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ABSTRACT

A fiber microbuckling calculation is presented for the effects of fiber misalignment and material nonlinearity
on the compressive strength of fiber composites. The role of fiber bending stiffness is included by using a
particular form of couple stress theory. In order to examine the effect of a distribution of fiber waviness,
the fiber misalignment angle is assumed to vary along the fiber length but is taken to be uniform in the
transverse direction. Thus, the effects of wavelength as well as amplitude of fiber waviness are taken into
account. A consideration of sinusoidal initial waviness reveals that short wavelength imperfections are
much less deleterious than long wavelengths. A statistical analysis is presented for the effect of random
fiber waviness on compressive strength, using a Monte Carlo simulation technique. Compressive strength
is found to be particularly sensitive to the area under the spectral density curve and to the minimum fiber
wavelength.

INTRODUCTION

Modern engineering fiber composites are increasingly used in applications where
their high specific tensile moduli and specific tensile strengths outweigh competing
cost considerations. This is particularly evident in the aerospace, automotive and
sporting goods industries. However, the compressive strengths of long, aligned fiber
composites may be as low as 60% of their tensile strength and the compressive
strength is recognized to be a design limiting consideration. An understanding of the
phenomena involved in compressive failure is crucial to the development of improved
composite materials.

It has been shown that the critical mechanism in the compressive failure of polymer
matrix composites is plastic microbuckling (Argon, 1972; Budiansky and Fleck,
1993). Microbuckling is the failure mechanism by which the composite suffers local-
ized collapse within a kink band (Hull, 1981 ; Daniel ef al., 1993). The kink band is
typically of the order of 10 fiber diameters in width and the normal to the kink band
is at an angle B = 15-30° to the fiber direction. The role of microbuckling in the
compressive failure of metal matrix and ceramic matrix composites is less clear,
although it has been observed in aluminum alloy composites (Schulte and Minoshima,
1991) and in carbon-carbon composites (Evans and Adler, 1978). Microbuckling may
also play an important role in compression—compression fatigue (Huang and Wang,
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Fig. 1. Sketch of a microbuckle band used in the kinking model.

1989 ; Slaughter and Fleck, 1993a) and in the compressive creep failure of aligned
fiber composites (Jelf, 1993 ; Schapery, 1993 ; Slaughter and Fleck, 1993b; Slaughter
et al., 1993).

Several micromechanical models have been developed which attempt to predict the
critical stress for microbuckling of aligned fiber composites. Rosen (1965) modeled
microbuckling as an elastic bifurcation phenomenon. For sufficiently large fiber vol-
ume concentrations, the Rosen model predicts a critical stress for microbuckling given
by

<=0, (D
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where ¢ is the critical remote compressive stress parallel to the fiber axes and G is
the composite in-plane shear modulus. If the shear modulus for the fibers is large
compared to the shear modulus of the matrix G, then

G = Gu/(1-0), )

where ¢ is the fiber volume concentration. A comparison with experimental results
shows that (1) overestimates the critical stress for microbuckling by a factor of about
four.

Several investigators have examined models of microbuckling which improve upon
some of the approximations made by Rosen (1965), but continue to treat mic-
robuckling as an elastic bifurcation event. Sadowsky ef al. (1967) have constructed a
three-dimensional model of microbuckling and Steif (1987) has taken into account
finite strains and material nonlinearity in both constituents of a fiber composite.
Lagoudas et al. (1991) have considered the stability of small perturbations in fiber
displacement, with variable characteristic wavelength, superimposed upon a uniform
applied compressive strain. Christensen (1993) has examined the competition between
fiber composite material instability, in the form of an elastic bifurcation, and structural
instability of a composite shell structure as a whole. These and other analyses based
on elastic bifurcation all overestimate the critical stress for microbuckling.

An alternative approach based on a model of microbuckling as a plastic collapse
event was first proposed by Argon (1972). In this model the fibers are misaligned by
an angle ¢, within a band, as shown in Fig. 1. In Argon’s analysis this band is taken
to be normal to the fiber direction (f = 0). The fibers are assumed to be inextensible
and suffer a remote compressive axial stress; the associated deformation within the
kink band is given by the additional rotation ¢ of the fibers. For a rigid—perfectly
plastic composite response, the critical stress for microbuckling is given by
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where 7, 1s the plane strain yield stress of the composite in pure shear. Budiansky
(1983) extended this result for an elastic—perfectly plastic composite response and
found

" T, G

O-C = - = ' b
Y+ 1+d/y,

where y, = 1,/G is the in-plane shear yield strain of the composite. This result reduces
to the Rosen bifurcation solution (1) when ¢ = 0 and is asymptotically equivalent to
Argon’s result (3) in the limit ¢/, > 1.

