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Abstract—This paper presents a finite element model of polymer composites with three-dimensional (3D)
reinforcement. The model performs Monte Carlo simulations of failure under monotonic and fatigue
loading. The formulation of the model is guided by extensive prior experimental observations of 3D woven
composites. Special emphasis is placed on realistic representation of the pattern of reinforcing tows,
random irregularity in tow positioning, randomness of the strengths of constituent elements, and the
mechanics of stress redistribution around sites of local failure. The constitutive properties of model
elements (or their distributions) are based on micromechanical models of observed failure events. Material
properties that are appropriately analyzed by the model are contrasted with those amenable to much
simpler models. Some illustrative model simulations are presented. Prescriptions for the calibration of the
model for design and reliability applications and details of its performance in simulating the elastic and
damaged regimes of 3D woven composites will appear in subsequent papers.

1. INTRODUCTION

Elsewhere [1-4], detailed observations have been re-
ported of the mechanisms of failure of three-dimen-
sional (3D) woven polymer composites in monotonic
and cyclic tension, compression and bending. The
failure mechanisms depend on the architecture of the
reinforcement and irregularity in its deployment. The
irregularity may arise during the weaving process or
during subsequent consolidation with resin. It typi-
cally consists of waviness in nominally straight tows
due to lateral pressure from their neighbors or con-
certina deformations due to compression during pro-
cessing. Irregularity usually has a modest effect on
average elastic moduli but a strong effect on strength.
Both irregularity and certain topological features of
the reinforcement may be regarded as random geo-
metrical flaws. Broad distributions of these flaws in
space and strength favor noncatastrophic modes of
failure, large strain to failure, damage tolerance, and
notch insensitivity [1, 2]. These favorable properties
are also enhanced in common 3D woven composites
by the coarseness of the reinforcement: larger tow
cross-sections lead to longer zones of slip around
tows near sites of tow failure, which favors notch and
damage insensitivity [2].

Thus understanding the engineering properties of
3D composites, including unnotched strength, notch
sensitivity, and delamination resistance, requires de-
tailed modeling of the random variations in load
distribution throughout the composite. A successful

tPresent address: National Institute of Standards Technol-
ogy, Gaithersburg, MD 23344, U.S.A.

model must persist beyond the elastic regime to
consider load redistribution as the composite pro-
gressively fails. This paper seeks the simplest possible
formulation of such a computational model.

The essence of the model is a division of the
composite into a binary system comprising ‘“‘tow”
elements, which represent axial tow properties only,
and solid “effective medium’ elements, which ac-
count for other mechanical properties. Explicit ac-
count of the reinforcement architecture is ensured by
defining the two elements to have the same topology
as the tows in the actual composite. The constitutive
laws of tow and effective medium elements are de-
rived by micromechanical models of the experimen-
tally observed local failure events. They contain
random parameters corresponding to irregularity in
the reinforcement geometry or in the mechanical
properties of the constituent materials.

This paper reviews the experimental observations
that underpin the model and lays out the micromechan-
ical models of local failure events that are used to
generate the constitutive laws. Reference [5] and sub-
sequent papers will address the question of which model
parameters can be regarded as known a priori and
which must be determined by calibrating experiments.

2. EXPERIMENTAL BACKGROUND

The materials studied in prior work [1-3] were
angle or orthogonal interlock weaves of carbon fiber
tows, impregnated and consolidated with epoxy
resins. The tows comprise straight warp tows known
as “stuffers”, straight weft tows known as ‘“fillers”,
and oscillating warp tows known as “warp weavers”.
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Fig. 1. A section of a through-the-thickness angle interlock woven composite, consisting of AS4 carbon
tows in an epoxy resin matrix (from [1]). The rectangle outlines one face of a typical effective medium
element.

(In a few cases studied, the warp weavers were
glass fiber tows.) The stuffers and fillers form a
coarse 0°/90° laminate, while the warp weavers
provide through-thickness reinforcement. One
particular case is illustrated in Fig. 1. While there
are few limitations in principle on weave architecture
or tow denierf, weaving costs generally restrict
stuffers and fillers to be at least ~5k denier and
usually 10-15k denier. This implies a tow cross-
sectional area of ~ 1 mm, and in sheet applications in
which normal pressure is used during processing
to maximize fiber volume fraction, a typical
Smm thick panel might contain between 9 and
15 layers of stuffers and fillers}. The reinforcing
tows remain distinct during consolidation and
are easily identified in the composite. Further
description of interlock weaves appears in [1-5] and
below.

The discreteness of tows is fundamentally import-
ant in failure. When a tow fails locally, whether

tDenier measures the mass in grams of 9000 m of yarn.

1In an interlock weave, the number of layers of stuffers and
fillers is usually odd, since fillers are the outermost
straight tows on both sides of the stack (e.g. Fig. 1).

§The term debond crack refers throughout this paper to a
crack lying entirely within the resin, but circumscribing
a tow and detaching it from the surrounding composite.
Debonding of individual graphite or glass fibers from the
resin has not been observed in any of the materials under
discussion.

in tension, compression or fatigue, the damage
generally extends over its whole cross-section,
but does not necessarily extend to neighboring
tows. Furthermore, other than at the site of
failure, a failed tow generally remains intact,
frequently debonding§ from the surrounding com-
posite and displacing axially relative to it as one
body.

The following summary refers to uniaxial exper-
iments in which the load was aligned with the stuffers.
Observations for loads aligned with the fillers and for
bending experiments are qualitatively the same.

2.1. Monotonic loading

2.1.1. Compression. In compression, some degree
of delaminativon between layers of stuffers and fillers
nearly always occurs. If the through-thickness re-
inforcement is absent or rendered ineffective by
crimping during consolidation, delamination cracks
can run the length of the specimen [2]. Premature
failure with brittle stress/strain characteristics then
ensues via Euler buckling of one or more delaminated
layers. If, on the other hand and as surely preferred
in structural applications, the through-thickness re-
inforcement is properly designed and unimpaired in
processing, delamination cracks remain limited in
length and associated buckling may be suppressed
altogether.

For this more desirable case, stress—strain curves in
uniaxial compression for dogbone specimens of angle
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Fig. 2. Regimes of the stress—strain history where various
failure mechanisms operate in angle interlock weaves under
uniaxial compression (from [1]).

interlock composites are typified by those in Fig. 2.
While considerable variations in strength and strain
to failure are found for specimens of different loading
geometry or interlock weaves of different architecture
or processing history [1,2], the principal events
indicated in Fig. 2 and the approximate domains of
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strain with which they are associated are those found
generally.

The first significant nonlinearity usually occurs at
loads exceeding half the peak load. It arises from
microbuckling of nominally aligned tows, i.e. stuffers
in the experiments being summarized here, and some
matrix microcracking. Moiré interferometry reveals
soft spots in the composite at locations where the
misalignment of a stuffer is unusually severe [1].

