stordkers and Larsson [23]), g, may be
regarded as a representative flow stress for the material under the indenter.

The contact radius a is related to the indentation depth h through the constant ¢ defined
by Eqn (10). Figure 9(b) shows the variation of ¢ with M for various values of N. The
non-dimensional contact radius ¢ decreases with increasing values of M and N. The
steady-state creep (N = 0) solution is an upper limit for ¢; the numerical results for ¢ are in
satisfactory agreement with the results obtained by Bower et al. [1].

Surface profile. The quantity ¢ measures the ratio of the true to nominal contact radius. It
also gives an indication of the vertical displacement of material at the edge of the contact.
Material piles up at the edge of the contact if ¢ > 1 and sinks in if ¢ < 1. The non-
dimensional surface displacement u3D/a” is shown in Fig. 10(a)-10(c) for a fixed contact
radius a/D = 0.1, and for a range of values of M and N. For M = 0, corresponding to a rate
independent strain hardening plastic solid, results are plotted in Fig. 10(a) for both the
deformation and flow theory solids. Interpolation of the results shown in Fig. 10(a) for
intermediate values of N shows that pile-up (¢ > 1) occurs for the flow theory solid for
N < 0.34. For the deformation theory solid, pile-up occurs for N < 0.26. In general, for
a given value of N the flow theory solid shows greater pile-up than the deformation theory
solid.

Results for the power law viscous solid (N = 0) are compared with results for the flow
theory plastic solid (M = 0) in Fig. 10(b). The surface displacement profile for the power law
viscous solid at a given value of M closely resembles the profile for the rate independent
flow theory solid when N = M. The surface profile is shown in Fig. 10(c) for the primary
creeping solid (5), for N in the range 0-0.3 and M equal to 0 and 0.2. It is clear that the
degree of sink-in increases with increasing N and increasing M.
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- = Bower et al.(1953)

F(MN)

N=0
N=0.1
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[+] 0.2 04 0.6 08 1
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1.9 - — Bower et al.(1993) 1
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0.7 N=0
N=0.1
N =02
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] 0.2 04 0.8 08 1 1.2

(b)

Fig. 9. Primary creep response. (a) Load factor F as a function of strain rate index M, for N = 0-0.3.
(b) Ratio of true to nominal contact radius c as a function of strain rate index M, for N = 0-0.3.

Contact pressure distribution. A typical contact pressure profile is shown in Fig. 11(a) for
the primary creeping solid with M = N = 0.2. The plot corresponds to a/D = 0.1 The
pressure has been normalized by the representative flow stress o defined by Eqn (15). The
profile is flattened near the centre of contact, and rises to the maximum value near the edge
of contact. The results for the primary creeping solid are compared with the power law
viscous solid with M = 0.2 and the J,-flow theory solid with N = 0.2. The pressure profiles
are similar in the three cases, but both the primary creeping solid and the power law
creeping solid show a higher rise in pressure near the edge of contact than the flow theory
solid.

A singular crack-like field exists at the edge of contact for the primary creeping solid. This
has been discussed in full for the power law creeping solid (limit of N = 0) by Bower et al.
[1]. The discretized nature of the finite element scheme is unable to capture the details of
a singular field at the edge of the contact.



Transient creep analysis of ball indentation 1193

Contours of strain. Contours of constant effective strain ¢, and equivalent strain &, for
the primary creeping solid (with M = N = 0.1) are compared with those for the J,-flow
theory solid (N = 0.1) and the power law creeping solid (M = 0.1) (see Fig. 12). The general
form of the contours is qualitatively similar for the three material models. In all cases,
a local maximum in ¢, and in &, occurs near the edge of the contact.