Jelf and Fleck (1992) have shown that, for polymer matrix composites, experimental
evidence supports the plastic collapse model of microbuckling. Budiansky and Fleck
(1993) have considered the effect of nonzero kink band angle (f # 0), combined
remote axial compression and in-plane shear loading, and plastic strain hardening on
the predicted critical stress for microbuckling. [The study was extended by Slaughter
et al. (1993) to consider general remote in-plane loading.] A Ramberg—Osgood strain
hardening solid was considered, wherein the in-plane shear response is described by

the three-parameter relation
T 3/tY
1os () o
yy TY 7 ’CY

Here, 7 and y are the in-plane shear stress and strain, respectively, of the composite
and 7 is the hardening parameter; 7, is interpreted as the shear yield strength and
Yy = 7,/G is the shear yield strain. The initial slope of the t vs y curve defined by (5)
equals the shear modulus G. Budiansky and Fleck (1993) found that the compressive
strength is given by

4)
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where « = \/1+ R*tan’ , R = or,/1, and oy, is the plane strain yield strength of the

composite in pure transverse tension. In the limit # — oo, (5) reduces to an elastic—
perfectly plastic material description and, if f = 0, (6) reduces to the elastic—perfectly
plastic prediction given by (4).

A different method for characterizing the nonlinear, inelastic behavior of fiber
composites was employed in Schapery’s (1994) analysis of plastic collapse. Schapery
showed that the constitutive parameters of the composite could be expressed as
functions of a single internal state variable representing the change in the micro-
structure. The compressive strength results are in line with those of Budiansky and
Fleck (1993).

The plastic collapse models of microbuckling discussed so far assume that the fibers
have zero bending stiffness, or equivalently, that they are broken at the boundaries
of the kink band. As a consequence, there is no length scale associated with the
fibers in the analysis. This form of model will be referred to as a kinking model of
microbuckling. An alternative couple stress model which takes fiber bending stiffness
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into account has been developed by Fleck et al. (1993). The couple stress model may
be used to investigate the effect of shape of initial fiber misalignment upon critical
stress. Fleck et al. (1993) considered an imperfection in the form of a band where the
fiber misalignment angle takes the form of a half sinusoid with respect to distance
along the fiber direction. In so doing, they were able to predict the kink band width.
In the current paper, the critical stress for microbuckling will be predicted for two
geometrical forms of fiber waviness : sinusoidal initial fiber misalignments and ran-
domly misaligned fibers.

COUPLE STRESS MODEL

A model is presented for the compressive strength of an aligned fiber composite,
including the effects of fiber bending. The development given here follows that outlined
by Fleck et al. (1993). A remote compressive stress ¢ is applied along the mean fiber
direction of the composite. Define a Cartesian coordinate system (x, y) with unit
vectors i in the mean fiber direction and j in the transverse direction, as shown in Fig.
2. The initial fiber misalignment is defined by the initial angle ¢(x,y) between the
fiber axis and the mean axial direction; subsequent fiber rotation associated with
deformation of the composite is denoted by ¢(x,y). Assume that the fibers are
perfectly correlated along the direction ¢ = —sin ffii+cos fj, as shown in Fig. 2. Then,
¢ and ¢ can be uniquely expressed as functions of x+ ytan f only and B is the angle
a kink band forms with the fiber direction (see Fig. 1).

Kinematics

Assume that the fibers are inextensible, that ¢ and ¢ are small and that the
displacement w = ui+vj is constant along the correlation direction ¢. The dis-
placements are related to the fiber rotation ¢ by

ux0
ov 7

ok

From (7), the axial strain in the composite is zero (to second order in ¢) and the shear
strain y and the transverse strain er are

yj
(44
c” c”
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9 +¢

Fig. 2. Sketch of the composite fiber profile used in the couple stress model.
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Equilibrium

Consider the bulk composite response as illustrated by the homogeneous material
element shown in Fig. 3. The composite stresses shown in Fig. 3 represent the local
average of stresses in the fibers and matrix. o, and oy are the axial and transverse
tensile stresses, g is the sliding shear stress in the fiber direction and 7 is the transverse
shear stress. Fiber bending resistance gives rise to a couple stress, or moment per unit
area, m. The use of couple stresses to account for bending stiffness that would
otherwise be lost in the development of material models has been employed before
[for example, Biot, (1967)]. For a detailed discussion of the theory of couple stresses
in continuum mechanics see, for example, Koiter (1964). Neglecting higher order
terms, equilibrium of forces in the axial direction implies that the axial stress in the
composite is constant and

oL~r —0a%. )

Equilibrium of forces in the transverse direction gives

doy (%T o¢p 0(;5
o -+ i 0L< (10)
and equilibrium of moments gives
om
a = ‘CS_ TT' (l 1)

When m is not constant, the stress tensor is not symmetric and 15 # 1. On making
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Fig. 3. Composite material element acted on by averaged stresses in the couple stress model.
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use of the assumption of perfect correlation in the direction c, (9)—(11) are combined
and integrated to give

om

0x+g°°(q§+¢) = 13+ ortanf. (12)

Constitutive relations

The couple stress m within the composite is due solely to the bending stiffness of
the fibers. The fibers are assumed to be circular cylinders of diameter d and to deform
elastically with Young’s modulus E;. From elastic beam theory the couple stress is
related to the fiber curvature d¢/dx by

_ cEd® d¢
=16 dx’

(13)

where ¢ is the fiber volume concentration. If the elastic modulus of the fibers is much
greater than that of the matrix then the quantity cE; may be interpreted as an
approximation to the elastic modulus of the composite in the fiber direction, E.