Around the peak load, a sequence of pronounced
load drops occurs. Limited delaminations may cause
some of these, but many correspond to the formation
of kink bands in stuffers. When revealed by section-
ing after ultimate failure at high strains, the kink
bands generally exhibit quite complex configurations
of internal damage. Figure 3 shows a typical case.
Several distinct kink bands can be seen, lying
adjacent to one another. Further remarks on the
formation of such nests of kink bands and their
implications for constitutive laws appear below.
Acoustic events during tests and sectioning post-
mortem indicate that kink bands are formed contin-
ually over a fairly wide range of strains as marked in
Fig. 2, with the exact range depending on the material
and the test configuration.

> Stuffer

-
0.2 mm

Fig. 3. System of kink bands at one site of local failure in a woven interlock composite tested to failure
in uniaxial compression.
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Fig. 4. A common association of kink bands with a par-

ticular configuration of tows. In such configurations, the

nominally straight stuffer is often distorted as shown [2].

However, kink bands are also found in this configuration
even when the stuffer is undistorted.

Kink bands are frequently found in stuffers at sites
where a warp weaver wraps around a filler adjacent
to the stuffer, as illustrated schematically in Fig. 4.
One explanation of this correlation is that the ar-
rangement of tows in Fig. 4 often causes distortions
of the stuffer during either weaving or consolidation
[2]. The resulting misalignment in the stuffer is usually
maximum in the locations where kink bands are
found (e.g. Fig. 4). However, some kink bands have
been observed in stuffers in the configuration of Fig. 4
that were not substantially misaligned. In such cases,
delamination has a crucial role. Delamination cracks,
although limited in spatial extent, nevertheless separ-
ate the specimen into laminae, which buckle and
deflect in directions normal to both fillers and

fillers
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e e ==
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load
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Fig. 5. Schematic of delamination and barreling in a
through-the-thickness angle interlock composite under
uniaxial compression.
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Fig. 6. Typical stress—strain curve of a 3D interlock woven
composite under uniaxial tension (from [2]).

stuffers, causing the specimen to barrel (Fig. 5) [1].
Where the barreling deflection is opposed by a warp
weaver, as in Fig. 4, a filler is compressed into a
stuffer, lowering the critical stress for its kinking.
Delamination and barreling typically influence kink
band formation and the overall stiffness of the com-
posite over the range of strains indicated in Fig. 2 [1].

For kink band mediated failure, the sequence of
events leading to ultimate failure varies with material
and specimen configuration. Generally speaking, it
consists of some fatal configuration of kink bands
and associated matrix failure; although the matrix
contributes little directly to strength. In the tests of
Fig. 2, ultimate failure is associated with a localized
macroscopic shear band, along which all stuffers have
failed by kinking. However, this shear band is not
manifest in photographic records of the test speci-
mens until compressive strains between 2 and 4%
have been applied. Post mortem sectioning in these
cases reveals widespread kink bands on stuffers lying
at or near specimen surfaces, which presumably
anteceded those on the fatal shear band. Cuboidal
specimens of composites with relatively low total fiber
volume fractions commonly fail without kink bands
ever localizing into a shear band, being distributed
instead over the entire specimen, whether in near-
surface or interior regions [1]. At the other extreme,
tests of interlock composites with high total fiber
volume fractions (achieved by high pressure during
consolidation) occasionally end with nearly all kink
bands lying on a fatal shear band [2]. The extent to
which kink bands are delocalized corresponds with the
strain to failure for tests under displacement control.

2.1.2. Tension. Data for 3D interlock woven com-
posites under uniaxial tension were presented in [2].
A representative stress—strain curve for a composite
with high total fiber volume fraction is reproduced in
Fig. 6. The principal damage events observed during
such a test are matrix cracking (both tensile and
delamination), the rupture of individual tows, and
tow pullout. The last two are clearly visible in the
typical specimen of Fig. 7 (from [2]). Tow pullout is
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the source of the exceptionally high strain to ultimate
failure suggested by Fig. 6.

As in compression tests, some nonlinearity may
arise prior to peak load from the straightening under
load of initially misaligned stuffers, although simple
estimates suggest this should be small (see Section 4).
Most softening in the pre-peak load regime is caused
by matrix cracking normal to the load axis, especially
in the matrix between fillers [2]. As in compression,
discrete load drops are often seen around peak load,
but in tension both these and the peak load are
manifestations of tow rupture. As stuffers continue to
rupture, the matrix cracks between fillers extend and
coalesce into a large “tension crack” such as that
depicted in Fig. 7. The tension crack (or occasionally
a sequence of offset tension cracks linked by delami-
nations) develops into the fatal failure mechanism [2].
Final failure is delayed by extensive tow pullout
across the expanding tension crack. Tow pullout
distances in tension are typically several millimeters,
while in some cases they exceed 10 mm.

2.1.3. Stress redistribution. Kink band formation
or tensile rupture of an individual tow is generally
accompanied by debonding of the tow from the
surrounding composite. The debonding typically ex-
tends several millimeters along the tow from the
failure site. Such large slip lengths provide excellent
relief of stress concentration around the failure site,
with an implied tendency for noncatastrophic failure.
The large slip lengths are a direct consequence of the
coarseness of the woven reinforcement. They rise in
proportion to the tow diameter [2].

BINARY MODEL OF TEXTILE COMPOSITES—I
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2.2. Fatigue

2.2.1. Compression—compression. As in monotonic
loading, ultimate failure in 3D woven composites in
compression—compression fatigue is the sum of many
kink band failures in individual stuffers. In contrast
with the damage sequence under monotonic loading,
kink band formation in fatigue is the first observable
damage and causes rather than ensues from matrix
damage [3]. This has led to the inference that fatigue
damage accumulates within tows, most likely as
deterioration of the resin. As in monotonic com-
pression, kink bands in fatigue occur first at locations
where stuffers are most misaligned with respect to the
load axis or lateral loads originating in warp weavers
might be expected (Fig. 8). Such observations are
consistent with earlier work on the influence of
misalignment in the fatigue of unidirectional com-
posites [6, 7].

2.2.2. Tension—tension and tension—compression
The progression of damage under tension—tension or
fully reversed loading is distinguished from that in
compression—compression fatigue by the relatively
early appearance of matrix cracks normal to the
applied load axis [3]. These microcracks increase in
density with cycles and occur at tensile amplitudes in
the elastic regime of monotonic tension data.

Although the matrix cracks cause a modest in-
crease in specimen compliance, ultimate failure is the
result of tow rupture. Neither is there any evidence
that the matrix cracking directly induces tow failure.
Instead, it would appear that just as in com-
pression—compression fatigue, tow rupture in tension

Distinct fillers separated by tension crack

Bridging
stuffer

Inter-filler
crack

Opening
of tension
crack

Loz_ad .
axis

Sites of
tow failure

Fig. 7. A through-the-thickness angle interlock specimen after testing in uniaxial monotonic tension.
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Fig. 8. (a) A kink band found after a runout com-

pression—compression fatigue test in an angle interlock

composite [3]. (b) Schematic of deformation of the stuffer

and filler in (a) by a warp weaver pressed into them during
either weaving or consolidation.

signals the maturation of degradation that is internal
to the load bearing tows. There is again correlation
between sites of rupture and misalignment.

