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ABSTRACT

When an indenter slides over the surface of a brittle solid, cracks form in its wake. A simple analysis of
this process is presented. The solid is modelled as an ideally brittle elastic half-space, which contains a
distribution of short cracks near the surface, and is loaded by a cylindrical indenter. Two limiting cases of
friction between the indenter and the half-space are considered. The cylinder may slide freely over the
surface, with a fixed coefficient of friction between the contacting surfaces. Alternatively, the indenter may
be perfectly bonded to the surface of the half-space. The loads necessary to cause fracture under the
indenter are calculated, and compared to the loads required to initiate plastic deformation in the solid. In
addition, the pattern of fracture which occurs under the indenter is analysed in detail. The residual tensile
strength of a solid which has been damaged by contact loading is calculated. Finally, the influence of a
residual stress near the surface of the half-space is investigated. It is shown that there is a critical tensile
stress which leads to catastrophic failure under the indenter, while if the stresses are compressive, they may
prevent fracture.

1. INTRODUCTION

Brittle solids such as ceramics and glasses are often used in applications where they
are subjected to severe contact loading. Their high hardness and melting point makes
them ideal wear resistant materials, so they are used in components such as bearings,
seals and machine tools. In addition, ceramic components are frequently finished by
grinding, which subjects the material near the surface to severe contact stresses. In all
these cases, fracture of the material under the contact is a concern. Brittle fracture
under service loading can be catastrophic, while small cracks introduced during
grinding can significantly weaken a component (Lawn and Marshall, 1978 ; Marshall
et al., 1983).

There have been a number of experimental studies of brittle fracture under contact
loading. A typical experiment involves pressing an indenter into the surface of the
solid with a progressively increasing load, and observing the pattern of fracture which
develops under the contact. Two types of indenter are generally used. The indenter
may be “blunt”, such as a sphere, or “sharp”, such as a cone or Vickers pyramid.
Depending on the geometry of the punch and the magnitude of the tractive load, a
characteristic pattern of cracks forms under the contact. Under a blunt indenter, a
well defined cone shaped crack “pops in”” when the normal load reaches a critical
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magnitude (Auerbach, 1891 ; Roesler, 1956 ; Chaudhri and Phillips, 1990). The mech-
anisms responsible for forming cone cracks are well understood. Since the stresses
under a blunt indenter remain elastic up to the point of fracture, linear elastic fracture
mechanics may be used to predict the conditions necessary to cause fracture. On this
basis, a number of theoretical models have been developed which can predict both
the fracture load and the subsequent length of the cracks (e.g. Frank and Lawn, 1967 ;
Mouginot and Maugis, 1985).

Significant plastic deformation occurs under sharp indenters such as a cone or
Vickers pyramid, so the pattern of fracture is more complicated. During normal
loading, a penny shaped crack initiates at the tip of the indenter, and subsequently
propagates radially to form a semi-circular crack perpendicular to the free surface.
Several radial cracks of this type may form under pyramidal indenters. When the
indenter is removed, a further penny-shaped crack forms almost parallel to the surface,
driven by residual stresses. Cracks forming under a sharp indenter are difficult to
analyse, because it is necessary to account for the plastic deformation under the
contact. Models have been proposed which approximate the indentation process as a
cavity expanding in an infinite solid (Lawn and Evans, 1977; Lawn et al., 1980;
Marshall and Lawn, 1979). These models have some limitations, but can predict
qualitatively the shape and size of cracks forming under the contact.

The fracture pattern changes if the indenter slides over the surface under the action
of a combined normal and tangential load. Under a blunt indenter, an array of cracks
forms in the wake of the slider (Lawn, 1967 ; Bethune, 1976). The cracks are initiated
at the trailing edge of the contact, and propagate almost perpendicular to the surface.
In addition, there appears to be a characteristic spacing between neighboring cracks.
The cracks which form under a sharp indenter are similar, but a crack with a plane
perpendicular to the sliding direction also forms at the apex of the indenter (Veldkamp
et al., 1978 ; Swain, 1979).

Several simple models have been developed to predict the conditions necessary to
cause fracture under a sliding indenter. For example, Lawn (1967), Bethune (1976),
Swain (1979) and Veldkamp et al. (1979) have derived simple estimates of the fracture
loads and the resulting crack sizes. More recently, Chen et al. (1991) have estimated
stress intensity factors for cracks forming in the wake of a sharp indenter, by modelling
a single semicircular flaw perpendicular to the free surface, and approximating the
contact pressure distribution as a point force acting on the surface. Their predictions
of the depth of the cracks were in good agreement with experimental measurements.
Keer and Worden (1990) have calculated crack paths under rolling and sliding
indentation. In addition, Keer and Kuo (1992) have calculated the spacing between
cracks forming in the wake of a sliding point contact, by considering the behavior of
two neighboring penny-shaped cracks in the wake of a sliding Hertzian pressure
distribution. A detailed analysis of cracks forming under a blunt two-dimensional
sliding contact has not so far been attempted, and is the subject of this paper.

