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This is a review of the results of several selected theoretical studies concerned with the localized
kinking, or microbuckling, of aligned fiber composite materials subjected to compression in the
fiber direction. Compressive kinking is of primary concern in polymer matrix composites, for
which kinking failure can limit the compressive strength to a value that is usually much lower

than the tensile strength. A similar situation can occur in carbon matrix fiber composites.

Compressive kinking failure may be understood on the basis of an elementary theoretical
approach that ignores the influence of bending resistance of the reinforcing fibers, but takes into
account the nonlinearity of composite constitutive relations as well as the effects of initial
imperfections in fiber alignment. Kink bands bounded by fiber breaks are produced by
deformations that occur after the attainment of peak compressive loads. The theoretical
calculation of the widths of such kink bands does require consideration of fiber bending
resistance; on the other hand, the results for kink width are not sensitive to the sizes of initial
fiber misalignments. Progress in the study of the following additional kinking topics is
summarized briefly: correlation of static kinking strength and random fiber misalignment; effects
of shear and transverse loads on static kinking; viscoelastic and creep kinking; kinking fatigue;
and a phenomenological theory of kinking “toughness”.

INTRODUCTION

Kinking in fiber composites is a buckling process. As in so
many other buckling problems, an adequate understanding of
compressive kinking requires more than the traditional ideas
of elastic stability and bifurcation of equilibrium paths.
Plasticity and imperfection-sensitivity are involved in an

essential way in the kinking of real composites, and limit-

point buckling, in which a smooth maximum in the applied
load is attained, rather than bifurcation buckling, is the rule.

The analysis of kinking in aligned-fiber composites was
launched by Rosen (1965), who contemplated the elastic
bifurcation buckling of an axially compressed continuum
containing perfectly aligned fibers. The widely quoted Rosen
result for the critical kinking stress is essentially

o.=G (€))
where G is the effective longitudinal shear modulus of the
composite. This formula follows directly from the overall
moment equilibrium of the kinked configuration sketched in
Fig 1. At the buckling stress G, a kink band oriented at a
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right angle to the loading direction suffers an average shear
strain y equal to the small rotation @, and the associated
shear stress T is given by the elastic law T=Gy=G®. The
sharp boundary between the kinked and unkinked region is
consistent with the assumption of negligible fiber bending
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FIG 1. Kink band, normal to fiber direction.

stiffness. (Actually, Rosen's development was somewhat
different, and also, he wrote that 6, = Gy /(1-c), where Gy, is
the matrix shear modulus, and c is the volume concentration
of fibers; but this clearly was meant be interpreted as an
approximation to the shear modulus G of a composite in
which the fibers are much more stiff than the matrix.)
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It is now well established experimentally (see Budiansky
and Fleck 1993 for a review of data) that Eq 1 usually
overestimates the actual compressive strength of a polymer-
matrix composite substantially, often by a factor of four or
so, but the data has a lot of scatter. This scatter and the
unreliably high critical stresses based on bifurcation buckling
are typical consequences of imperfection-sensitivity. In
compressive kinking, however, imperfections identified with
initial misalignments of the fibers, are not enough to produce
the large observed knockdown factors without the
intervention of plastic, or nonlinear, shear deformations.
Plasticity and misalignment were both considered by Argon
(1973), who announced the simple approximate result

Gc=‘CY/$ 03]

for the kinking stress. Here Ty is the shearing yield stress of
the composite and ¢ is the initial maximum angular

misalignment of the fibers. This formula can also be deduced
from Fig 1 if we now assume the composite material to be
rigid-ideally plastic in shear, i.e., incapable of deformation
until T reaches Ty, which it can then never exceed. If we say
that the rotation @ in the kink band is (¢ + ¢), where ¢=y is
an additional composite rotation, and set T =17y , then
moment equilibrium gives (2) as the largest possible value of
the compressive stress. This critical stress corresponds to the
onset of deformation when ¢ begins to increase from zero.
Argon’s equation, as well as Rosen’s, ignores the fact that
kink band orientations are generally observed to be inclined
to the transverse direction. In both cases, inclined kink bands
would imply somewhat higher critical stresses.