3. MODELS APPROPRIATE TO DIFFERENT
ASPECTS OF COMPOSITE BEHAVIOR

The experiments reported in [1-4] and elsewhere
suggest that the mechanical properties of 3D com-
posites can be separated into two categories: those
that can be predicted to within experimental scatter
by elementary models; and those that cannot. Table 1
summarizes this classification.

3.1. Problems for which the Binary Model is not
required

Flat panels consisting of a single weave type behave
as orthotropic bodies in the elastic regime. Elastic
constants are well approximated by combining rules
of mixtures or other simple models of unidirectional
composites with standard laminate theory and some
crude estimates of the softening effects of tow irregu-
larity [2, 8] (see also earlier references cited in [8]).

Unnotched strength in tension can be estimated
from the strength quoted for pristine fibers by the
manufacturer, corrected for volume fractions [2].
Unnotched strength in compression is governed by
the mechanics of kink band formation. In the absence

BINARY MODEL OF TEXTILE COMPOSITES—I

of lateral loads, the critical stress, o, for the in-
itiation of a kink band is related simply to the shear
flow stress in the matrix, 7,, and the misalignment,
¢y, of the fibers with respect to the applied load axis
[9, 10]

oy = To/ Py 0y
To a good approximation in most polymer com-
posites, o, does not depend on the fiber modulus [11].
Reasonable estimates of unnotched compressive
strength then follow from values of 7, measured in
independent tests on +45° laminates and the distri-
bution of ¢, deduced from optically scanned sections
of woven composites [2].

The extent of fiber pullout observed in unnotched
tension tests (e.g. Figs 6 and 7) suggests that notch
sensitivity in tension should be modeled via a cohe-
sive zone of damage extending from any stress con-
centrator [2]. Within the cohesive zone, the mechanics
of tow pullout will govern the relation p (1) between
the bridging tractions, p, acting across the damage
zone and the displacement discontinuity, 2u (or crack
opening displacement, u). In [2], the characteristic
cohesive zone length, [, was shown to be to order of
magnitude 0.1-0.5 m. The function p (1) can be de-
duced directly from measurements of force and dis-
placement on unnotched tensile specimens, as long
as the specimen width is much less than /,, e.g.
~ 10 mm. Once p (u) is known, notch sensitivity and
the influence of part size and geometry on strength
can be computed from the relatively simple and well
developed fracture mechanics of cohesive zones or
bridged cracks.

Delamination and subsequent buckling under
monotonic compression, the primary mechanism of

Table 1. Predicting the properties of 3D composites

(i) Some properties predicted by simple models

Property Model

Stiffness of flat coupons Rule of mixtures/mean field
models

Laminate theory

Rough estimates of the effects of
tow irregularity

Compression: criterion for kink
band formation

Tension: tow rupture strength
Cohesive zone model

Unnotched strength for aligned
loads

Notch sensitivity/fracture tough-
ness in tension
Delamination and buckling Beams or plates on an elastic

foundation

(ii) Some problems requiring a computational model
(the Binary Model)

Problem Remarks

Stiffness/strength  of
structures

integral ~ Require stress distribution in
tows in complicated arrange-
ments

Progression of damage in

monotonic loading and fatigue

Localization/delocalization of  Depend on local stress distri-

damage

Open-hole compression
Fatigue near stress concentra-
tors

Constitutive law for cohesive
zone in tension

butions, distributions of flaws,
and load redistribution follow-
ing local failure—stochastic
problem
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failure against which 3D reinforcement has been
introduced into polymer composites, can also be
modeled relatively simply. The delamination problem
can be modeled by a variant of existing laminate
theories in which elastic springs couple separable
laminae (e.g. [12]). For 3D composites, the springs
represent the through-thickness reinforcement. The
problem of buckling of delaminated layers in 3D
composites can be described as that of classical
buckling plates on an elastic foundation [13, 14].

For nearly all of the above properties, the
3D composite behaves essentially as a laminate
of homogeneous layers. The effects of the 3D weave
or of irregularity in tow positioning are either small
or are determined by averages over large volumes
of material. The sole exception is modeling based
on the concept of a cohesive zone, for which
the crucial relation p(u) depends strongly on the
irregularity and geometrical details of the reinforce-
ment (see [2] and below). However, engineering pre-
dictions based on the cohesive zone model can be
completed by determining p (u) experimentally; for
this particular purpose, the micromechanics under-
lying p(u) need not be modeled in detail (e.g.,
[15, 16]).

3.2. Problems to be solved by the Binary Model

Other important problems defy such relatively
simple modeling. They are generally those in which
macroscopic behavior depends on the details of
load distribution throughout the composite. Some
examples are given in part (ii) of Table 1.

One very important application of 3D composites
is the fabrication of integral structures. Two examples
from weaving technology are integral box beams,
containing predominantly axial yarns (stuffers) in the
upper and lower surfaces, with +45° yarns (warp
weavers) in the sides [17]; and integrally woven
skin/stiffener panels (e.g. [18]). Because of the com-
plex reinforcement architecture in such structures,
laminate models are unlikely to be reliable even in the
elastic regime, especially at critical junction regions
such as where two sides of a box beam or a stiffener
and skin merge. Predictions of stiffness and strength
require the calculation of loads in geometrically
complex arrangements of tows.

While the effects of complex tow arrangements
present a deterministic problem, several other aspects
of composite behavior depend on how random flaws
are distributed in both strength and space. These
properties demand a stochastic model.

In compression, the more misaligned segments of
tows will fail by kink band formation at lower values of
the local axial stress, following equation (1). If lateral
loads also act on a tow as from tow wrap-around, an
additional shear stress, 7, is induced. For the simplest
assumptions concerning local fiber and kink band
geometry, o, is lowered further according to [10]

oy = [to — 1)/ Px- )
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The tensile rupture of tows has not been quantitat-
ively modeled. However, it seems plausible that seg-
ments of tows that are unusually bent, squashed, or
subjected to lateral loads will have reduced tensile
strength.

In both compression and tension, fluctuations in
tow alignment also affect the onset of nonlinearity by
causing uneven load distribution. A tow segment with
unusually high waviness is more compliant under
axial loading than one that is already straight.
Straighter tow segments will therefore bear a dispro-
portionate share of the load and tend to fail early in
loading.

Thus the onset of damage, whether under
monotonic or cyclic loading, must depend on the
distribution of flaw strengths and the evenness of load
distribution. The progression of damage at higher
strains will depend on both of these factors as well as
the way loads are redistributed around a local failure
event. In both compression and tension, load redistri-
bution around a kinked or ruptured tow is mediated
by friction acting around the periphery of the broken
tow [2]. The critical stress for frictional sliding
dictates the distance along the failed tow over which
the tow is reloaded to far field loads by load transfer,
and it therefore dictates the range of interaction of
flaws.

One important characteristic of damage pro-
gression is whether successive local failure events
form a localized band of macroscopic damage or
whether they are delocalized and widely distributed
over the gauge section. A transition from localized to
delocalized damage, manifested as a brittle—ductile
transition in compressive stress—strain curves, has
already been noted for 3D stitched and woven
composites [1,2]. A qualitative account of this
transition can be found in [1,2]. Quantitative
analysis requires the Binary Model, with an appro-
priately detailed solution of the statistics of local
failure events and load redistribution. Modeling the
transition from localized to delocalized damage is the
key to modeling strain to failure and damage
tolerance.