To simplify the analysis, we have idealized the geometry using the two-dimensional
model illustrated in Fig. 1. A half-space contains a distribution of small cracks, which
initially have the same length ¢. The material is ideally brittle, with fracture toughness
Kic, and has elastic shear modulus G, Poisson’s ratio v and yield stress in tension a,.
Since the stresses in the half-space are predominantly compressive, the faces of the
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Fig. 1. A half-space containing several microcracks, loaded by a sliding Hertzian contact.

cracks may touch, and friction forces may act between them. Here, we model crack
face friction using Coulomb’s law, with a coefficient of friction y.. It is difficult to
determine accurate values for crack face friction coefficients, but numerical tests have
shown that the results we present here are not greatly affected by variations in U
Unless otherwise stated, we have used a value of u. = 0.8 in all our simulations.

The surface of the half-space is indented by a rigid cylinder. The normal contact
pressure acting on the area of contact between the cylinder and the half-space is
assumed to be Hertzian, given by

P =po{l—(x—x0)*/a’}'?, |x—x| <a, (I.1)

where x, is the position of the center of the contact and p, is the peak Hertzian
pressure.

Two limiting conditions of friction between the contacting surfaces have been
considered. The cylinder may slide over the half-space, its motion being resisted by
Coulomb friction. In this case, the surface of the half-space is subjected to a dis-
tribution of tangential traction

q = tupo{l—(x—x0)*/a’}'?, |x—xo| <a. (1.2)

The sign of the traction is such that the tractive force on the half-space acts in the
direction of motion of the load. Alternatively, the cylinder may be perfectly bonded
to the half-space. In this case, we assume that the cylinder is first pressed into the
surface of the half-space, so that contact area is loaded by the distribution of pressure
given in (1.1). Then, a steadily increasing tangential load Q is applied to the indenter.
Since no slip occurs between the contacting surfaces, the contact area is subjected to
tangential traction

0= 201 mxpiet} 2, x-mi<a (13

If the contact stresses in the half-space are sufficiently high, the material near the
surface fails by one of two mechanisms. In a material with low yield stress o, and
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high toughness K, the surface is plastically deformed. Alternatively, if the toughness
is low and the yield stress high, the half-space fails by fracture. We begin by calculating
the critical loads required to cause failure by both mechanisms. In addition, we
investigate in detail the pattern of fracture which occurs in a brittle solid. For the case
of a sliding indenter, it is shown that a periodic array of cracks forms in the wake of
the slider, with an inclination almost perpendicular to the surface and a regular
spacing between cracks. The depth and spacing of the cracks are calculated as a
function of the applied loads. In contrast, if the indenter is perfectly bonded to the
half-space, a single crack is initiated at the trailing edge of the contact when the
tangential load reaches a critical magnitude. The crack continues to propagate if the
tangential load is increased, and follows a trajectory that eventually returns to the
free surface. Through this mechanism, a large wear particle is removed from the half-
space.

We also calculate the residual strength of a solid damaged by contact loading. For
this purpose, the shape and size of a series of cracks which form behind a sliding
indenter are calculated. The contact load is then removed, and we calculate the
magnitude of the critical tensile stress ¢, required to cause fracture in the damaged
solid. Finally, we investigate the influence of residual stresses near the surface. It is
shown that there is a critical level of tensile residual stress which causes catastrophic
failure, while compressive stresses tend to prevent fracture.

Standard methods of linear elastic fracture mechanics have been used to analyse
fracture in the half-space. The load induces mode I and mode II stress intensity factors
K; and Kj; on each crack tip. A method for calculating K; and Kj; is summarized in
Section 2.1. If K; and Kj; at a crack tip exceed a critical combination, the crack
propagates. Here, we have used the intensity of the maximum tangential hoop stress
as a mixed mode fracture criterion: the details of this procedure are described in
Section 2.2. If the crack propagates, its path must be calculated. We have assumed
that the path is such that the local mode II stress intensity factor at the crack tip
vanishes during growth.

2. THEORY

We begin by describing a numerical procedure for analysing fracture under a sliding
line contact. The problem to be solved is illustrated in Fig. 1: a half-space contains
N cracks of length C,, whose positions are specified by their parametric equations
z(s), where s represents the arc length measured from one tip of the nth crack.
Wherever a crack is pulled open by the load, its faces must be free of tractions. If the
crack faces touch, friction forces may act between them : here, we assume that sliding
between the crack faces is opposed by a traction |1| < ua,|, where . is the coefficient
of crack face friction, and o, is the stress acting perpendicular to the crack. If the
compressive stress acting on the crack faces is sufficiently large, parts of the crack
lock up, so that the complete stress and displacement boundary conditions on the
crack faces are given by



Fracture under a sliding contact 1379

I‘Ctl < +uclan|9 ut = O (lOCked)9
T, = +u|o,), @ >0 (forwardslip), »u, =0 (crackclosed) 2.1
T, = — o], <0 (reverseslip),

,=0,=0 wu,>0 (crackopen), 2.2)

where g, and 7, are the normal and tangential tractions acting on the crack faces, u,
is the crack opening displacement and #, denotes the rate of change of tangential
displacement of the crack faces with time.