Despite the fact that the Rosen formula (1) is in serious
disagreement with experiment, the impression has persisted
in some quarters that the compressive strength of polymer-
matrix composites is governed primarily by the composite
shear modulus. The Argon formula (2), on the other hand,
indicates that yield strength and fiber misalignment are the
most important parameters. In the rest of this review we
will show how these two idealized approaches to static
kinking have been unified and extended to cover strain-
hardening, inclined kinks, and combined external loading. We
will also exhibit theoretical results for the estimation of kink
band widths, based on a couple-stress theory that does take
into account bending stiffness; show some results for
kinking strength based on a stochastic analysis of the
influence of randomly distributed misalignments; present
results for viscoelastic and creep kinking; mention some
work on kinking fatigue; and provide a glance at an
engineering theory of kinking “toughness” for the description
and control of kink propagation.

STRAIN HARDENING; INCLINED KINKS

If we simply assume the elastic-ideally plastic constitutive
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law 1=Gy for Y<yy, T=Ty for Y>Yy, where Yy=1y/G, the
Rosen and Argon results are both encompassed by the
relation

6. =1y Yy +®)=G/1+¢/vy) 3
(Budiansky 1983) that follows from equilibrium of the
normal kink, and which gives (1) for ¢ = 0, and approaches
(2) ford/yylarge. This was further generalized by
Budiansky and Fleck (1993) for materials obeying the
Ramberg-Osgood shear stress-strain relation

Yiyy =t/ty +BIN(/ty)" @
for which limit-point buckling occurs at
217"
~(3lyy) e
= 3 XITY
0. /G= 1+n(-7—)n( n—l) 6

It is remarkable that Eq (5) provides nearly the same variation
of 6./G with ¢/yy for all values of n in 3<n<eo. Values
of §/yyin the range 34 correspond to 6. /G around 1/4 to
1/5; for ¥y =.01, this implies initial misalignment angles in
the vicinity of 2°.

What about inclined kinks? And why do they want to be

inclined, as in Fig 27 The kink shown in Fig 2 will develop

- tension normal to the fibers as a consequence of the
transverse strain induced by kink-band rotation for B>0. A

FIG 2. Inclined kink.

primitive, somewhat arbitrary postulated plasticity law for
combined transverse tension o1 and shear 7, in conjunction
with static and kinematic analysis of the inclined-kink
configuration, provides the interesting result that Eq (5) for
the kinking stress remains valid, provided that G and Yy are

replaced by G*=02G and yy = Yy / o, where

°‘=£(°TY/TY)2 tan’ B O]
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Here oy is the plane-strain yield stress in pure transverse
tension, analogous to the yield stress Ty in Eq (4) for pure
shear. In this formulation it is assumed that the fibers are
rigid longitudinally (even though they do not resist bending!)
so that the composite does not undergo axial straining, and,
accordingly, the plasticity is uninfluenced by the longitudinal
stress. For kink angles around 20°, misalignment angles
inferred from Eq (§) for 6./ G=1/5 are only about 3°.

If the assumption of rigid fibers is relaxed, the matrix
material in a composite containing perfectly aligned fibers
could suffer plastic deformation before kinking occurs, and
the Rosen result (1) for elastic bifurcation would have to be
replaced by a plastic buckling stress, which could be
appreciably lower. But calculations by Budiansky and Fleck
(1993) for polymer matrix composites show that such
reductions would be quite insufficient to account for
experimental data; and that in the presence of realistic
imperfections in fiber alignment, compressible and rigid
fibers lead to nearly the same results for kinking strength.

The first-order effects on the kinking stress o, of changes
dty in the shear yield stress and dG in the shear modulus are
given by the perturbation equation

% = [.1.+(£:.1.)9_°.]§+(£:_1)[1_9£]§'E_Y
(o8 n n /GJ]G n Gy

that follows from Eq (5). For 6./G=1/4, and n=%, a given
fractional increase in Ty is three times as effective as one in
G; for n=3, the effects are the same, but it is usually easier to
modify the yield stress of a material than its modulus.

)

All other parameters being equal, the theoretical kinking
stress is definitely lowest for B=0, and so it seems
paradoxical that observed kink angles tend o be bounded well
away from zero. A tentative explanation was given by
Budiansky (1983), who suggested that localized edge
misalignments of the fibers would grow into inclined bands
of rotation under-axial load; and that the directions of these
pre-kinking bands would set the size of B. Calculations of
these directions based on an elastic continuum theory that
incorporates the effects of fiber bending resistance suggest
that B would like to be in the range of 10° to 35°, depending
on the shape of the initial edge imperfection and the elastic
constant of the composite.