While predictions of notch sensitivity in tension
can be made using an empirically determined consti-
tutive law, p (1), in a cohesive zone model, composite
design requires understanding how p (u) is deter-
mined by microstructure. Tow pullout lengths are
determined partly by the flaw distribution within
tows, wider distributions favoring long pullout
lengths (e.g. [19, 20]). Pertinent flaws comprise both
intrinsic strength variations and geometrical irregu-
larities, especially locations where cross tows might
impose weakening lateral loads on an aligned tow.
Pullout loads are also influenced by transverse com-
pression experienced by ruptured tows, since pullout
is resisted by friction. Transverse compression can be
strongly enhanced by through-thickness tows, which
often survive the rupture of neighboring axial tows,
by the mechanism illustrated in Fig. 9. Computing
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weaver

Fig. 9. Schematic of the development of transverse com-
pression by warp weavers during tensile loading. White
arrows indicate the sense of loads imposed on neighboring
tows by warp weavers, which tend to straighten when
strained in the direction of the load. The case shown is a
layer-to-layer angle interlock weave.

how all these factors of reinforcement architecture
and irregularity influence p (1) is another application
of the Binary Model.

The likely success of cohesive zone models for
predicting notch sensitivity in tension is due to the
large values estimated for the characteristic cohesive
zone length, /;. Since damage is spread over such
large lengths before failure, details of the tow ge-
ometry near the stress concentration have minimal
effect. Stochastic quantities are sensed only in their
averages over the cohesive zone. In compressive
loading or cyclic loading, where tow pullout lengths
may not be as large as in monotonic tension, the
failure process could depend much more critically on
events confined to a relatively small volume near a
stress concentrator—perhaps containing only a few
tows. If experiments show such behavior (they are in
progress), the Binary Model will be required to
compute the effects of notch shape, tow positioning,
and random geometrical flaws.

4. BINARY MODEL OF A 3D COMPOSITE

The Binary Model is a finite element model, in
which the highly anisotropic and heterogeneous
structure of a 3D composite is resolved into simple
constituents: reinforcing ‘“tows”, which primarily
represent the axial properties of individual tows; and
an “effective medium”, which represents all other
properties of the tows, resin pockets, voids, etc. in an
average sense. The usefulness of this division rests on
the fact that the axial modulus of the reinforcing
fibers, whether graphite, glass or other material, is
generally two orders of magnitude greater than the
modulus of the resin. The axial modulus of the fibers
dominates strength and stiffness under aligned loads,
while the modulus of the resin dominates properties
that depend on the effective medium, notably the
shear and transverse stiffnesses and Poisson’s effect.
When the model is discretized, the tows are divided
into two-noded line elements possessing axial rigidity
only, with no prescribed shear or bending resistance.
The effective medium is divided into solid elements,
which, at least in the elastic regime, can often be
considered homogeneous and isotropic. The effective
medium elements and the tow elements are coupled
by imposing constraints between certain nodes of
each. The constraint will usually comprise an un-
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damaged state, in which the nodes simply share the
same coordinates, and a damaged state, allowing some
relative displacement. As in the real composite, no two
reinforcing tows are coupled directly. They interact
only via the effective medium. Tow and effective
medium elements are commensurate with the charac-
teristic scale of the reinforcement architecture, e.g. the
distance between points at which one tow crosses two
other tows successively. Relatively large sections of the
composite structure can thus be modeled in a calcu-
lation with a modest number of degrees of freedom.

Both tow and effective medium elements are non-
linear, with plasticity and local failure incorporated in
their assigned constitutive properties. The constitu-
tive laws for tow and effective medium elements also
embody stochastic parameters.

Figure 10 shows a typical arrangement of nodes on
tow and effective medium elements in a small volume
of a layer-to-layer angle interlock woven composite.
In this particular architecture, stuffers and fillers
lie in orthogonal layers, while warp weavers supply
through-thickness reinforcement by looping above
and below individual fillers in adjacent filler layers.
This structure lends itself to the cuboidal effective
medium elements exemplified by the shaded volume
in Fig. 10.

As in any discretization of a continuous (or piece-
wise continuous) body, there is some arbitrariness in
the choice of element size. The choice illustrated in
Fig. 10 entails the minimum density of tow nodes
required to reproduce the topology of the reinforce-
ment faithfully. A higher density of nodes could be
chosen, but-that would betray the spirit of finding the
simplest possible realistic formulation. Nevertheless,
as well as the assurance of computational precision in
modeling tows, other physical conditions must also

Shaded volume
is one effective
medium element

Stuffer

[ ———— |
Tow element \\\‘L/
z |
® nodes Warp a P4
y weaver p Y

X

Fig. 10. Tow and matrix elements in a layer-to-layer angle
interlock woven composite.
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be met in choosing the element size. These will be
discussed below.

Once the element size has been chosen, the length
scale it introduces determines the way geometrical
fluctuations are treated. Thus, the irregularity of a
tow that undulates over wavelengths larger than the
element size can be mimicked simply by displacing
appropriate nodes on that tow in the initial, load-free
configuration of the model. If a geometrical property
fluctuates over a length less than the element size, the
variation must be incorporated in the constitutive law
provided for that element. Some explicit examples of
this will be given below.

The conceptual division of the composite into tow
and effective medium elements is ultimately a matter
of convenience. The end product is a nonlinear finite
element model, which must be equivalent to a model
containing only solid elements, with the effects of the
tow elements incorporated in appropriate anisotropic
and nonlinear constitutive laws. However, the geo-
metrical complexity of the reinforcement would
oblige the definition of many different types of solid
element in such a model, depending on the local
tow configuration. Furthermore, the treatment of
stress redistribution around a failed tow and the
computation of local axial stresses in tows would be
cumbersome.

4.1. Constitutive laws for tow elements

The properties of tow elements follow from el-
ementary arguments.

4.1.1. Elastic properties. The axial elastic modulus,
E,, of a tow that is initially straight can be estimated
by the rule of mixtures

E =V.E+(1-V)E, €)

where V, is the volume fraction of fibers within a
single tow and E; and E, are Young’s moduli for the
fibers and resin, the former measured axially. The
axial stiffness, k,, of the corresponding tow element
in the binary model is given by

kt = (Et —E, )At 4

where A, is the tow’s cross-sectional area and E,, is

Young’s modulus for the effective medium (specified

below). The subtraction of E, in defining &, avoids

double counting that would arise because the effective

medium elements fill all space. The area 4, is de-

ducible from the length per unit mass, y, of the tow

(known as the “yield”’); the density, p, of the fibers;
and V, according to

1

A= . 5

C Vi ®

If the tow is undulating initially, its response to

axial loads o, can be described by the differential axial

displacement, u, between two points separated by
some gauge length L

u=>Lo,/E + Le, = Le (6)
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where ¢, is a strain contribution arising from straight-
ening of the undulations. If the tow undulates over
periods greater than the element size, both of these
terms will be computed as part of the solution of the
discretized model, with tow undulations entered ex-
plicitly as initial nodal offsets. However, if the tow
undulates over periods less than the element size, the
second term in equation (6) must be computed in
advance by micromechanical modeling. The tow
elements then possess a possibly strain-dependent,
reduced effective axial stiffness, E, = do, /de.