The composite is considered to behave as a compressible deformation theory solid
with nonlinear strain hardening. The constitutive equations used are those proposed
by Budiansky and Fleck (1993). Assume that the composite material is characterized
by the quadratic yield condition

s\ o1\
S+ () =1, (14)
Ty Oty
where 7, and gy, are the plane strain yield stresses in simple shear in the fiber direction
and in tension in the transverse tension, respectively. An equivalent shear stress,

.= /15 + 0%/ R?, (15)

is used as a plastic potential, with R = o/, describing the eccentricity of the yield
surface in (ts, o) space. Provided the condition R* = E;/G is satisfied, where Er and
G are the transverse and shear elastic moduli of the composite, then it can be shown
from relations (8) and (14)—(15) that

Ts
'}) ==
GS(‘CC)
[ (16)
e =—F"—7
T R*Gy(r)

where Gg(t.) is the pure shear secant modulus. Budiansky and Fleck (1993) have
shown that R? = E;/G is a reasonable approximation for polymer matrix composites.
An effective strain is defined by
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and it can be shown that
Tg+ortan f = ocre} (18)
7 =¢ = 7y/a

where

a=./1+R*tan’ B. (19)

The three-parameter Ramberg—Osgood strain hardening relation (5) is given in terms

of the secant modulus by
G _ 3= (20
Gs(t.) T\t )

y

and will be used to describe the composite response throughout the remainder of this
paper.

Equations (13) and (17)—(19) are used to rewrite (12) as a nonlinear second-order
differential equation for ¢(x). This equation can be given more concisely by defining
the nondimensional quantities

¢ - P o” T 4dx |G*

wE')T;k’ l//Ev—;k, AEE, SET—y, 557 f, (21)
where y, = 1,/G has already been defined as the fiber shear yield strain and
G* = o’G
. 22
ﬁzmm} (22)

This leads to the nondimensional equation for the compressive response of the com-
posite
d?y

d—éz-i-/\(lp-l—lﬁ) =y, (23)

where s is related to by the nondimensional form of the Ramberg—-Osgood relation,
vo=s[l+30s . (24)

In the limit » — oo, (24) describes an elastic—perfectly plastic response. To consider
an elastic composite response let s =y in (23). Equations (23) and (24) are used to
solve for the collapse response of the composite for a given distribution of fiber
misalignment = ¢/y¥ Note that the dependence on the kink band angle f is con-
tained within the nondimensionalization. To obtain results in dimensional form a
value for § must be assumed. It can be seen from (8) and (16) that the composite
undergoes proportional loading. Since proportional loading is maintained, the above
deformation theory analysis provides the same results as a flow theory analysis and
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is appropriate provided the effective stress s(¢£) is monotonically increasing everywhere
in the composite. The deformation and flow theories diverge when elastic unloading
occurs.

Solution procedure

In the initial unloaded, stress-free state the composite has a misalignment dis-
tribution ¥(¢). Under increasing remote load the composite deforms at each point
along its length and, in principle, one can solve for /() as a function of A. If a critical
load for microbuckling exists, A goes through a maximum value A, as deformation
evolves; A, is the critical microbuckling load and is obtained by solving for the load
A as a function of some measure of the overall deformation which continues to
increase as A goes through its maximum.

To proceed, let Y, = ¥, ¥, = dy/d€ and 5 = A (i.e. A is viewed as a “function” of
& with zero spatial gradient). Decompose the second-order differential equation (23)
into two coupled, first-order differential equations and write dA/d¢ = 0 to get

dy, A

_d?_ ‘//2

dvs, -

H%“=S(¢1)_'//3(¢1+¢) " (25)
dy,

a¢ ! )

where s(y/,) is given by (24). By treating the load as a dependent variable in the system
(25), it is explicitly solved once three boundary conditions have been specified. It
is then possible to solve for the deformation response through any extrema in remote
load. Let the ends of the composite be at ¢ =0 and ¢ = L and assume that zero
moment is supported at the ends. Then, from (13),

Y2(0) = ¥o(L) = 0. (26)

The third condition required for a unique solution of the system of equations (25) is
a prescribed value for the maximum fiber rotation y,,, occurring anywhere along the
length of the composite. The point along the composite where /, = y,,, is designated
¢, such that

Yo

Fig. 4. Anticipated form of the solution for the couple stress model, showing the remote compressive stress
A versus maximum fiber rotation ¥, occurring anywhere along the length of the composite. The maximum
sustainable stress A, is the critical stress for microbuckling,
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'ﬁ 1 (im) = Wma (27)

where 0 < £, < L. The anticipated composite response is shown in Fig. 4. This result
is obtained by incrementally increasing y/,,. At each increment the previous solution
for Y, ¥, and Y5 is used as the starting guess for the numerical algorithm and the
initial guess for £, is taken to be the value of & at which the maximum value of ,
occurred in this previous step. For the first increment, the initial guess for £, is taken
to be the value of ¢ at which the maximum value of i occurs. In practice it was found
that &, is nearly constant. A full discussion of the numerical algorithm is given in
Appendix A. For each increment in 1, it is verified that elastic unloading has not
occurred anywhere along the composite. Should elastic unloading occur the predicted
response would become sensitive to the assumed form of the plasticity relations : upon
unloading the deformation theory solid gives a softer incremental response than that
of flow theory. Whether deformation theory or flow theory is the more appropriate
remains an open issue for epoxy matrix composites.