Kyriakides et al (1993) describe extensive experiments
and finite element calculations for the compressive response
of finite-width specimens. The calculations incorporate
plasticity and a variety of imperfection patterns into a
multilayer model for the composite, consisting of alternating
lamina of fiber and matrix material. The results provide
striking confirmation of the imperfection-sensitivity of the
composite strength. Further, the computed kinking response
associated with localized edge imperfections tends to support
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the Budiansky speculation concerning the genesis of the kink
angle B. Kyriakides et al find values of B around 8°,
somewhat lower than those observed, and dependent on the
specimen width.

COMBINED-STRESS LOADING

Consider how the kinking compressive stress would be
affected by the presence of an externally applied shear stress
7. (Batdorf and Ko, 1987; Fleck and Budiansky, 1991;
Budiansky and Fleck, 1993). For the case of an elastic-
ideally plastic composite, we must keep Tc<Ty; then, for =
0, o, is still given by Eq (3) if we replace ¢ by an
amplified, effective initial imperfection of magnitude
¢/(1-1./1y). For strain-hardening, and for B>0, simple
formulas are not available, but numerical calculations by
Budiansky and Fleck show that the effects of applied shear
stress are less severe. Experiments by Jelf and Fleck (1993)
on composite tubes subjected to combined compression and
torsion gave results for kinking failure in good agreement
with the theoretical predictions based on misalignments of
the order of 2°. The additional weakening effects of initial
transverse tension have been studied by Slaughter et al
(1993); generally, they have less effect than shear stress on
the kinking behavior.

KINK WIDTHS

Fully developed kink bands are bounded by fiber breaks, and
it is of some interest to see whether the associated kink width
w (Fig 2) can be predicted analytically. An early analysis
(Budiansky 1983) based on the simplifying assumptions of
perfectly aligned fibers and rigid-ideally plastic behavior of
the composite in shear and transverse tension, together with
incorporation of the effects of couple-stresses provided by the

fiber bending, gave
1
w_n(E ®
d 4 21:‘Y

for the ratio of the final kink width to the fiber diameter d, in
terms of the longitudinal composite modulus E and the B-
modified shear yield stress 1:} =oty. This formula was
based on the additional assumption that the fibers were
perfectly brittle in tension. Measurements of kink-band
widths by Jelf and Fleck (1992) were in fairly good
agreement with Eq (8) over a wide range of parameters. An
analytic generalization was derived by Fleck et al (1993),
who considered an elastic-ideally plastic composite, and also
took finite values of fiber failure strain &g into account.

They present the implicit equation

(e /) [(%)2 ~ 4 (s /E)"} - [ep + (%)‘2]2 ©
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connecting w/d to Ty /E, Y¥, and ep. For reasonable

values of these parameters (say, .0005, .01, and .01), Eq (8)
gives w/d = 12.

Fleck et al also give numerically calculated estimates of
w/d for strain-hardening materials. Typical results are shown
in Fig 3 for several values of the Ramberg-Osgood index n.
In the calculation of these results, fiber rotation begins at the
peak Rosen stress (1) (with G replaced by G*), and the fiber
fractures bounding the kink band occur during the subsequent
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FIG 3. Kink width; effect of strain-hardening parameter n.

drop in load.. Repetition of the calculations with an initial
misalignment pattern taken into account showed that
although the peak stress is reduced, the final kink band width
remains about the same as it was for the perfect composite.
Furthermore, over a wide range of parameters, the peak
stress, now calculated with bending resistance included, is
still approximated well by Eq (5), when ¢ is taken as the

‘maximum misalignment angle in the assumed imperfection
shape. Only for unrealistically short wavelengths of initial
imperfection will the simple formula (5) give results that are
too low by more than negligible amounts.

RANDOM MISALIGNMENTS

An initial exploration of the effects of random distributions
of fiber inclinations has been made by Slaughter and Fleck
(1994). Briefly, the plan was to assume a flat power spectral
density for misalignment angle as a function of distance in
the fiber direction (with perfect correlation along inclined f3-
lines transverse to the fibers),with a lower cut-off for the
spectral wavelength, and with an assigned value for the mean-
square fiber slope. Monte-Carlo realizations for the fiber
waviness were generated, for each of which peak composite
compressive stresses ¢° were calculated, with couple-stress
theory used to take bending resistance into account. These
results were then used to compute a probability density for
the ratio o’/o, , where G, is given by (5), with ¢ chosen as
the maximum inclination in each realization.
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We can not go into the details here, but as expected, the
results show that (5) loses high reliability when the cut-off
wavelength is low enough. However, assuming a flat
distribution for misalignment wavelength may bias the
results unduly with respect to the importance of small-
wavelength imperfections. This subject merits further study;
in particular, real imperfection spectra should be measured.