Calculating E, accurately is difficult. However,
knockdowns due to waviness or irregularity should
never lower the composite modulus by more than
10-20%: if they do, the composite is either poorly
designed or badly fabricated. Experimentally
measured scatter in the macroscopic composite
modulus is usually 5-10% in 3D woven or braided
composites [1,2,21], while tow waviness itself is
difficult to characterize and its statistics difficult to
measure. Therefore, it is unlikely to be profitable to
employ more than rough estimates for E,. More
usefully, simple models of the effects of tow waviness
or irregularity allow competing composite designs to
be compared or the effects of irregularity induced by
processing to be estimated. The details of this idea are
deferred to [5,8]. In the meantime, E, is simply
written

E.= E, @)

where y is a random variable for the tow elements in
a single simulation and typically y = 0.9.

For large strains, equation (7) will generally be
nonlinear: an undulating tow will stiffen as it straight-
ens. However, in most applications, it will be valid to
assume that the knockdown factor y is independent
of strain. At strains high enough for tow straighten-
ing to change E,, the composite stress—strain relation
is likely to be dominated by tow and matrix failures.

In assigning the resistance of tows to lateral deflec-
tions to the stiffness of the effective medium, it is
assumed that such deflections would arise from shear
alone. However, at least in principle, both shear and
pure bending could contribute significantly to lateral
deflections. The proportions of the total deflection
arising from each will depend on the length of the tow
element, among other things, with long elements
favoring the dominance of the pure bending contri-
bution. A simple estimate of these effects is presented
in Appendix A. The upshot is that for the compu-
tational tow elements defined here and for all current
applications in polymer composites, shear is the domi-
nant mode of lateral deflection. Thus shear stiffness is
properly ascribed to the effective medium, leaving the
tow elements themselves with no inherent resistance
to lateral loads. This division has the added virtue of
minimizing the degrees of freedom in the model.

4.1.2. Strength in compression. The strength of a
tow in compression is indicated by the mechanics of
kink band formation, with the critical value, g,, of
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the axial stress being given by equation (2). Thus o,
depends on two factors, the misalignment angle ¢,
and the local shear stress due to lateral loads, t;, both
of which change as the composite responds to load.
The shear stress, 7;, in any tow element can be
computed at each load increment from the shear in
adjoining effective medium elements.

How the misalignment angle ¢, is treated depends
on whether the misalignment occurs over a gauge
length that is larger or smaller than the tow element
size. If it is larger, then ¢, is computed from the nodal
displacements. If smaller, then the role of ¢, is
subsumed in the constitutive properties of the tow,
which are prescribed a priori from micromechanical
arguments. Misalignments can be measured from
digitized photographs of specimen cross-sections, as
described in [4, 8]: the inferred ¢, will generally be a
random variable.

4.1.3. Strength in tension. The stress o, in any tow
element can be strongly affected by tow undulations.
For undulations of wavelength greater than the el-
ement length, resulting variations in g, are computed
directly in solving the model. Undulations lying
within a single element are represented by the reduced
effective stiffness, E,, of equation (7): thus

g = E.¢ (8)

where ¢, is the axial strain in the tow element implied
by its nodal displacements alone.

The failure of a tow in tension is modeled simply
by the criterion that failure occurs when

o, =0l ©

where g, is the axial stress in the tow element and the
critical stress, ¢ (2, is a material property. The critical
stress depends upon intrinsic flaws in the tow, includ-
ing flaws associated with crimping or distortion
caused by consolidation. It is a random variable
whose distribution of initial values will probably
always be evaluated by fitting the model to exper-
imental data. As discussed in [2] and Section 3, it may
also be reduced during loading by lateral loads
imposed on a nominally aligned tow by neighboring
tows. If so, the value of ¢! for elements in the
aligned tow could be lowered during a simulation in
proportion to such lateral loads, as measured by
the maximum shear in adjacent effective medium
elements.

4.1.4. Post-failure properties. The most important
local phenomenon following failure of a tow in either
compression or tension is the transfer of load to
neighboring tows. This is represented by the constitu-
tive law coupling tow and effective medium nodes, as
described in the following section. Once the tow has
failed, the stiffness of the failed element is usually
reduced to zero.

However, there are circumstances where exper-
imental evidence indicates more complex behavior.
One is intimated by the complex kink band structure
of Fig. 3. Kink bands begin forming at strains of
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Fig. 11. Schematic of the stress—strain history of a tow

element within which multiple kink banding occurs in
compression.

1-2%, whereas failure in tests occurs at strains up to
15% [1-3], whereupon post mortem examination is
undertaken. Multiple kinks, such as those in Fig. 3,
have presumably developed as a succession of kink-
ing events over such large strains. One explanation of
this phenomenon is that kinks lock up after a certain
amount of axial strain, whereupon the tow can again
bear large loads. Further loading can lead to a new
kink band, which is very likely to abut the prior
damage, which will act as a nucleation site. The
mechanics of lockup and its relation to axial sliding
of a failed tow are described in Appendix B. The
upshot is the schematic stress—strain response for the
tow element shown in Fig. 11.

4.1.5. Properties in fatigue. The observed absence
of microcracking prior to kink band formation in
compression—compression fatigue (Section 2.2) im-
plies that fatigue damage in compression consists of
degradation of the interior of the primary load
bearing tows. It has previously been pointed out [7]
that fiber misalignment causes lateral or resolved
shear loads in unidirectional composites that are
large enough to damage the epoxy resin. In compres-
sive fatigue loading, such damage will gradually
lower the effective shear strength of the resin, which
in turn will lower the critical stress for kink band
failure [equation (1)]. When that stress falls below the
maximum applied compressive stress, the tow will
fail. This model is consistent with the observation
that kink bands form earliest in fatigue at locations
of maximum misalignment. A feasible constitutive
law for compressive fatigue is that

dz,

— = —A4,(Ac, $ )"

dN - (Al >O)’

(10)
where N is the number of elapsed fatigue cycles, Ag,
the local stress amplitude in a tow element whose
misalignment is ¢, , and A4, and n, are to be evaluated
empirically. The exponent »; could be deduced from
the slope of a strain-life curve by varying the degree
of misalignment achieved in processing or by com-
paring the cycles to kink band formation at sites that
differ in misalignment.

In tensile fatigue loading, the first evident fatigue
damage is matrix cracking normal to the load axis
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(Section 2.2). This will be dealt with below under the
constitutive properties of the effective medium. Matrix
damage is followed by tow rupture. The rule of mix-
tures demonstrates that the increase in load in the
aligned tows because of matrix cracking must be slight.
More importantly, tow misalignment might be ex-
pected to introduce significant shear stresses within
tows in tension just as in compression, leading to direct
fatigue damage of the resin within tows [7]. This might
lower tow strength if fibers suffer attrition following
fragmentation of the resin. A law similar to that in
compression is suggested

da©
dN

= —A4,(Ac )" (A>0)

n
where A4, and n, are further empirical parameters.