SINUSOIDAL WAVINESS

The kinking model of microbuckling (Budiansky and Fleck, 1993) neglects fiber
waviness and provides an estimate for the critical load as a function of the initial fiber
misalignment angle. It is unable to predict the effect of wavelength of waviness upon
the collapse response. The couple stress model, as described above, is needed in order
to determine the effect of the wavelength of initial fiber misalignment upon the collapse
load. Assume a sinusoidal initial waviness of the form

¥ (£) = ¥mcos (Llé) (28)

where the amplitude ¥, and the wavelength A are independent parameters. By
symmetry, a distribution (&) which is a solution to the differential equation (23) and
the boundary conditions (26) for a composite length of one wavelength, L = A, can
be repeated to obtain a distribution yy(mA+ &) = (&), wherem = 1,2, . . ., that satisfies
(23) and (26) for any composite length L that is an integer multiple of the wavelength
A. The remote load A versus maximum fiber angle ¥, will be the same. Therefore,
equate the value of L in the boundary condition (26) with 4 and consider the composite
to be of infinite length. The remote load A versus maximum fiber angle v, are shown
in Fig. 5 for different values of the Ramberg-Osgood parameter #, as well as the elastic
response. The amplitude and wavelength of the initial misalignment distribution in
Fig. 5 are y,, = 5 and 1 = 100. Typical parameter values for a carbon fiber—epoxy
matrix composite are o = 1.2, p, = 0.01 and E/G = 25 (and 4\/G*/E ~ 1) so that, in
physical units, the initial misalignment angle in Fig. 5 has an amplitude and wave-
length of 2.4° and 100 fiber diameters, respectively. These values are representative
for carbon fiber—epoxy composites [see, for example, Budiansky and Fleck (1993)].
It is clear from Fig. 5 that the composite displays a maximum remote load A, at a
finite level of deformation and that subsequent deformation occurs at decreasing load.
For moderate values of n, A, decreases as »n increases, but A, increases again as n —
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Fig. 5. Effect of the Ramberg-Osgood hardening parameter # upon the collapse response of load A versus

maximum fiber angle ¥, for a sinusoidal initial fiber waviness, = 5 cos (n£/50).

00. The profile of fiber rotation, (\ + ) versus &, is shown in Fig. 6 for n = 5 and for
a range of loads up to the critical load A.. It can be seen that plastic strain concentrates
near the location of maximum initial misalignment, creating a kink band, as the load
approaches the critical level A/A, — 1. || is a maximum at fixed locations ¢ = k4/2,
where k takes on all integer values. No elastic unloading occurs until after the critical
load A, has been obtained. Unloading does occur in regions outside the kink band
post-maximum load. If the plastic response of the composite is closer to that of a flow
theory solid than that of a deformation theory solid, then the post-maximum load
response shown in Fig. 5 is only qualitatively correct, but the critical value of load A,
itself is accurate.

10 T T T 1 T T T T

F+Y 0

-5+ A/Ac = 0 .
AA, =09 J
AJA, 21— A/A, =099
-10 S S | " 1 " ] 1 1 1
0 20 40 6 60 80 100

Fig. 6. The profile of fiber misalignment (i 4) under monotonically increasing remote stress. A, is the
critical stress for microbuckling. The initial fiber waviness is given by ¥ = 5cos (n£/50) and the Ramberg-
Osgood hardening parameter is n = 5.
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Fig. 7. The critical stress for microbuckling A., normalized by the kinking model solution Ay, as a
function of wavelength A. The initial fiber waviness is ¥ = i, cos (2n¢/4) and the Ramberg—Osgood
hardening parameter is n = 5.

A comparison can be made between the critical microbuckling load predicted by
the couple stress model and the kinking model discussed in the introduction. In terms
of the nondimensional quantities introduced in (21), the kinking model strength is
given by rewriting (6) in the form

1

3 1/n wm (n—1)n’
() ()

where the maximum value for the misalignment distribution v,, is assumed. The ratio
of critical load predicted by the couple stress model to that of the kinking model,
A/Ayin 18 plotted in Fig. 7 against the wavelength of initial misalignment A, for
Ym = 2,4,6,8 and n = 5. The critical load predicted by the couple stress model is higher
for short wavelengths and asymptotes towards the kinking model prediction as the
wavelength becomes infinite. Short wavelength imperfections are much less deleterious
and the kinking model provides a lower, conservative bound for the compressive
strength.

Akink =

(29)

RANDOM WAVINESS

In engineering composites, fiber misalignment is stochastic rather than sinusoidal
in nature. If one assumes that the fibers are perfectly correlated in the direction c, as
previously defined in Fig. 2, and that the fiber misalignment distribution along the
fiber direction is statistically independent of position, i.e. that it is a stationary
function, then the random waviness can be characterized by its spectral density
(Newland, 1984). The spectral density is a function which gives information about
the mean square amplitude of a random signal associated with different frequencies



1754 W.S. SLAUGHTER and N. A. FLECK

o (or wavelengths). The total area under the spectral density curve is equal to the
overall mean square value of the signal. Spectral density is defined as the Fourier
transform of the autocorrelation function. It is assumed that the random fiber wav-
iness of engineering composites can be characterized by the spectral density of the
fiber slope S(w), where fiber slope m is related to the fiber waviness angle ¢ by
m = tan ¢.