We seek to predict the behavior of the cracked half-space under the travelling load.
The solution involves three stages :

(i) for a given position of the load, it is necessary to calculate the mode I and mode
II stress intensity factors at each crack tip;
(ii) the stress intensity factors must then be compared with an appropriate fracture
criterion ;
(ii1) if the criterion for fracture is exceeded, the cracks propagate, and the crack path
needs to be calculated.

The steps in this process are described in turn below.

2.1. Calculation of stress intensities

A boundary integral formulation sometimes known as the “method of distributed
dislocations” is the simplest way to calculate stress intensity factors in the cracked
solid. This procedure was first applied to cracked solids subjected to contact loading
by Keer and Bryant (1983) and by Bryant ez al. (1984). The method has been described
in detail elsewhere [see for example Nahrendran and Cleary (1984)], and so will only
be briefly summarized here.

The solution begins by calculating the stresses induced by the load in the uncracked
half-space, g,;. Expressions for o,, induced by a sliding contact may be found in
Johnson (1985), while those induced by a bonded contact may be found in Green and
Zerna (1968). By adding a suitable distribution of dislocations along the line of each
crack, these stresses are then corrected to satisfy the boundary conditions on the crack
faces. Suppose that the stresses at a point x in the half-space due to a dislocation at z
are given by o,, = Ab, D, (X,z), where b, are the components of the Burgers vector,
and A = G/4n(1—v). Full expressions for D may be deduced from the complex
potentials given in Bryant ef al. (1984). The combined stresses at x due to the contact
load and distributions of dislocations along each crack are then

G.5(X) = 075(X) + i J K b,(s)AD,y, [x, 2(s)] ds. (2.3)

n=1 Jo

In (2.3) and elsewhere, we use the convention that Greek subscripts range from 1 to
2, and a repeated suffix denotes summation. In particular, the tractions 7, at a point
n on the faces of the mth crack are
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C

T, = ng(n) {G;ﬁ(z(’?))‘*‘ ;J b, (5)AGy, [2(1), 2(5)] dS}, (2.4)

0

where n,(n) are the components of a unit vector normal to the plane of the crack at
n, as shown in Fig. 1. The integrands in (2.3) and (2.4) may be shown to tend to
(s—n)~" as s —» 5. Consequently, for n = m, we take Cauchy principal values of the
integrals in (2.4). The displacement of the faces of the crack at # is related to the
dislocation distribution by

u () = — f " b,(5) ds. 2.5)

C

n

Along any subsurface cracks, the dislocation distribution must satisfy the closure
constraint

JC'" b,(s)ds = 0. (2.6)

0

Substituting equations (2.3)—(2.5) into the boundary conditions listed in (2.1) and
(2.2) leads to a set of coupled integral equations for the unknown dislocation densities,
which may be solved using standard numerical methods [see for example Erdogan
and Gupta (1972) and Gerasoulis (1980)]. In our solution we used a piecewise-
linear scheme similar to that developed by Gerasoulis (1980). When interpolating the
dislocation density, we assumed that the distribution was bounded at the crack mouth
and square-root singular at the tip.

The solution is complicated by the fact that the positions of open, closed, locked
and slipping zones in the cracks are not known a priori, and must be determined as
part of the solution. In addition, (2.2) shows that unless the crack is fully open or
U, = 0, the solution depends on the history of loading. The distribution of dislocations
must therefore be updated progressively as the load moves over the surface of the
half-space. Here, we have used a simple time stepping scheme to approximate the
history of loading. The load is moved over the surface in a series of steps, and a
solution is found for successive positions of the load. The time derivative of b, is
estimated as b,(5, T) = (b,(§, T+AT)—b,(S, T))/AT, where b,(5, T+AT) and b,(S,
T) represent the values of b at the current and preceding load steps. The positions of
open, closed, locked and slipping regions in the crack are found using an iterative
procedure. The calculation begins with a suitable initial guess for the configuration
of the crack, and a solution is found for 4,(5, T+AT). A new approximation to the
crack configuration is found by checking the traction and displacement boundary
conditions on the crack faces. The crack is assumed to close wherever the crack faces
overlap, while the crack is opened at points where tensile stresses are found. Similarly,
locked zones are checked to see whether |t| < |o,|. If this condition is violated, the
crack faces are allowed to slip. Finally, the sliping regions are checked to ensure that
the friction force opposes the direction of motion of the crack faces. The crack is
locked at any point where this is not the case. Once a new configuration of the crack
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has been found, a corrected solution for b, is calculated, and the process is repeated
until the solution converges. ‘