5.3. Prediction of time hardening transient creep response
The multiaxial representation of the time hardening primary creep law (3) is

2 t\N /s M+N—1ép}
Sy==00(—) [ A OSKM<L0SN<I) (17)
3 to &0 &

The time hardening primary creep law can be converted to a steady-state creep law by
M

changing the time variable from t to t = ¢t M+N. Details of the procedure are given in

u;D
a?
— Flow theory
- - Deformation theory
% ; ; 3 /
rla
(a)
Ly
a2

— Power law viscous solid

1.5 .
- - Flow theory solid
% 1 2 3 4
rla
(b)

Fig. 10(a, b).
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Fig. 10. Normalized normal displacement us D/a? vs normalized radius r/a at a/D =0.1. (a)
Comparison of flow and deformation theories, rate independent case. (b) Comparison of power law
viscous solid and flow theory solid. Results for the power law viscous solid are given for M values
equal to the N values for the flow theory solid. (c) Comparison of profiles for a range of values of

Fig. 11. Normalized contact pressure distribution p(r)/o; for primary creeping solid (M = 0.2,
N =0.2) is compared with the results for the power law creeping solid (M = 0.2, N = 0) and the
J,-flow theory solid (M = 0, N = 0.2). Results are shown for a/D = 0.1.

Appendix B. Using this method, the creep indentation behaviour of a time hardening
material is obtained directly from the steady-state power law creep analysis of Bower et al.
[1]. Results are given for both constant indentation rate 4 and constant indentation load L.
In both cases the indentation response can be expressed in the form of Eqn (9) with

M and N.

Primary creeping solid (M=02,N=02)

Flow theory solid (M=0,N=02)

Power law viscous solid(M=02,N=0)

1 1 L. n

+0Or

0.2 0.4 06 08 1

rla

M + N\
F=FSS<—W>, (M#O)
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(M=Q0,N=0.2)

(c) Flow theory solid

—— €¢1 -==Eeq (Eij), a/D = 0.5

Fig. 12. Comparison of contours of the effective strain ¢, and the equivalent strain ¢.4: (a) primary
creeping solid (M = 0.2, N = 0.2), (b) power law viscous solid (M = 0.2, N = 0) and (c) J,-flow
theory solid (M = 0, N = 0.2). Results are shown for a/D = 0.15.

for constant indentation rate, and

B 2(M+N) |V
F=F, [c;(z +M + N)] (19)

for constant indentation load, as outlined in Appendix B. In the above two expressions, F
and c refer to the load factor and non-dimensional contact radius obtained for steady state
power law creep by Bower et al. [1], employing a creep exponent (M + N).

Values of F(M, N) for the two loading conditions are given in Table 3, where they are
compared with predictions of the strain hardening creep law (5). The results are displayed in
graphical form in Fig. 13 for M = 0.1, 0.5 and for several values of N. In the limit of N = 0,
the time hardening creep law and strain hardening creep law both reduce to steady state
power law creep. As N is increased from zero the results diverge, with the strain hardening
material giving intermediate values of F, and the constant indentation load prediction for
the time hardening solid giving the lowest load factor F. Such behaviour is expected in view
of the stress history experienced by a material element during the indentation process. In
a constant load test, the contact pressure decreases steadily as the contact area grows. We
saw in Section 2 that if the stress on a material element is decreased, the subsequent creep
rate is faster for a time hardening material than for a strain hardening one. In effect, a time
hardening solid is more creep compliant during a constant load test. By a parallel argument,
a time hardening solid is more creep resistant during a constant indentation rate test than
a strain hardening creeping solid.
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Table 3. Time hardening primary creep responses for constant load and constant
indentation rate tests in comparison with the finite element (FE) results for strain
hardening primary creep

F(M,N)
Constant load test Constant rate test Finite element analysis
N M (time hardening) (time hardening) (strain hardening)

0.1 3.110 3.110 3.096
00 02 2973 2973 297N
0.5 2.176 2.176 2177
0.1 2.507 3.147 2.726
01 02 2.390 2.840 2.532
0.5 1.746 1.973 1.835
0.1 2.090 3.388 2.403
02 02 1.979 28711 2210
0.5 1.409 1.845 1.553
0.1 1.773 3.817 2.097
03 02 1.653 3.011 1.935
0.5 1.126 1.769 1.331

Constant indentation rate, time hardening law
— Strain hardening law (FE analysis)
- — Constant load, time hardening law
0 4 1

(] 0.1 0.2 0.3
N

Fig. 13. Accuracy of the time hardening primary creep law compared with the strain hardening
primary creep law. Effect of strain hardening index N upon load factor F for M = 0.1 and 0.5.