No measurements of the spectral density for fiber waviness have been reported in
the literature. Therefore, the approach adopted in the present study is to assume a
simple form for the spectral density. Monte Carlo methods are used to generate an
ensemble of fiber waviness profiles from the assumed spectral density. The collapse
response for each realization of fiber shape is calculated and probability curves of
collapse strength are obtained. Thus, the relationship between spectral density and
the distribution of collapse strength is obtained. The problem is analogous to buckling
of a beam on a nonlinear foundation with random initial imperfections, where the
connection has been obtained between the spectral density of the imperfection dis-
tribution and the probability of buckling (Fraser and Budiansky, 1969). Monte Carlo
methods have recently been used by Engelstad and Reddy (1994) in a study of
variability in the properties of high-temperature metal matrix composites.

Monte Carlo simulation is a brute force technique for analyzing statistically the
behavior of random systems. A large population of specimen representing a random
system is generated, the response of each specimen to the desired stimuli is measured
and appropriate statistical descriptions of the response of the population are deter-
mined. To implement the Monte Carlo method for the microbuckling problem, it is
necessary to generate populations of random fiber misalignment distributions. For a
given spectral density S(w), individual realizations of fiber misalignment profile (in
the form of fiber slope m) are created using an inverse fast Fourier transform (FFT)
method (Cebon and Newland, 1984). Each realization will have zero mean fiber slope
and the desired spectral density. For a detailed description of the method by which
the realizations are constructed, see Appendix B.

The spectral density for fiber slope is taken to be a square wave, symmetric about
the origin. The cut-off frequency of the square wave is w, and the area under the
spectral density curve from w = —w, to w = w, is E[m?], the mean square value of
the fiber slope. A cut-off frequency in the spectral density implies that there is a
minimum fiber wavelength, which is a reasonable assumption for fibers of finite
bending stiffness. Other forms of the spectral density function were also tried: the
results were found to be relatively insensitive to the shape of the function, but sensitive
to the cut-off frequency and to the mean square value. Since S(w) is the spectral
density associated with m(x), the resulting realizations are in the form of fiber slope
m as a function of position along the composite, x. It is necessary to specify values
for y;and 4,/G*/E in order to relate information about the initial fiber waviness
derived from S(w) to the normalized parameter () needed for (25)~(27). The values
vy~ 0.008 and 4,/ G*/E ~ 1 are assumed, as these are typical for a carbon fiber-epoxy
matrix composite. It is instructive to consider the probability density for maximum
initial misalignment p(,,) derived through Monte Carlo simulation, as shown in Fig.
8 for E[m*] =4x107% w,=0.25 and composite length L = 400. w, = 0.25 cor-
responds to a minimum wavelength of about 25 fiber diameters. The magnitude of
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Fig. 8. Probability density function for the maximum initial fiber misalignment p({},,) from the Monte
Carlo simulation. 500 realizations, o, = 0.25, E[m?] = 4 x 10~*, L = 400.

fiber waviness depicted in Fig. 8 is reasonably representative of the observed fiber
waviness in carbon fiber epoxy systems, as reported for example by Yurgartis (1987)
and Jelf and Fleck (1992). (An initial misalignment angle of { = 5 corresponds to

¢ =2.3°)

Each Monte Carlo realization of the fiber shape is analyzed, using the couple stress
formulation, to determine its critical stress for microbuckling. Figures 9 and 10 show
typical results for a representative realization with w, = 0.25, E[m*] = 4 x 10~*, composite
length L = 400 and Ramberg—Osgood parameter n = 5. The fiber misalignment profile,
(J+) versus &, is shown in Fig. 9 for the unloaded and critically loaded composite. It

10 T T —T T T T
A=
5 L A/Ac = i
7 /\ /\ a I
AT WY
5k -
10 . 1 A ] . ] A
0 100 200 300 400

5

Fig. 9. The fiber misalignment profile, (y + versus &), for an unloaded composite (A = 0) and critically
loaded composite (A = A,) with random initial fiber waviness. w, = 0.25, E[m’] = 4 x 107%, L = 400 and
n=>3.
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0.25 —
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Fig. 10. Remote load A versus maximum fiber angle ,, for a composite with random initial fiber waviness.
wy = 0.25, E[m*] = 4x 107 L =400 and n = 5.

can be seen that plastic deformation concentrates at the locations of maximum initial
misalignment. Figure 10 shows the load A versus maximum fiber rotation occurring in
the composite . It is clear from Fig. 10 that the load goes through a maximum. No
elastic unloading occurs anywhere in the composite prior to the critical load being attained.

After a suitably large population of realizations has been generated and analyzed,
the cumulative probability function for microbuckling stress P(A.) is computed. This
is shown in Fig. 11 for the above parameters and 500 realizations. The probability
curve is well matched by the Weibull curve

A— ALY
P(A) =1—exp l:— <—A—> :l , (30)
0
1 L LI
08 .
0.6+ .
P(A) T
0.4} -
02F ]
%01 0.15 02 0.25
A

c

Fig. 11. Cumulative probability function for microbuckling stress p(A.) from the Monte Carlo simulation
with 500 realizations (w, = 0.25, E[m*] = 4 x 1074, L = 400, n = 5). Also shown in a Weibull curve, with
parameters obtained by a least squares fit.
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Fig. 12. Probability density function for microbuckling stress p(A,) from the Monte Carlo simulation with
500 realizations (w, = 0.25, E[m*] = 4x10~* L = 400, n = 5).

where the fitting parameters A, = 0.1129, Ay = 7.536 x 10~%and m = 5.408 have been
determined through a least squares algorithm. Jelf and Fleck (1992) have determined
the Weibull modulus m for carbon fiber reinforced PEEK : they find m to be 6.1,
which is in reasonable agreement with the value for m = 5.4 found here.