Once a solution for b, has been found, stress intensity factors may be extracted
from the dislocation distribution by considering the asymptotic form of the crack
opening displacement at each crack tip, with the result

K, = 2n/7A Jim \/(C,—5) b,(s)n,(s),
Ky = 2n/nA lim \/(C,—5) b,(5)1,(s). 2.7)

2.2. Fracture criterion

If K; and Kj; exceed some critical combination, the crack will start to propagate.
Here, we use the intensity of the greatest tensile hoop stress as a mixed-mode fracture
criterion. The maximum principal stresses at a crack tip occur at an angle

3K+ K(8KA+ KD

2.8
’ 9KE + K? (25)
and have an intensity
0 0 3 .
K, = cos?() {KI cos? 70 — EKH sin 60}. (2.9)

According to the maximum hoop stress criterion, a crack under mixed-mode loading
starts to propagate when K, > Kjc, and forms a kink at an angle 6,. In fact, the results
presented here are not sensitive to the choice of a criterion for mixed mode fracture.
Even ignoring the effects of Kj; altogether, so that the crack is assumed to advance
when K; > K, produces little change in the results.

Once a crack starts to propagate, its direction of growth must be calculated. Here,
we have assumed that the cracks follow a path such that Kj; = 0 at the local crack
tip. For simplicity, the crack path was assumed to be smooth, so the cracks may curve
but not kink. In practice, the crack may kink when it first begins to propagate, but
numerical tests have shown that the predicted crack shape is not significantly changed
when crack kinking is taken into account.

For numerical purposes, the geometry of each crack was approximated by a series
of segments with piecewise constant curvature. To extend a crack, an additional
segment was added to the crack tip. Using an iterative method, the curvature of the
new segment was chosen to satisfy the Kj; = 0 fracture criterion.

3. RESULTS AND DISCUSSION

Consider the problem illustrated in Fig. 1. A brittle half-space contains a dis-
tribution of microcracks, and is subjected to contact loading. Our objective is to
calculate the critical loads required to cause the solid to fail, and to investigate in
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detail the nature of the mechanism of failure. Two limiting conditions of friction
between the indenter and the half-space are considered in our analysis. The indenter
may either slide over the surface of the half-space, with Coulomb friction acting
between the contacting surfaces. Alternatively, the indenter may be perfectly bonded
to the surface of the half-space. It is convenient to discuss the two cases separately.

3.1. Fracture under a sliding contact

Before attempting a full scale numerical simulation of the behavior of the cracked
half-space under contact loading, we may make some approximate predictions by
examining the nature of the stress field under a sliding Hertzian contact. Fracture is
most likely to initiate in the region of the half-space which is subjected to the greatest
tensile stress. It is straightforward to show that the tensile stress is greatest at the
surface, immediately behind the contact. In this region, the variation of stress with
depth is given approximately by

5 |z 3 |z _z
0_1] ;\V-/,u«p() 2—5 _a_ _pOi ;+25, 022:012:0’ (31)

where p, is the peak Hertzian pressure and a is half the width of the contact, as defined
in (1.1) and (1.2). Now, assume that the half-space contains a large number of
microcracks, with lengths ¢, distributed randomly through the solid. Clearly, fracture
is most likely to initiate at a surface breaking crack which is perpendicular to the free
surface, located at the trailing edge of the contact. The stress intensity factors for such
a crack may be estimated as K;~ 1.12¢ \/%, K ~ 0, where ¢ is the stress acting
half-way down the crack, calculated using (3.1). Thus

5 [¢ 3 »
K ~1.12 [,upo (2—5/5)—1)0(5/%—2)]\/& (3.2)

The critical load required to initiate fracture in the half-space, pi*' is reached when
K; = K¢, giving

fract __ KI

1121 Jre {2 - 2.5/c[2a) — 1.5/ c/2a+c/a}

The accuracy of this estimate may be confirmed by numerical calculations, as
follows. Figure 2 shows the variation of stress intensity factors for a single surface
breaking microcrack, with orientation perpendicular to the free surface, as the load
moves over the half-space. Results are shown for various microcrack lengths, and for
two values of the surface traction coefficient. As expected, the maximum value of K;
occurs when the crack is at the trailing edge of the contact, at which point Kj; is small.
Indeed, the mode II stress intensities are small throughout the cycle of load, due to
friction between the crack faces. The fracture load predicted by (3.3) is plotted on
Fig. 3, together with the more accurate numerical predictions. It is evident that,
provided the initial crack length is small compared to the contact width (c/a < 0.1),
the approximate result is very accurate.

(3.3)
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Fig. 2. The stress intensity factors at the tip of a vertical surface breaking microcrack, as a function of the
distance of the load from the crack mouth. Crack face friction coeff. p, = 0.8; (a) traction coeff. u = 0.2;
(b) crack length ¢/a = 0.01.