Whether equations (10) and (11) are confirmed by
experiments or whether tests will suggest alternative
forms remains a topic of research.

4.2. Constitutive laws for effective medium elements

4.2.1. Elastic properties. An assembly of tow el-
ements such as that of Fig. 10 cannot adequately
model macroscopic shear stiffness, through-thickness
stiffness, or Poisson’s effect. The effective medium
corrects these deficiencies.

One face of a typical effective medium element is
outlined on the micrograph of an angle interlock
composite shown in Fig. 1. It contains resin pockets
and parts of tows oriented in various directions. While
its elastic properties are complex in detail, those that
remain after the axial stiffness of tows has been re-
moved to tow elements can be approximated very
simply in their spatial average. Choices appropriate to
the interlock weaves studied in [1-3] are evaluated in
[5]. For most composite properties, it is a fair approxi-
mation to assume that the effective medium is homo-
geneous and isotropic in the elastic regime, with
properties given by rules of mixtures. Let Gyand G, be
the shear moduli and v; and v, Poisson’s ratios for the
fibers and resin. Then the shear modulus G, and
Poisson’s ratio v,, for the effective medium can be
written

1 Ve 1-V,
— f (12a)
Gm Gf Gr
and
Vo Veve+ (1 — Vo)v, (12b)

where, making due allowance for resin pockets and
fluctuations in tow density, V;is the volume fraction of
all fibers averaged over the composite, as measured,
for example, by weighing the fibers after removing the
resin by acid digestion.

+tSome microcracks are formed within tows when high
through-thickness compaction loads are applied during
processing. Such cracks have no effect on damage pro-
gression that has been observed as yet, although they
could conceivably lower the critical stress for kink band
formation and accelerate fatigue damage within tows.

AM 42/10—0
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4.2.2. Strength. Tensile failure of effective medium
elements occurs, for example, in the delamination of
layers of stuffers and fillers during compression (Fig. 5)
orin the formation of matrix cracks normal to the load
axis under monotonic or cyclic tensile loading. The
strength of an effective medium element is denoted
¢ ©. Examination of many micrographs reveals that
the most important cracks form in layers of resin
between tows rather than within the tows themselvest.
Therefore, o © is likely to reflect the properties of the
resin. However, ¢ & will also depend strongly on the
geometrical details of local fluctuations in tow deploy-
ment, resin porosity, etc., which are extremely difficult
to measure or model. Furthermore, the grid is so
coarse that the value of ¢ © at which matrix crack
propagation occurs for a given value of the applied
load is likely to depend on the element size. Therefore,
0 © will usually be treated as a model-dependent,
empirical parameter.

In fatigue, one might conjecture a law paralleling
equations (10) and (11)

do ©
dN

= —A;(Ac,)®  (4y>0) )

where A, and n, are empirical parameters and Ao, is
the cyclic stress amplitude in the effective medium
element.

For failure in either monotonic loading or fatigue,
experiments show that the fracture plane almost
always either separates pairs of adjacent tows (e.g. the
interfiller cracks of Fig. 7) or separate layers of tows
(e.g. Fig. 5). For a model geometry such as that of
Fig. 11, the relevant component of stress to be com-
pared with ¢© will accordingly lie in one of the
Cartesian directions shown in Fig. 11. It should be
averaged over the tow element, since computed vari-
ations within an element depend on the choice of
element size.

4.2.3. Post-failure properties. After failure, an effec-
tive medium element will have no remanent strength in
tension, but will continue to support load in com-
pression. It can also bear tensile loads in directions
orthogonal to the plane in which it failed. For example,
the microcracks observed normal to the load axis in
tension—tension fatigue diminish the axial stiffness but
do not necessarily imply the delamination of stuffers
and fillers in the manner depicted in Fig. 5. Thus, after
failure, effective medium elements are anisotropic.

4.3. Constitutive laws for coupling springs

4.3.1. Coupling between tow and effective medium
elements. When a tow fails, whether in axial com-
pression or tension, stress redistribution is governed
by sliding of the broken tow parallel to its axis in the
vicinity of the failure site. Experimental observations
suggest that sliding is Mode II displacement of a
circumferential debond crack. A reasonable descrip-
tion of the redistribution of load is given by the shear
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Fig. 12. (a) Shear lag depiction of stress redistribution near
a site of tow failure. (b) Analog of (a) in the Binary Model.
Tow and effective medium nodes have been drawn in
(b) with different vertical coordinates solely to make them
separately visible. Under axial loads, only their horizontal
coordinates could differ in the orientation shown. (c) The
constitutive law for axial displacements coupling springs
between tow and effective medium elements.

lag model of Fig. 12(a). In the shear lag model,
load is transferred from the tow to the surrounding
composite (or “effective medium” in the binary
model) via a constant frictional shear stress, 7y,
acting over the sliding boundary. The shear tractions
restore the axial load, o,, in the tow from zero
at the site of failure to the far fieldt value, o,
over characteristic length, [, given by force equi-
librium

0y
= 14
5= ldo, /x| (142)
do, | s7¢

= | 14b
dx A, (14b)

where s is the circumference of the tow and 4, its
cross-sectional area.

+“Far field” refers here simply to the composite beyond the
domain of sliding. Since the stiffness of tow elements is
generally a random variable, the stresses in tow elements
even in domains far removed from any stress concentra-
tor do not share a unique value.
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If the binary model is to describe stress redistribu-
tion correctly, then the gradient of axial stress in a
tow near a failure site must have the value given by
equation (14b), at least in its spatial average. This can
be assured by appropriate specification of the consti-
tutive laws for the nonlinear springs coupling tow and
effective medium nodes. The discontinuity in the axial
load in successive tow elements near the site of tow
failure is simply the axial force, f,, imposed by the
coupling spring. The axial load in tow elements near
the site of failure is therefore the staircase function
shown schematically in Fig. 12(b). This function will
have the same average gradient as o, (x) in Fig. 12(a)
provided

|fal = 570 L (15)

where L is the computational element length.
Equation (15) prescribes a force that is independent
of the relative displacement, d,, of the relevant tow
and effective medium nodes in the axial direction, as
in Fig. 12(c).

The relative axial displacement of the nodes it
couples is the only degree of freedom needed for a
coupling spring between a tow and the effective
medium. The tow and effective medium nodes always
coincide in their lateral displacements.

In the common case that 7, represents frictional
sliding, its value should change with the transverse
compression acting on the tow. The latter can be
evaluated and continually updated by averaging the
stress fields in adjacent effective medium elements
during a simulation. In this way, the additional
compressive loads introduced by warp weavers via
the mechanism of Fig. 9 can be modeled.

The use of coupling springs not only provides
approximately correct stress recovery in a tow near a
site of failure, but also avoids physically improper
behavior which would otherwise arise from the fact
that tow elements have no cross section.