The empirical function (30) can be differentiated to give the probability density
function p(A.) shown in Fig. 12. (The probability density function from the ensemble
of Monte Carlo simulations shows a large degree of scatter associated with the
numerical differentiation involved and is omitted for the sake of clarity.) The Monte
Carlo results are adequately fitted by (30), but it is noted that small changes in A,
and A, lead to large changes in m, while the deviation from the Monte Carlo simulation
remains very small. Consequently, an attempt to relate the fitting parameters to
spectral density input parameters for the Monte Carlo simulation is difficult and has
not been attempted. The remaining results of this paper will be presented as probability
density curves without further reference to actual Weibull parameter values. In order
to compare the predictions of the couple stress model and the kinking model the
maximum value of initial fiber misalignment angle /,, in each Monte Carlo realization
is substituted into (29) for the kinking strength A,,.. The predicted strength from the
couple stress model A, for the same fiber shape is also determined ; in this manner,
the probability density function p(A./Ain) 1S computed for the population of real-
izations. A typical result is shown in Fig. 13 in this instance the couple stress model
gives predictions which are 10-15% stronger than that of the kinking model.

The effect of composite length L upon the probability density function of failure
p(A.) is shown in Fig. 14, for w, = 0.25, E[m*] = 4x 10~ *and n = 5. As the composite
length L increases, the probability density curve becomes narrower and shifts towards
lower values of critical load. The probability of occurrence of a high amplitude
imperfection with long associated wavelength increases with increasing length of
composite sample L and one would, therefore, expect lower critical stresses. An
attempt can be made to predict the results for different composite lengths based on
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Fig. 13. Probability density function for the microbuckling stress predicted by the couple stress model,
normalized by the kinking model results, p(A./Ax) from the Monte Carlo simulation with 500 realizations
(160, = 0.25, E[m*] = 4x 10~*, L = 400, n = 500).

Weibull “weakest link™ statistics, so that upon differentiation of (30) with respect to

A., one finds
mL (A.—AN\N"! A.—AN\"L
P(A.) = AL, (To) exp [ — <—Ao—> fo] , (1)

where L, is the reference length and A,, A, and m are the fitting parameters for the
Monte Carlo simulation at that length. The predictions of (31) are shown in Fig. 14,
where the reference length has been taken to be L, = 400, along with the results of

0.25

Fig. 14. Effect of composite length upon the probability density function for microbuckling p(A.)
(wo = 0.25, E[m?] = 4x 10~*, n = 5). The Monte Carlo simulation predictions are shown as solid lines and
the Weibull “weakest link™” predictions are shown as dashed lines.
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Fig. 15. Effect of composite length on the probability density function for the critical microbuckling stress,
normalized by the kinking model strength, p(A./Agink). @o = 0.25, E[m*] = 4x 10~*and n = 5.

the Monte Carlo simulations. The Weibull predictions successfully give the correct
trend for p(A,), but do not accurately reproduce the results of the Monte Carlo
simulations. The poor agreement is associated with the particular functional form
assumed by Weibull for the stress dependence on the probability of failure : it is fully
expected that the one-dimensional Monte Carlo simulations give rise to weakest link
behavior by the following argument.

Weakest link behavior is simply a corollary of the feature that each segment of the
composite is statistically independent of its neighbors. Consider two random samples
of wavy composite of length L, and L,. Then, weakest link theory dictates that, for a
fixed value of applied stress, the probability of survival of a sample of length (L, + L,)
equals the probability of survival of the sample of length L, times the probability of
survival of the sample of length L,. Provided the samples are of sufficient individual
length to make irrelevant the particular end condition assumed, the Monte Carlo
simulations give rise to weakest link behavior. Further, as the length becomes infinite
the limiting form of the probability density function for microbuckling becomes a
Dirac delta function at a fixed level of stress (the microbuckling stress for an infinite
composite is unique for a given spectral density). According to the Weibull equation
(31), this limiting stress is A,. It is expected that the limiting stress of the Monte Carlo
simulation is zero at infinite composite length L — co. Figure 15 shows the probability
density for the normalized microbuckling stress, p(A./Aink), for the same composite
lengths as in Fig. 14. Recall from the analysis of sinusoidal waviness that, for large
wavelengths A, A./Ayin decreases only slowly with increasing A. This is consistent with
the observation in Fig. 15 that p(A./Ayn) 18 approximately independent of composite
length. The increased probability of a high amplitude, long wavelength imperfection
which is accordant with an increase in composite length has only a small effect on
P(Ae/Aini)-

The effect of the particular choice of cut-off frequency w, upon the probability
density function for the critical microbuckling stress is shown in Figs 16 and 17, for
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0.1 0.15 0.2 0.25

Fig. 16. Effect of cut-off frequency w, on the probability density function for the critical microbuckling
stress p(A.). E[m* =4x107* L =400 and n = 5.