If the initial crack size is very small compared to the contact width, then (3.3) may
be simplified further to:

KIC

i

The fracture load may be compared with the load required to cause plastic flow in

the half-space. The loads required to cause repeated plastic deformation have been
calculated by Bower and Johnson (1989), and are given by

it — {ay/[u\/g, u>0.25
def —

4o'y/\/§’ u < 0.25.
def fract

If p5® > po*“,the material is more likely to fail by fracture than plastic flow. For
> 0.25, the mechanism of failure is determined by the properties of the material

Pt 1,26

(3.4)

(3.5)
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Fig. 3. The peak Hertzian pressure required to initiate fracture in a half-space which contains surface
breaking microcracks, as a function of microcrack length ¢/a and surface traction coefficient pu.

and the initial flaw size ¢, and is independent of loading. We may define a material
parameter ® which determines the mechanism of failure as follows::

fract K K
L0 22182 10732

pe e HYE
where H is the hardness of the solid. For ® < 1, a solid will fail by fracture, while for
® > 1, it will fail by plastic deformation. Approximate values of ® for various classes
of material are displayed in Table 1, where the initial flaw size ¢ has been taken as 10
um. It is evident that only the most brittle and hard materials such as ceramics and
glasses are likely to fracture without plasticity. Polymers have ® close to 1, and may

®

(3.6)

Table 1. Estimated values of fracture parameter ® for various
materials. For ® < 1 the material fractures ; for ® > 1 it yields

Material o, (MNm~?) Kic MNm*?) d
SiC; Si;N, 10,000 3-8 0.1-0.3
Soda glass 4000 0.7 0.13
Silica glass 7000 2-3 0.15-0.2
Alumina 5000 3-5 0.2-0.5
Ice 85 0.15 1.2
Epoxy 30-100 0.3-0.4 2-8
Ball bearing steels 3000 20 5
PMMA 60-100 0.9-1.4 7-12
Nylons 50-80 2.5 20-30
Co/WC cermets 400-900 14-16 11-29
Pressure vessel steel 1700 170 72
Carbon steels 300-1500 50-150 24-370

Aluminium alloys 100-600 23-45 28-330




Fracture under a sliding contact 1385

fail by a combination of fracture and plastic deformation. For even the most brittle
steels, plastic flow is the probable mechanism of failure. If the traction coefficient is
less than 0.25, fracture becomes progressively less likely.

We proceed to investigate the process of fracture under the sliding contact in more
detail. Suppose that the half-space contains a single microcrack, which meets the
surface at a right angle, and that the contact pressure exceeds the fracture load. At
some point during the passage of the load over the crack, the crack tip stress intensity
factor reaches the fracture toughness of the solid, and the crack starts to propagate.
Qualitatively, its subsequent behavior may be deduced using (3.2). For c¢/a <« 1,
K~ 2.2up0\/%, so K initially increases with crack length. The crack is therefore
unstable: as the crack length increases, the stress intensity factor increases beyond
the fracture toughness, tending to increase the rate of propagation. However, the
tensile stress decays very rapidly below the surface of the half-space, so K; quickly
reaches a maximum and begins to decay. The crack continues to propagate until the
value of K; drops to K¢, at which point it arrests.

The numerical results presented in Fig. 4 illustrate this behavior. The figure shows
the predicted sequence of crack shapes as the load passes over the surface, for a
relatively high surface traction coefficient (¢ = 0.4), assuming that the load exceeds
the fracture load by 20%. Although Fig. 4 shows results for three neighboring
microcracks at the surface of the half-space, the behavior of the first crack to pass
under the load is indistinguishable from that of an isolated crack in the solid. When
the load reaches x,/a = 0.9, the crack jumps instantly to a new length, with no change
in the position of the load. Subsequently, some further stable crack growth occurs:
the crack stops propagating once the load is some distance away.

Figure 4 shows that the final length of the fracture is almost an order of magnitude
greater than the initial length of the microcrack. There is an important consequence
of this result. The shape and size of the fractures forming in the wake of a slider are

Motion of load
Y N
N7 () ) (b)
Microcracks
N N
! © { @
N ]/\
{ © | (t)

N N
{ \ l (8) { \ (h)
Shielded microcrack

Fig. 4. The behavior of three microcracks at the surface as the load passes over them. Parameters: crack
length c¢/a = 0.025, load p,/pi*t = 1.2, friction coeff. u = 0.4, crack face friction coeflicient f'= 0.8;
distance between microcracks d/a = 1.25.
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determined by the contact geometry, and are not sensitive to the configuration of the
microcrack responsible for the failure. The main role of the initial microcrack size ¢
is to determine the fracture load p§**.