6. EXPERIMENTAL STUDY

We seek a validation of the preceding theoretical results by comparing the predictions
with experimental observations. The theory emphasizes axisymmetric indentation, with
particular attention to ball indentation. Only a small amount of experimental data on
indentation creep by a spherical indenter was found in the literature: Mulhearn and Tabor
[4], Atkins et al. [24] and Hill [25]; the reported data were found to be insufficient for our
purpose. Therefore, primary creep indentation experiments were conducted on 99.99% pure
lead using a ball indenter.
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Test method

An instrumented microhardness test machine was used to measure load L as a function of
indentation depth & for a spherical indenter of diameter 1 mm. Tests were performed at
room temperature by applying a constant loading rate L, and by continuously monitoring
the indentation depth h(t).

Typical indentation results in the form of In(t) vs In(h), at fixed L, are given in Fig. 14(a).
For a test performed at constant loading rate, such that L = Lt, the primary creep
indentation theory [see Eqns (9) and (10)] suggests that the indentation depth 4 is related to
the indentation time t by

2+M+N
t=C,h2a+m (20
where
2(1 M M F _ 2\ N 1
C, = 1+ M) i 0'0. (czD)LMZ € \2 M 21)
24+ M+ N) \éMedL D

In(t)
4} R
i i.l =72x 10'4 N/s ]
2t i.z =18x10 Nis i
L3=36x 103 N
-1‘5.5 -|4..5 -1:;.5 -1 2‘.5 -1 1..5 -16.5
In(h)
(a)
1k 4
InL)

.'{—;4,5 -13.8

In(h)

(b)

Fig. 14. Results for primary creep indentation of lead. (a) Plots of In(t) vs In(h) at fixed loading rate
L. (b) Plots of In(L) vs In(h) at fixed time .
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Thus, a log-log plot of t vs h (at fixed L) is predicted to be a straight line of slope
M2l This is verified by the experimental data shown in Fig. 14(a). It remains to extract
the values of M and N. In order to do this, we cross-plot the data of Fig. 14(a) to give the
dependence of indentation depth h upon loading rate L at fixed time. Upon re-arranging
Eqns (20) and (21) we get

L=C2h%(2+M+N)’ 22)
where
2(1 + M) \M/ nFa, 2-m [c*\}
C, = 2p — > 23
2 (2+M+N> <é3‘tMefg ©Dyz 15 @3)

Thus, a log-log plot of L vs h (at fixed time t) is predicted to be a straight line of slope
(2 + M + N)/2. The experimental data for lead supports this prediction, see Fig. 14(b). By
taking the average slopes for the plots of each figure, we find that M = 0.097 + 0.012 and
N = 0.34 + 0.05. The results indicate that the material experiences significant primary creep
during a test.

The value of the steady state power law creep exponent M falls within the range
M = 0.083-0.12, according to other workers (Mulhearn and Tabor [4]; Mayo and Nix
[26]; De La Torre et al. [27]) who have investigated the indentation creep of lead at
temperatures > 0.5T,,, where T, is the melting temperature. These values are about 30%
lower than the uniaxial creep exponents of M = 0.13 to 0.14 reported in the literature for
power law creep of lead at room temperature (Frost and Ashby [28]; Akisanya and Fleck
[29]). At least, part of the discrepancy may be due to the fact that primary creep occurs
during an indentation test.

7. CONCLUDING DISCUSSION

The primary creep behaviour of a solid has been examined for indentation by a friction-
less rigid sphere. Full account is taken of the variable stress state which exists in the material
under the indenter. A functional form has been obtained for the contact size and the
indentation load as a function of indentation depth and indentation rate. The analysis
shows that primary creep has a significant influence on the indentation load as well as on
the surface displacement profile near the indenter. For a fixed value of M, sink-in at the edge
of contact becomes more pronounced as N increases from zero.

For the rate independent case, a significant difference is observed between the predictions
for the deformation solid and the flow theory solid. The indentation load is 10% higher for
the flow theory solid than for the deformation theory solid. This is due to non-proportional
strain beneath the indenter.