afixed E[m?] = 4 x 10~*, L = 400 and n = 5. Itis seen from Fig. 16 that as w, increases,
the probability density p(A.) shifts towards higher values of stress while its width
remains nearly constant. A consideration of the power spectral density reveals that
as the cut-off frequency increases, while the area under the function curve remains
constant, the relative area associated with short frequencies (i.e. long wavelengths)
decreases. Consequently, the probability of occurrence of deleterious high amplitude
imperfections associated with long wavelengths decreases and higher strengths are
expected. The effect is more pronounced for p(A./Awink), as shown in Fig. 17. As w,
increases, the fiber shape contains a higher proportion of high frequency, short
wavelength waviness ; the associated increase in the maximum value of fiber mis-

20 T T T T v T
I @, =0.25
15 -
£ -
Akink
i ®, =0.5
5 F i
@, =0.75
O 1 1 1 1
1 1.2 1.4 1.6 1.8
Ac /Akink

Fig. 17. Effect of cut-off frequency w, on the probability density function for the critical microbuckling
stress, normalized by the kinking model strength, p(Ac/Ayin)- E[m?] = 4x 1074, L = 400, n = 5.
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alignment angle Y produces lower predicted kink strengths. Thus, p(A./A.) is shifted
toward higher values of A./Ay. and the width of the probability density curve is
markedly increased. It is concluded that for large values of cut-off frequency (say,
w, > 0.5) the kinking model ceases to give an accurate prediction of microbuckling
stress for random fiber waviness.

DISCUSSION

By including the fiber bending stiffness in the analysis of fiber microbuckling, it is
seen that the critical microbuckling stress depends upon both the amplitude and the
wavelength of initial fiber waviness. If the wavelength is short, the fiber curvature
associated with an amplitude is large and the fiber bending stiffness provides a
significant contribution to the compressive strength of the composite. As the wave-
length increases, the fiber curvature associated with an amplitude decreases and,
consequently, so does the strengthening due to fiber bending stiffness. The kinking
model analysis, which neglects the fiber bending stiffness, is equivalent to the couple
stress model when the initial imperfection wavelength is infinite. For all wavelengths,
the kinking model gives a conservative estimate of failure load.

The couple stress model is used to predict the compressive response of composites
with random fiber waviness. It is seen that fiber rotation is concentrated around the
regions of maximum initial misalignment; at maximum load, deformation con-
centrates into microbuckles, or kink bands, and the composite fails. Probability
density functions for the critical compressive stress for microbuckling are predicted for
given spectral densities of initial fiber misalignment using a Monte Carlo simulation
method. The results show that the kinking model analysis, while giving a lower bound,
can significantly underestimate the compressive strength for certain spectral densities
of misalignment.

The results of this paper illustrate the need for studies of the spectral density of fiber
misalignment in real composite materials. The authors are aware of measurements of
the probability density of fiber misalignment (e.g. Yurgartis, 1987), but these studies
have not included any information on the fiber misalignment wavelength. Once such
spectral densities are determined, the analysis presented here may be used to predict
the probability of compressive failure.

The current study may be viewed as a prototype for the effect of imperfection
magnitude and wavelength upon shear localization in other solids. The central feature
is that failure is governed not only by the magnitude of the imperfection (in this case
the magnitude of the fiber misalignment angle) but also the length scale of the
imperfection relative to the material length scale (in this case, set by fiber bending
stiffness). The discrete Fourier transform proves to be a useful tool for the generation
of an ensemble of structural realizations from an assumed spectral density function.
This approach shows promise in providing a rigorous micromechanical basis for
empirical statistical parameters such as the Weibull theory of strength.
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APPENDIX A: NUMERICAL ALGORITHM FOR TWO-POINT
BOUNDARY VALUE PROBLEMS WITH AN INTERNAL
CONSTRAINT

The numerical algorithm used to solve the system of first order differential equations (25),
subject to the boundary conditions (26) and the ““internal’” condition (27), is a modification of
the relaxation method for two-point boundary value problems (Press ef al., 1986). The strategy
is to solve iteratively for the deformed fiber shape and the remote load as the maximum value
of fiber rotation along its length is increased in incremental steps. Let the composite length be
meshed over M equally spaced points, so that

_ (k=1

&=l

(k=1,2,..., M), (A1)

and define the following mesh point quantities :

'//1,k =€), Vo=V, Vs = ¢3(Ck)}
¢k = [!//l,k l//2,k ‘/fa,k]T .

In (A2) and following, bold notation is used to define column matrix quantities. The mesh
points defined by (A1) are uniformly distributed along the composite in this analysis, but this
is not a requirement of the algorithm. The system (25) is then expressed as the system of finite
difference equations (k = 2,3,..., M),

0= E = lpl‘k—llll,k-l —Aék‘;lk

0=E,, = ‘l’z,k_t//zk—l—Aék{s(l/;l,k)_JJB,k[lpl,k"—l/_/(Ek)]}
0=E; ;= l//3,k_‘l/3,k~l ’
0=EWu.¥:1)=[E« Erx E3,k]T

where Aé, = & — &, & = %(ék—{— &e_y)and |/~1k = %(lllk—l—lllk, 1). There are 3M unknowns ¥, for
which (A3) provides 3(M — 1) equations. The remaining three equations are provided by the
conditions (26)—(27),

(A2)

(A3)

0= B, = '//2,1<
O=B2:l//l,l_lpm9 (A4)
0=8B;= '//Z,M



1764 W.S. SLAUGHTER and N. A. FLECK
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Fig. Al. Form of the banded coefficient matrix arising in the numerical analysis of two-point boundary
value problems with internal conditions.

where ¥, is the prescribed maximum value of fiber rotation occurring anywhere along the
composite and [ is the mesh point at which ,,, occurs. How [ is determined will be discussed
shortly.