Experimental observations of fracture behind a sliding contact have shown that a
periodic array of cracks forms in the wake of the indenter, with a characteristic
spacing between the cracks. It is not difficult to explain this behavior. Suppose that
there are two microcracks at the surface of the half-space, with only a small distance
between them. The first crack to pass under the load becomes unstable before the
second, and jumps instantly to a depth which greatly exceeds its initial length. The
stress field under the indenter is significantly altered by the presence of this crack, and
while the slider is close to the crack, the tensile stresses in its wake are substantially
reduced. If the second microcrack is close to the first, it is unlikely to propagate.

Figure 4 demonstrates the effects of this interaction between cracks. There are three
neighboring microcracks at the surface of the half-space : the first crack to pass under
the load propagates, but its neighbor is shielded and remains stable. By the time the
load reaches the third crack, the stress field under the indenter is no longer significantly
affected by the first fracture. The third microcrack therefore propagates in a similar
manner to the first.

If the spacing between microcracks is much less than the contact width, then the
distance between successive fractures is determined by this shielding effect. We have
used the following approach to estimate the critical spacing between fractures. First,
we calculate the shape of a single fracture initiated from a microcrack of length ¢ in
the wake of the indenter. The load is then progressively moved past the first crack.
At each step, stress intensity factors are calculated for a second microcrack, also of
length ¢, located at the trailing edge of the contact. The stress intensities for the second
microcrack are found to increase at the load moves away from the first fracture : the
critical spacing is taken to be the point where the stress intensity just reaches the
fracture toughness of the solid. The predicted spacing is shown in Fig. 5, as a function
of the load factor p,/ pi** and friction coefficient u. For high values of p,/pt*, the

N
=)
T

Crack Spacing d/a
=

el

1.10 1.20 1.30 1.40 1.50

Load p,/p]™

Fig. 5. Critical spacing between fractures forming in the wake of a sliding contact, as a function of the
peak Hertzian load and traction coefficient.

o
o
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spacing appears to approach an asymptotic value. Our results are in good qualitative
agreement with experimental observations reported by Veldkamp et al. (1978). Our
predictions are also similar to those of Keer and Kuo (1992), who used a more
sophisticated three-dimensional model to calculate the crack spacing. We have also
investigated the influence of the initial flaw size, but have found that its main influence
is to set the value of p§i**. For a given value of p,/pi**, the microcrack size does not
appear to have much effect on the crack spacing.

The simulation shown on Fig. 4 shows that interaction between neighboring cracks
has some influence on their shape. The middle microcrack of Fig. 4 does not propagate
under the contact loading and will be neglected in the following discussion. The left-
most microcrack grows first and the crack on the right grows second. The second
fracture only propagates to approximately 4/5 the depth of the first, and its shape is
also significantly different. However, numerical tests show that the behavior of a third
fracture is very similar to that of the second, suggesting that a crack only interacts
significantly with its nearest neighbor. We have therefore taken the shape of the
second crack to be indicative of the steady-state crack shape. On this basis, a set of
steady state crack shapes for various initial flaw sizes, magnitudes of load, and
coeflicients of friction has been plotted in Fig. 6. Qualitatively, the shape of the cracks
is similar for each case. Unless the coefficient of friction is particularly large (u > 0.6),
the cracks propagate roughly perpendicular to the free surface. The depth of the
cracks increases rapidly with load or friction coefficient, and is also sensitive to the
initial flaw size.

In principle, the fracture process we have described may be the basis of a mechanism
of wear. One might expect that successive fractures forming in the wake of the slider
would coalesce, and generate a wear particle. However, we have not observed this
effect in any of our simulations. If the load passes over the half-space only once, then
the separation between the cracks forming in its wake is always too large for the
cracks to coalesce, even under extremely high loads. The separation between cracks
may be reduced if the first pass of the load is followed by another, with a different
magnitude ; contact width; or friction coefficient. An example is shown in Fig. 7,
which shows the behavior of four neighboring microcracks under two successive
passes of the load, at a fixed contact width. Figure 7(a) shows the pattern of fracture
which develops after the first passage of the load; Fig. 7(b) shows the pattern after
the second load. The first load has magnitude p,/p§** = 1.125 and friction coefficient
u = 0.6. The separation between the microcracks is such that only the first and third
cracks propagate ; the second and fourth are shielded by their neighbors. The second
load has magnitude p,/pi** = 1.75 and friction coefficient u = 0.2. This load is
sufficient to cause the remaining microcracks to propagate. However, they are
deflected away from their neighbors and do not coalesce with them. We have observed
a similar effect if the direction of motion of the load over the half-space is reversed,
so that the solid is subjected to two successive contacts travelling in opposite direc-
tions. This behavior is not difficult to explain : the material surrounding each crack is
shielded from stress, and it is not easy for a second crack to propagate through the
unloaded region.