Indentation creep tests at room temperature show that lead undergoes primary creep. Its
creep parameters have been extracted successfully using the primary creep indentation
theory.
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APPENDIX A: THE SCALING LAW

Hill et al. [16] have shown that a self-similarity principle exists for ball indentation of a power law hardening
J,-deformation theory solid. The similarity principle was extended by Hill [2] for a power law creeping solid. In
this appendix the similarity principle is developed for a particular multiaxial generalization of the primary creep
law (4).

A characteristic feature of ball indentation is the non-linear growth of the contact radius a with indentation
depth h. The displacement u;, strain ¢;; and stress field o;; are functions of a for a strain hardening solid, and
functions of a and 4 for a creeping solid. We shall show that, for a particular change of variables, it is possible to
map these evolving fields to a time invariant self-similarity solution which is independent of indentation size. The
similarity principle assumes that displacements and strains remain small during the indentation process.

With respect to a Cartesian reference frame x;, the displacement u;, strain ¢;; and stress o;; in a creeping half space
with constitutive law (5) satisfy the strain—displacement relation

1
&= E(ui.j + u;,4) (A1)

and the equilibrium relation
g;,;=0 (A2)

where ( ),; denotes differentiation with respect to x; in the usual manner. Now consider indentation of the solid (5)
by a rigid frictionless ball at a constant indentation velocity h. At the current instant the indentation depth is h and
the contact radius is a. Over the contact region with the ball, the surface of the half space is displaced vertically
a distance u3 = h — f(r), where h is the indentation depth and f(r) is the head shape of the indenter (see Fig. 2). The
sphere of diameter D is approximated by a parabola, giving f(r) = r?/D at any radius r from the axis of symmetry.
On the surface of the half space, it is required that

2
u3=h—’3, iy =h, (r<a) (A3)

013 =03=0, (r<a (A4)

63=0, (r>a), (=1223) (AS)
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The above traction boundary conditions state that the ball is frictionless and that the surface is traction-free
beyond the contact region. Now scale the variables x;, r, and u; as

2
a ~
X, = aXy, r=ar, u= ) u;, (A6)

and assume that the scale variables (~ ) are independent of time. The displacement rate u; may be rewritten in scaled

variables as
. 2ad . a®oi; < - dik)
W=—1i; + ,

i+ — -
D D axk a

or, in more compact notation, as

a
i = — at;, A7
= 3 ad (A7)
where
oi;
ﬁ,' = 211.' - gk a_l_" . (AS)
Xk
The strain field ¢;; scales as
a ~
&ij = Bsija (A9)
where
1/06; 0i;
Bi==—+), A10
& 2(axj+af,.) (A10)
and the strain rate field é; scales as
. d A
Sij_—‘BEij, (All)
where
08;;
§i=8&;— X ‘%Z (A12)

The displacement boundary condition (A3) over the contact region becomes

%—ﬁ,- =h —%—Fz, (aF < a)
or
S PR
=7, F<1) (A13)
¢
where
2
22 Al4
¢t =1 (A14)
Equation (A13) and the relation (A8) imply that
N
h==, F<)). (A15)
¢

The velocity boundary condition (A3) over r < a may be rewritten as
. ad
h=—1,. Al6
D us ( )

Note that Eqns (A14-A16) imply that c? is a constant and independent of time.
Now take a particular form of the multi-axial generalization of the constitutive law (4)

S..:ga eﬂ ) E Mo f.'_lji (Al7)
Y 3 0 &g éo éo,

2 3
Eeq = Esijeij , (A18)

where the equivalent strain e, is
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and the effective strain rate &, is

2.\
ée = (5 é‘léll) . (Alg)

Note that ¢, = [ ¢, dt for a material point only for the case of proportional loading. The constitutive law (A17) may
be rewritten in terms of the transformed variables as

~ 2
S;= 3 e Mg, (A20)
where
. a\ M/ a\™M
Sii(%) =05 — — Sii(xy, a), A21
](xk) o (80D> <é0D> ;(Xk a) ( )
and
. 2.4 D D2 1
feq = 58:1'5.-; =;8cq=—a_ gﬁuﬂii , (A22)
oo (e YD, _D(2, )
e =\ 38ty =;8e=; 3%’80 . (A23)

Thus, the boundary value problem in the transformed space (X;, #;, &;;, 6;;,) consists of applying a displacement
given by (A13) over a fixed contact region 7 < 1. The usual small strain—displacement relations (A10) and the
equilibrium relations (A1) are obeyed by the () variables; the associated constitutive law is given by Eqn (A17).