The system of coupled, homogeneous equations (A3) and (A4) is solved using the Newton—
Raphson method. An initial guess is provided for ¥, and the corrections Ay, are determined
such that ¥, + Ay, is an improved approximation for the solution. Taking the first-order Taylor

expansion of E, with respect to Ay, and noting that the improved approximation should satisfy
(A3), gives

3 OE 3 OE
0=EW+Ay, ¥, +AY,_ ) = E(Yi, Y1)+ Z ——-](_Alpj,k—l + Z ———kAlpj,k- (AS)
SOk J<1 0k
Thus, 3(M —1) linear equations for the corrections can be written as
3 6
Y SEA e+ Y SAY, 5= —E, i=1,23, k=23,...,M, (A6)
j=1 j=4
where
OE, x 0E, .
Sk = Sk —, j=12,3. (A7)

Wy DT 0y,

Similarly, the boundary and internal conditions, B,(y,), B,(¥;) and B;(¥,,), can be expressed
in terms of the corrections as

_ 0B
=

where the node numbers i and k have the relative values: if i =1 then k= 1; if i = 2 then

3
Z qupj,k = _Bis C,’ (AS)
j=1
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k =1;andif i = 3 then k = M. The derivatives in (A7) and (A8) are obtained analytically from
(A3) and (A4). This makes 3M linear equations for 3M unknown corrections Ay,. If carefully
constructed, the coefficient matrix is banded with a band width of 9. An example of this
construction, for M = 6 and 7 = 4 is given in Fig. Al. A common algorithm for the solution
of banded linear systems allows the problem to be solved efficiently.

I is taken to be the mesh point where the maximum value of the initial guess for v,
occurs. The above procedure is repeated, updating ¥, (and 1, if necessary) each time, until the
corrections Ay, are sufficiently small. For the first iteration, ¥, is provided by the solution
from the previous increment of i, in the couple stress analysis. This iterative scheme is nested
within a mesh refinement iteration. The number of mesh points M is increased until the
predicted value of remote load A = /5 has converged to within 0.1%.

APPENDIX B: GENERATING RANDOM DISTRIBUTIONS BASED ON
A GIVEN SPECTRAL DENSITY

Consider first a distribution f(x), sampled discretely over the interval x = (0,L). Let f;, = f(x,),
where x, = kA, k=0,1,...,N—1and A = L/N. The discrete Fourier transform (DFT) of f; is
(Newland, 1984)

[ M=t 2nkr
Fk—;—]\—[rgofrexp(— N)’ k=0,1,...,N—1. B

If w, is the maximum frequency component present in f(x), then it is required that N > w,L/n
in order to avoid aliasing (an accuracy eroding artifact of the implicit assumption that the
sampled distribution is periodic). An important property of F, is that Fy,, = F, and
F_, = F}, where Ffis the complex conjugate of F, so that

[F_il = |F } (B2)
|Fy_il = |Fi .

S(w), the spectral density of f(x), is defined as the Fourier transform of its autocorrelation
function. It can be shown, however, that in discrete form, with S, = S(w,) and w, = 2nk/NA,
the spectral density is related to the DFT by

NA NA
Sk~ EFZ"F/( = ‘2‘7;le|2- (B3)
It follows from (B2) that
S_ =35,
k= Sk } (B4)
Sy = Sk

i.e. the specification (B3) for the spectral density is symmetric about the origin and is uniquely
defined only on the interval k = (0, N/2).

Given a spectral density function S(w), how does one generate random realizations of the
discrete distribution f, = f(kL/N) of length L and refinement A = L/N? Following the procedure
outlined by Cebon and Newland (1984):

(1) Identify a cut-off frequency w, above which S(w) is zero (or approximately zero). Choose
an even integer N appropriate for the desired refinement and satisfying N > w,L/x.
(2) Sample the spectral density and enforce the constraint (B4) to obtain S :
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2k N
Skzs<i>, k=01,... .~

NA 2
(B5)
N
SN~k=Ska k=1,2,...,'5—1
(3) From (B3), the magnitude of the DFT of the distribution f(x) is
2n
Il = xS (B6)

and it is required that Fy,, = F, and Fy_, = F{; the phase angle of F, must be periodic in the
interval kK = (0,N) and antisymmetric with respect to kK = N/2. The phase is otherwise taken to
be random with uniform probability distribution between 0 and 2z. The DFT is thus given by

/ 2n 0
F, = ( ﬂSk> e (B7)

where
N S
O.israndom, k = 1,2,...,5—1
N
ON—kz_Hk, k=l,2,...,5'—1 > . (B8)
N
0,=0, k=0 and —
2 J
(4) The random discrete distribution is given by the inverse DFT of (B7),
Nt 2nk
f, = ZF,exp(i ’;’) k=0,1,...,N—1. (BY)
r=20

The discrete transform (B9) can be efficiently evaluated by using the fast Fourier transform
(FFT) algorithm. The resulting random realizations will be real valued and have zero mean
and the specified spectral density. They will also be periodic over the interval k = (0,N), i.e.
f, = fy, but it is assumed that this will not affect the results of the Monte Carlo simulation.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