To some extent, our observation that neighboring cracks do not coalesce is a
consequence of the two-dimensional nature of our model. The three-dimensional
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Fig. 6. Steady state profiles of cracks forming under a sliding line contact. (a) u = 0.2, c/a = 0.01; (b)
u=204,cla=0.01;(c)u=0.6,cla=0.01; () po/pit = 1.2, u = 0.4.

cracks which form under a point contact are likely to interact less strongly than the
edge cracks produced by a line contact. In addition, cracks which run parallel to the
surface may be initiated by point contacts. Such cracks would almost certainly coalesce
with the edge cracks we have described here, and would produce wear debris.
However, our observations suggest that, although fracture under sliding contacts
severely damages a surface, the rate at which material is removed from the solid due
to fracture is likely to be relatively slow.

3.2. Fracture under a bonded line contact

In the preceding section, we considered the damage caused by an indenter which
slides freely over the surface of the half-space. We proceed to investigate the failure
process under a perfectly bonded indenter.
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Fig. 6 (continued).

We assume that the half-space is loaded in the following manner. First, a rigid
cylinder is pressed into its surface by a normal load, magnitude P per unit length.
This subjects the half-space to the Hertzian distribution of pressure given in (1.1), with
Po = 2p/ma. Subsequently, with P held constant, a progressively increasing tangential
traction Q is applied to the indenter. It is assumed that no slip occurs in the interface
between the cylinder and half-space, so that the distribution of tangential traction
given in (1.3) acts on the area of contact.

The tangential load induces a singular distribution of stress at the edges of the
contact area. The normal load does not induce stresses in this region and so does not
play a role in initiating fracture. The distribution of stress near the edge of the contact
is identical to the asymptotic field at the tip of a mode II crack. One may define a
corresponding stress intensity factor, which is related to the applied load by

K= Q//ma. (3.7)
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Fig. 7. The pattern of fracture which develops under two successive passes of the load. (a) Cracks which
form under the first load ; magnitude p,/p™ = 1.125, u = 0.6. (b) The fracture pattern after the second
load ; magnitude po/pi*® = 1.75, u = 0.2.

Therefore, in an ideally brittle solid, fracture will initiate spontaneously at the edge
of the contact when the tangential load reaches a critical value, irrespective of the
distribution of microcracks in the solid. If one uses the maximum hoop stress intensity
factor as a mixed mode fracture criterion, the critical load is given by

0 = 0.866K;c/ Ta. (3.8)

The same criterion predicts that a crack will initiate at the trailing edge of the contact,
at an angle of 70.5° to the surface.

The subsequent path of the crack depends on the magnitude of the normal load P
acting on the cylinder. In Fig. 8, we have plotted the crack paths for various values
of P/Q™. For small values of P/Q™ < (.2 the crack propagates unstably (i.e. under
constant applied load), and follows a trajectory which gradually curves up towards

P /eract = 0

I:LQ P/O™ = 0.1
= / /P/Qf’“’=o.2

-

Contact width

P/ = 0.5

P/Q" = 0.75

Fig. 8. Crack paths under a bonded line contact.
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the surface. As the crack approaches the free surface on the far side of the contact, it
eventually reaches a region where the stress field is compressive and arrests. For larger
values of P/Q™', the crack propagates unstably for a short distance, then arrests. If
the magnitude of the tangential load is increased beyond Q.. the crack continues to
propagate, and progressively turns up towards the surface. Eventually, it reaches a
zone of high compressive stress near the free surface and arrests. Figure 8 shows the
configuration of the crack after it arrests, for several values of P/Q ™', Increasing the
magnitude of the tangential load does not cause the crack to propagate beyond this
point. However, the ligament of material between the crack tip and the free surface
is very weak. For example, if a small tensile load is applied to the indenter, one finds
that the crack runs up to the free surface. Consequently, the material between the
crack and the free surface would almost certainly be removed as a wear particle.
If the magnitude of the normal load P is increased, the compressive stress field
below the indenter tends to drive the crack deeper into the half-space. However, the
crack always eventually curves back towards the free surface before it eventually
arrests.

These results suggest that if seizure occurs between the contacting surfaces, the
wear rate by fracture is likely to be catastrophic. Figure 8 shows that, even for small
values of P/Q™, the size of the wear particle is several times greater than the width
of the contact.

3.3. Residual strength of a damaged half-space

We conclude by investigating the influence of tensile stresses, which act parallel to
the surface of the half-space, on the failure of the solid. First, we calculate the residual
strength of a half-space which has been damaged by contact loading. For this purpose,
we suppose that the half-space is first loaded by a sliding cylinder, as described in
Section 3.1. The contact loading initiates an array of edge cracks at the surface of the
solid. The contact load is then removed, and the half-space is subjected to a remote
tensile stress o, acting parallel to the surface. There is a critical magnitude of remote
stress which causes the cracks induced by the contact load to propagate, and results
in catastrophic failure of the solid.