VISCOELASTIC AND CREEP KINKING

Time-dependent compressive response has been studied by
Slaughter and Fleck (1993a) for the case of linear viscoelastic
behavior in shear and transverse tension, and by Slaughter et
al (1993) for nonlinear creep. We summarize the latter here,
in a slightly modified form.

The three-parameter constitutive equation

Y/ Vet = (T/fref)M 10

for shear strain rate in terms of shear stress, which ignores
time-independent plasticity effects, is a starting point for the
formulation of generalized equations for combined shear and
transverse tension, akin to those used in the earlier static
problem. Here Y, is a reference value of creep rate produced
by the reference shear stress T;es. Incorporating the
constitutive law into the equilibrium analysis of Fig 2 then
gives the relation

F(;)( 1 Ix’,’efJM 11
M-IAvee A 0 ) [0 (540"

between the time t, the applied compressive stress 0, and the
additional rotation ¢. Here the kink angle is taken into
account through the definitions

(1n

Trof = Vref /0y Tref = OTre, 0=+ 1+R%tan’p  (12)

where (see Eq (6)) R can be regarded as a parameter relating
transverse creep strength to shear creep strength. We can
now set a criterion for the creep kinking lifetime tr in one of
several ways: a critical value ¢; can be assigned,
corresponding to tensile fracture at the fiber-matrix interface;
or we can say that static plastic kinking occurs at the time
when ¢+¢ reaches a value of misalignment that, together
with 0.=0, satisfies the static criterion (5); or we can simply
say that an upper bound approximation to ty corresponds to
¢==c in (11). This last criterion is the simplest, and gives

‘ -1
t =[(M—l)vieﬁ“"(o/r;f)”] .1

It is of some interest to see whether creep kinking
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might be an issue in ceramic fiber/metal matrix composites,
under conditions of moderately elevated temperature and
sustained high load. Assuming the plausible values
Tret = 100MPa, Y,or =107 sec™! , 6=1500 MPa, § = 3°,
and M = §, gives ty =120 hours, which suggests that creep
kinking may indeed have to be considered in design of metal-
matrix composites.

KINKING FATIGUE

Slaughter and Fleck (1993b) have analyzed fatigue kinking
from two viewpoints: (i) fatigue failure by low cycle fatigue
of the matrix within the kink band, and (i) failure by cyclic
ratchetting of the material within the kink band until the
plastic strain accumulation is sufficient to precipitate the
plastic microbuckling instability. Little experimental data
are available on compressive fatigue of fiber composites.
Soutis et al (1991) observed fatigue kink growth from a
notch in a carbon fiber epoxy composite, and Huang and
Wang (1989) measured the stress-life fatigue curve for
unnotched specimens made from alumina fibers in an
aluminum alloy matrix. Slaughter and Fleck (1993b) found
that the predictions of the ratchetting fatigue model were in
better agreement with the experimental results of Huang and
Wang than the predictions of the low cycle fatigue model.
Further work is required to elucidate the fatigue failure
mechanisms as a function of material composition.

KINKING TOUGHNESS

A novel engineering model has been developed by Fleck and
co-workers (Soutis, Fleck and Smith, 1991; Soutis, Curtis
and Fleck, 1993; Sutcliffe and Fleck, 1993) to predict the
compressive kinking failure of laminated carbon fiber epoxy
panels containing a single hole. The crack model is of the
large-scale bridging type and assumes that a kink band
emanating from the hole behaves like an overlapping mode I
crack, with normal crack bridging compressive stresses that
drop linearly with crack overlap from a maximum value of
the unnotched compressive strength. The area under the
curve of crack bridging stress versus overlap displacement is
derived from a separate compressive kink propagation
experiment, wherein the "toughness" of a specimen
containing a sharpened long slit is measured. This simple
crack bridging model gives an accurate prediction of failure
load and critical kink length at failure for a range of hole
sizes and laminates (Soutis, Curtis and Fleck, 1993).
Further support for the notion that the microbuckled band
behaves like a mode I crack comes from the observation that
the overlapping displacement behind a growing kink band
increases with increasing distance behind the kink-band tip in
the manner predicted by a crack bridging model (Sutcliffe and
Fleck, 1994)
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