4.3.2. Coupling between warp weavers and fillers. In
practice, the optimum combination of in-plane and
through-thickness properties is usually attained in a
3D woven composite if the warp weavers are of
considerably lighter denier than the stuffers or fillers
and accordingly of lower volume fraction [14]. This
invites the simplification of coupling warp weavers by
springs directly to the fillers around which they wrap,
rather than via effective medium elements, thus re-
ducing the degrees of freedom of the model. The
locations of such springs are shown in Fig. 10, while
constitutive laws for them are given in Appendix C.
It will be shown in [5] that this simplified treatment
of warp weavers is satisfactory in the elastic regime.
In modeling failure, the critical role of warp weavers
is to impose lateral loads on fillers, which remains
well represented.

4.4. Applications of the model

The binary scheme outlined above is potentially
applicable to very diverse 2D and 3D woven and
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Table 2. Specifications for the simu-
lations of Fig. 13

kg (Nt) 2% 10°
ke (Nt) 1 x10°
Ky (Nt) 2.5 x 10*
a, (mm)* 2

a, (mm)* 1.8

a, (mm)* 0.65
E, (GPa) 10
(o (GPa) 2
(o> (GPa) oo

*See Fig. 10 for definition.

braided composites, given suitable definitions of grids
and minor modifications of the constitutive laws. It
- is also ultimately a viable approach to modeling
continuously reinforced structures, such as integrally
woven or braided skin/stiffener components for air-
frames. Such longer term goals noted, the following
examples and remarks address the subject materials
of [1-4].

4.4.1. Monotonic loading. The first computer code
written to solve the Binary Model was based on the
ABAQUS finite element packagef. Experience
proved that such a package does not permit sufficient
flexibility and control over the computation to enable
realistic simulations in many interesting cases. There-
fore, a custom finite element code was subsequently
written. The new code handles all the features of the
Binary Model described in this paper. It will be
reported comprehensively in future papers. Here,
some illustrative simulations carried out with the
ABAQUS-based code are presented. They demon-
strate some of the effects of introducing random
strengths for tow elements and randomness in tow
positioning.

The simulations were of through-the-thickness or-
thogonal interlock woven composites. Cartoons of
the model structure are shown in Fig. 13. Warp tow
elements are shown there as ribbons, faces of effective
medium elements as quadrilaterals, and sections of
fillers as black dots. Each simulation modeled a
section of material containing ten distinct layers
normal to the filler direction, which Fig. 13 shows in
an exploded view. Six of the layers contain stuffers
and two contain warp weavers. The ninth and tenth
layers contain no warp tows; they are included to
avoid tow elements (which should lie along tow axes)
being present on specimen surfaces. Simulations were
executed for both ideal and irregular tow positioning.
Irregularity was introduced by offsetting the initial,
stress-free coordinates of nodes. The offsets were

tHibbitt, Karlsson and Sorenson Inc., Pawtucket, Rhode
Island.

1In the ABAQUS-based code, all critically loaded elements
must fail in a single load increment. For elements of
uniform strength, this leads to multiple, simultaneous
element failures along a single stuffer, as seen in
Fig. 13(a), even when the load increment is very small.
This unappealing and unphysical effect disappears as
the distribution of tow element strengths broadens
[Fig. 13(b)].
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chosen by Monte Carlo methods, i.e. using a pseudo-
random number generator, according to an ad hoc
random walk model. The magnitudes of the tow
displacements were on average about 30% of the tow
spacing in any direction.

The stiffnesses of tow elements and effective
medium elements, the average tow element strength,
and the element dimensions that were chosen are
typical of -AS4 carbon tows in an epoxy resin
(Table 2). The tow elements were either assigned
uniform strengths (the average {c ) of Table 2) or
normally distributed strengths with standard devi-
ation 20% of the average. If strengths were uniform,
one centrally located element was assigned a slightly
lower value than the rest, to ensure that failure
started away from the specimen ends. For random
strengths, the lowest strength value generated was
always assigned to that same element. The effective
medium was assigned infinite strength: since it is so
soft, the qualitative results considered here are not
greatly affected.

In these illustrative simulations, the degree of
freedom that allows relative sliding of failed tow
elements and the surrounding composite, as described
in Section 4.3, was suppressed. (It is difficult to treat
in the ABAQUS-based code.) This corresponds to the
friction stress T and therefore the stress concentration
on tows neighboring a failure site both being large
(but finite).

In each simulation, the applied strain was incre-
mented in steps small enough that at most two or
three and usually zero or one tow elements would fail.
(Complete control is not possible in the ABAQUS-
based code.) The simulations were carried on to large
strains.

Figure 14 shows stress—strain records for uniaxial
tension simulations under displacement control in the
stuffer direction. The curves show the effect of succes-
sive tow failure events. Figure 14(a) is the case of
ideal geometry and uniform tow element strengths.
Brittle behavior is found: when one tow element fails,
propagating stress concentration causes many tow
elements to fail in an unstable manner}. Only the
stabilizing influence of the fixed grip loading con-
ditions and the unrealistically infinite strength of the
effective medium prevent total failure of the speci-
men. The other three cases [Fig. 14(b—d)] show the
effects of irregular geometry and random strength
assignments acting separately or together. Random-
ness in either geometry or strength enhances ductility.

This trend is underscored by the failure sequence of
tow elements, which has been incorporated in Fig. 13
by color coding. The value of applied strain at which
any tow failed is revealed by matching its color
against the color strips in the inset stress—strain
record.

For ideal geometry and uniform strength
[Fig. 13(a)], tow failure propagates in a symmetric,
deterministic way from the first failure site. Nearly all
elements on the plane on which the first failure
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Fig. 13. Element geometry and damage sequence for orthogonal interlock composites with (a) ideal geometry and uniform tow element strengths; (b) random geometry
and random tow element strengths. The inset stress—strain curves contain a color code that allows the sequence of tow failures to be mapped.
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Fig. 14. Stress—strain curves for various combinations of
randomness of tow strength and geometry.

occurred fail with very little increase in applied strain.
Two elements survive, shielded by nearby warp
weavers. A complete fracture path is still formed
during the first load drop by the failure of the
elements on either side of the two survivors. The
propagating effects of stress concentration dominate
the damage evolution.

In contrast, for the case of irregular geometry and
random tow element strengths [Fig. 13(b)], half the
tow elements on the plane of first failure remain
intact throughout the entire process. Damage is
distributed over the whole specimen, tending to occur
in bursts in one distinct region after another. Ran-
domness has induced a brittle/ductile transition.

The damage sequence when only one of geometry
or strength is random appears intermediate between
Fig. 13(a) and (b), as Fig. 14 and intuition would
suggest. The patterns of failure found for random
geometry or random strength are quite similar to one
another. By increasing the variance of either initial
node positions or tow element strengths, a
brittle/ductile transition can be induced. Which one is
the stronger factor in current 3D composites remains
to be investigated.