We have calculated the critical remote stress as a function of the contact loads
applied to the solid and the initial crack size. To calculate the residual strength, we
assumed that the half-space contained three neighboring microcracks, separated by a
distance d/a = 2. We calculated the final shape of each crack after the load had
traversed the surface of the half-space. We then found the level of residual stress
required to cause one of the cracks to continue to propagate in the absence of the
contact. The results of our calculations are displayed in Fig. 9. The residual strength
is specified as the ratio of stress required to cause fracture to the Hertzian fracture

fract fract

load, a,,/po*, where pg* is given in (3.3). It is shown as a function of the load
factor p,/p§* for various values of friction coefficient u in Fig. 9(a), and as a function
of initial microcrack lengths c/a in Fig. 9(b). For comparison, one may calculate the
stress required to cause fracture in a solid which has not been damaged by contact

loading, and contains only the initial microcracks. The fracture stress is given by
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Fig. 9. The residual strength of a half-space damaged by contact loading. (a) Variation with contact loads,
for microcrack size c/a = 0.01; (b) variation with crack size, for contact loads po/pi*® = 1.2, u = 0.4.
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0, =3 — (3.9)

C
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so that from (3.3),

O-rlalct = u(2—-2.5\/c/2a)—1.5\/¢c/2a+c/a. (3.10)

e
It is evident that the damage caused by contact loading reduces the strength of the
solid by almost an order of magnitude.

3.4. The influence of near-surface residual stresses

We have also calculated the level of residual stress which, when applied together
with the contact loading, causes catastrophic fracture in the half-space. This is some-
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Fig. 10. The residual stress required to cause catastrophic fracture in a solid subjected to contact loads. (a)
Variation with contact loads, for microcrack size ¢/a = 0.01; (b) variation with crack size, for contact
loads p,/piet = 1.2, u = 0.4.

what less than the residual strength of the solid, since the contact and residual stresses
act in a co-operative manner at the point where unstable fracture occurs. In addition,
the path of the cracks is influenced by the residual stress.

We used an iterative technique to calculate the critical stress. For simplicity, we
assumed that the half-space contained only one initial microcrack at its surface. The
residual stress is taken to be uniform, and to act in a direction parallel to the free
surface. With an appropriate initial guess for the magnitude of the residual stress, the
contact load was applied to the half-space. Depending on whether unstable fracture
was found to occur, the residual stress was modified appropriately. This procedure
was repeated until successive approximations to the residual stress differed by less
than 1%. The results are shown in Fig. 10, which shows the critical residual stress as
a function of the applied loads and the initial crack length. It appears that the
magnitude of the residual stress required to cause catastrophic failure under inden-
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tation loading is only a fraction of the stress required to fracture the solid in the
absence of contact loading.

4. CONCLUSIONS

We have described a detailed analysis of the damage caused by a cylinder sliding
over the surface of a brittle solid. Two limiting cases of friction between the contacting
surfaces were considered : the cylinder was either assumed to slide over the surface,
with Coulomb friction acting in the interface ; or else was assumed to bond perfectly
to the mating surface.

For a sliding indenter, it was shown that the critical loads required to cause fracture
may be estimated using a simple closed-form expression given in (3.3). The loads
required to initiate fracture were compared to those needed to cause the material to
deform plastically. It was shown that only extremely brittle materials such as ceramics
and glasses are likely to fail by brittle fracture under contact loading. Polymers may
fail by a mechanism of combined plastic flow and fracture. In other materials, failure
will almost certainly be by plastic flow at the surface.

The pattern of fracture caused by a sliding contact was also investigated. It was
shown that the shape and size of the cracks which form in the wake of the slider are
determined by the geometry of the contact and the load ratio p,/p5*, and are relatively
insensitive to the initial flaw size or geometry. We demonstrated that a periodic array
of cracks forms in the wake of the slider, with a critical spacing between the cracks.
The critical spacing was calculated as a function of the loads applied to the indenter.
We attempted to find conditions where neighboring cracks coalesce and form a wear
particle, but found no such conditions. This suggests that, while fracture under contact
loading can severely damage a solid, the rate of wear due to fracture is likely to be
slow.

We also considered fracture under a cylinder which adhered perfectly bonded to
the surface of the brittle solid. In this case, it was assumed that the cylinder was first
pressed into the surface of the solid by a load P per unit length. Then, with P fixed,
the cylinder was subjected to a steadily increasing tangential load Q. The tangential
load gives rise to a singular distribution of traction at the trailing edge of the contact,
so that a crack initiates spontaneously at a critical tangential load Q™ given in (3.8).
Thereafter, the crack path depends on the ratio of P/Q ™. For small values of normal
load, the crack follows a path which curves towards the free surface, so that a wear
particle may be produced. For larger values of P/Q™, the crack tends to be driven
to greater depths below the surface of the half-space. However, it always appears to
curve back to the free surface eventually.

Finally, we determined the residual tensile strength of a solid damaged by contact
loading. It was shown that contact fracture may reduce the strength of the solid by
over an order of magnitude. We also calculated the magnitude of tensile residual
stress required to cause catastrophic fracture under contact loading : again, the critical
residual stress is a small fraction of the stress required to fracture the solid in the
absence of contact loading.
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