In physical space, the indentation load L is obtained by integrating the contact pressure p(r) over the contact
region r < a. Thus,

L= 211[ p(r)rdr.
0

If p(7) is the pressure corresponding to the stress field ij, then the structure of equation (A21) suggests that the

mean contact pressure scales as:
L _ora (L) () (A24)
— = a 9 - X o o~ b
na?  ° eoD) \éoD

where
1
F(M,N)= 2[ P(AF dF (A25)
0

is the mean contact pressure in the non-dimensional space %;. We conclude that the indentation load scales as
(A24) and the contact radius a scales as (A14).

In principle the boundary value problem in the scaled variables could be solved in order to extract the
eigenvalues c and F. In practice, it is easier to solve the physical problem directly by the finite element method, and
to exploit the scaling relations (A14) and (A24) in presentation of the results.

Note that the constitutive laws (5) and (A17) are slightly different from each other. Equation (5) involves the
effective strain ¢, defined by time integration of the effective strain rate £.. On the other hand, the constitutive law
(A17) in the similarity principle makes use of the equivalent strain e, = (3¢;;¢;;)* which is equal to ¢, only in the
case of proportional loading. Nevertheless, we find that the scaling laws (A14) and (A24) hold to acceptable
accuracy for the standard constitutive law (5) used in the finite element calculations.

APPENDIX B: THE TIME HARDENING MATERIAL

If the time variable is changed to t = t¥'%, the uniaxial time hardening law (3) in Section 2 reduces to
a steady-state uniaxial creep law
E\M+N
0 =09 <—> ) (B1)

8’0
where (") = % and 7 becomes the new time variable. Relation (B1) is the standard power law creep law with

exponent (M + N). Thus, steady state creep analysis may be used directly to predict the response under time
hardening primary creep. The power law creep indentation response given by Bower et al. [1] may be recast as

L il M+N
L__p, <_) . B2)
ma oy aégy
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In Eqn (B2), F, is the steady-state value of the load factor F and h is the rate of change of indentation depth h v’vith
respect to time 7. In physical space, the indentation depth varies with time ¢ at a speed h which is related to h by

. M+N
h=h ¢, B3
(%) ®3)
Also, the constant strain rate &, in physical space is related to &, by
) . (M+ N\ .
bo = o\ —— |18 (B4)

Substituting for A and &, in Eqn (B2) gives

L < h )M+N ( t >N
2 = Fo\— P (BS)
Ta oo aeop to

Predictions of the indentation creep response are now given for time hardening behaviour under (i) constant
indentation rate h and (ii) constant indentation load L.

(i) Constant indentation rate test

In a constant indentation rate test the indenter penetrates the solid to a prescribed depth h at a constant speed h,
so that ¢ = h/h. Substituting for ¢ in Eqn (B5), noting from Section 2 that t, = (545)(2), and making use of Eqn
(10), the transient creep response is obtained as

L M+N\"/ h\M( a\¥
e (i) () () ®
where c,, is the steady-state value of ¢ given by Bower et al. [1]. By comparison with Eqn (9), the load factor F is
given by
F=F, <M>N (M #0). (B7)
Mck

(ii) Constant indentation load test
In this case, the load is kept constant while the speed of the indenter h varies. Equation (B5) must first be
integrated over time before ¢ is estimated. On noting that h/a = 2d/Dc? and é, = (st¥)¢0/to, integration of Eqn

(BS5) gives
t L e[ 2M+N) [ a \]M¥ &8)
to \ma*ooF,) |c*2+ M + N)\De, ’
Upon substituting (B8) into Eqn (B5), the expression for the indentation response is
L 2IM+N) T/ h\M/a\
7 =Fa| 3 ( ) — ) 5> (B9)
na*o, cz2+ M+ N) ag, De,

from which it is deduced that the load factor is

B 2M+N) T
F=F. [cf,(z +M+ N):I : (B10)



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