4.4.2. Fatigue loading. Simulations of fatigue are
similar in complexity to simulations of monotonic
loading, but follow different constraints. Typically,
either the cyclic applied load amplitude or the cyclic
applied strain amplitude is specified and held con-
stant throughout the simulation. Damage is then
measured over elapsed cycles, N, treated as a continu-
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ous variable. The strength of each element decays
with N according to equations (10), (11) and (13). The
parameter ¢, is a random variable assigned an initial
value for each element. The local cyclic load ampli-
tude, Ag, or Ag,, is computed by the model.
Equations (10), (11) and (13) are integrated to ident-
ify the first element whose strength falls in fatigue to
a value equal to the maximum load it bears in any
load cycle. That element is then failed. The simulation
is then relaxed to determined new cyclic loads on all
remaining elements, which are then tested for failure
without further increase in N. If none fails, equations
(10), (11) and (13) are integrated again, now using the
new values of local stress amplitude, until another
failure is found. Ultimate failure occurs when there
are sufficient failed elements to cause catastrophic
damage propagation in one cycle. Quantitative
examples of fatigue simulations are deferred to [6].

4.4.3. Engineering applications. As illustrated
above, single simulations are executed by assigning
random parameters (strengths and irregularity) with
a pseudo-random number generator. The statistics of
composite properties are then determined from an
ensemble of simulations. Ultimately, calculations
would be more efficient in a probabilistic formulation
such as a Markov chain or diffusion equation. How-
ever, in this investigative phase, Monte Carlo
methods have the great advantage that newly discov-
ered phenomena are relatively easily programmed
into the solution. In particular, the number of inde-
pendent variables can be readily changed in a Monte
Carlo simulation, whereas changing the dimension of
a probabilistic formulation is a major programming
exercise.

Input for the model consists of geometrical and
material parameters, which either refer to determinis-
tic quantities, e.g. average stiffnesses and lengths, or
are parameters in the distributions of random vari-
ables. Some of the parameters can be regarded as
known a priori from micromechanical arguments or
measurements. Others will be empirical, having to be
determined by calibrating the model against test data
for the composite. A great part of current research is
directed to determining which parameters fall into
which category.

5. CONCLUSIONS

A Binary Model of 3D composites has been formu-
lated in correspondence with detailed observations of
failure mechanisms in angle and orthogonal interlock
woven composites. Micromechanical models of local
failure events and sources of elastic nonlinearity have
been used to derive constitutive laws for the compu-
tational elements in the model. Emphasis is laid on
the role of geometrical flaws in failure. The model has
been proposed as the simplest realistic means of
computing macroscopic strength, notch sensitivity
and damage tolerance. Simulations of load-strain
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curves and the predicted spatial distributions of
tow failures are in appealing accord with exper-
iments.
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APPENDIX A

Effective Flexural Rigidity of a Tow

Consider the problem of a tow segment of length L loaded
transversely by a force of magnitude F at one end (Fig. Al).

BINARY MODEL OF TEXTILE COMPOSITES—I
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Fig. Al. Cantilever beam paradigm for estimating the
proportions of bending and shear in a transversely loaded
tow segment.

Suppose the other end is built in. The deflection v, (x) arising
from bending satisfies

£l d%,
Y dx?
where E, is the axial Young’s modulus of the tow and 7 is
the relevant moment of inertia; while that, v,(x), arising
from shear satisfies

= Fx (AD)

do
AG,—=F (A2)
dx
where G, is the shear modulus of the tow and 4 is its
cross-sectional area. Hence the displacement contributions
at the load point x =0 are in the proportion

DS(O)ZE/E (A3)
20)  AG, | 3EI

3/a\E,

-(3)e @

for a tow of elliptical cross-section with semi-axis a in the
direction of bending.

The axial modulus E, can be approximated by equation
(5). The shear modulus G, can be estimated by rule of
mixtures from the shear moduli G; and G, of the fiber and
resin

1 vV, 1-V,
.__=_+
G, G G

(AS)

r

where V, is the volume fraction of fibers in a tow. For typical
graphite/epoxy or glass/epoxy systems, the term in G is
negligible.

The ratio E, /G, is typically fairly large—for AS4 graphite
fibers in Shell 1895 resin, the material combination for many
of the composites studied in [1-4], V,~0.7, E;= 250 GPa
and E, = 3.5 GPa, leading to E, ~ 200 GPa, G, ~ 4 GPa and
E /G, ~50. Substituting this number into equation (A4)
shows that shear will dominate lateral deflections of a tow
segment if a force couple acts over lengths less than five tow
widths.

This criterion is satisfied for forces acting on the ends of
tow elements in the binary model.

APPENDIX B

Kink Band Lock Up

The relation between kink band lock up and theaxial sliding
of debonded tow segments can be elucidated by simple shear
lag analysis.



COX et al.

(NN [\/
<\P
Q\\\
- L)
\\\w
h ~ o
0
\
s

J L

Fig. B1l. Schematic of fiber rotation within a kink band.

Following formation of a kink band, the fiber segments
within the band rotate (Fig. B1). At first, the rotation is
accompanied by transverse dilatation. But as rotation pro-
gresses, the fibers are drawn back together. At some critical
rotation angle, 0., the volumetric strain in the band vanishes
and further rotation is very strongly resisted. The band is
effectively locked up. If the boundaries of the kink band form
angle B to the boundaries of the tow (Fig. B1), the condition
of vanishing volumetric strain leads to [22]

0,=2p. (B1)

Typically, f = 20-30°.

Assume that kinking is accompanied by debonding of the
tow over a sliding length / and that the axial compressive
stress at the kink band is zero prior to lock up. Then,
according to the same shear lag model that underlies
equation (19), sliding will produce an axial displacement u
of the ends of each of the intact parts of the tow given by

lo24,
U=
2Es1,

(B2)

where ¢, is the stress in the tow remote from the kink band,
A, and s are the cross sectional area and circumference of
the tow, and 1, is the critical shear stress for sliding of the
tow.

If the length of fibers within the kink band is 4 (Fig. B1),
lock up will occur when

u =%(1 —cosf,). (B3)

BINARY MODEL OF TEXTILE COMPOSITES—I
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= 4rey,

warp weaver

Fig. C1. Schematic of a warp weaver wrapping around a
filler in an interlock weave.

The corresponding value, g,, of the remote stress in the tow

is
[ sro]'/z
o=|2u-E— .
Al

The critical stress for lock up depends via (B3) on the kink
band length, A, which is difficult to predict.

(B4)

APPENDIX C

Coupling Springs Between Warp Weavers and Fillers

Figure Cl shows a schematic of a warp weaver wrapping
around a filler. The warp weaver has a radius r,, and the filler
a radius r;, which can be estimated from the fiber volume
fraction, V,, within a tow (¥, ~ 70%), the denier of the tow,
and the density of the fibers. In the elastic regime, displace-
ment of the point P on the axis of the warp weaver relative
to the point R on the axis of the filler is resisted by the
transverse stiffness, E,, of the two tows. This might be
approximated by the rule of mixtures

E,=[V/E+ (1= V)/E]" (&Y

where E; and E, are the fiber and resin moduli. Assuming
the contact area 4r;r,, (Fig. Cl), the effective spring constant
k. coupling the warp weaver and filler is defined by

kwf = Elr ! 4rfrw (Cz)

where the spring constant relates force to proportional
change in displacement. Equation (C2) can be readily
generalized to the case of tows containing different kinds of
fibers.

Failure of the spring occurs at some critical tensile
displacement, which will usually be treated as an empirical
parameter.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

