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ABSTRACT

Overall mechanical properties are studied for linear composites demonstrating a size effect. Variational
principles of Hashin—Shtrikman type are formulated for incompressible composites involving the gradient
of strain in their constitutive description. These variational principles are applied to linear, statistically
homogeneous and isotropic two-phase composites. Upper and lower bounds of Hashin—Shtrikman type
for the effective shear modulus and related self-consistent estimates are derived in terms of volume fraction
and a two-point correlation function accounting for the scale of microstructure. An alternative self-
consistent scheme for matrix-inclusion strain-gradient composites is also proposed by a development of
the approach laid down by Budiansky and Hill. Some numerical results are given to demonstrate the size
effect.

1. INTRODUCTION

Several observed elastic and plastic phenomena display a size effect whereby the
smaller the size the stronger the response. A discussion of the experimental evidence
and relevant literature can be found e.g. in Fleck and Hutchinson (1993) and Fleck
et al. (1994).

Significant progress has been made over the last three decades in the development
of homogenization theories for the prediction of the macroscopic behaviour of com-
posites from their microstructure. Conventionally, these macroscopic theories are
based on constitutive descriptions which operate with dimensionless strain and there-
fore give predictions which are independent of the scale of the microstructure. For
example, the strength of particle reinforced composites is predicted to be independent
of particle size, and the strength of fine-grained polycrystalline metals is predicted to
be the same as that of coarse-grained metals.

To take the scale effect into account one usually includes gradients of strain in the
constitutive description (Koiter, 1964 ; Mindlin, 1965; Aifantis, 1984, 1987, 1992;
Mubhlhaus and Aifantis, 1991 ; Zbib and Aifantis, 1992 ; Fleck and Hutchinson, 1993 ;
Fleck et al., 1994). This results in the introduction of a material length scale / into the
constitutive relations for dimensional consistency.

Fleck and Hutchinson (1993) have suggested a mathematically convenient strain
gradient constitutive model. They assumed that the strain energy function (for both
linear and nonlinear materials) is dependent on the local strain and curvature in a
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simple way. The resulting constitutive relations reduce to the conventional form in
the limit /— 0. Fleck and Hutchinson also estimated the strengthening due to the
introduction of a dilute random distribution of equi-sized rigid inclusions of radius
a, and the softening due to a dilute concentration of spherical voids. The size effect
was found to be particularly strong for the rigid inclusions.

In the present paper we focus on homogenization for two-phase linear “‘strain-
gradient” composites where the concentrations are not dilute. Starting from the
variational principles introduced first by Koiter (1964) and then generalized in a
straightforward way by Fleck and Hutchinson (1993), we formulate variational prin-
ciples of Hashin and Shtrikman (1962) type by introducing a linear strain gradient
comparison medium, following the general strategy of Willis (1977, 1983, 1991).
Explicit analysis of Green’s function and of related operators in the strain gradient
context is crucial for the derivation of bounds of Hashin—Shtrikman type; these
bounds give the overall response of statistically homogeneous and isotropic linear
composites subjected to uniform macroscopic strain. The bounds contain the consti-
tutive parameters of the phases, volume fractions and also the integrals involving the
correlation functions which account for the size effect. Explicit expressions for the
bounds are given for a simple choice of correlation function. Following Willis (1977),
self-consistent estimates for the effective shear modulus are derived using the proposed
Hashin—Shtrikman procedure.

Alternative self-consistent estimates are derived for “particulate” composites by
assuming that one phase constitutes the matrix and the other is a random distribution
of spherical inclusions ; the approach is a development of that laid down by Budiansky
(1965) and Hill (1965). The theoretical developments in this paper for ‘“‘strain-gradi-
ent” composites share some common formal features with those in time-harmonic
dynamics discussed by Sabina and Willis (1988).

The structure of the paper is as follows. First, the constitutive formulation is given
and minimum principles are restated from Fleck and Hutchinson (1993). Variational
principles of Hashin—Shtrikman type are derived from these minimum principles.
Next, Hashin—Shtrikman bounds are obtained for linear statistically homogeneous
and isotropic two-phase composites. Self-consistent estimates are obtained from both
the Hashin—Shtrikman procedure and the ““spherical inclusion” assumption. Numeri-
cal results are reported for the stiffness of two-phase composites, and some general
conclusions are drawn.

2. CONSTITUTIVE LAW, MINIMUM PRINCIPLES AND ELEMENTARY
BOUNDS

Although the purpose of this paper is to study /inear incompressible strain gradient
composites, we shall formulate the basic ideas in a more general nonlinear form ; this
requires little extra effort and has the virtue of application to nonlinear composites.

Let u be a displacement field and ¢; = (u;;+u;;)/2 be the related infinitesimal
straint, in terms of cartesian coordinates x;. Incompressibility implies that ¢ is devi-

T A comma in the subscript denotes differentiation, and a repeated suffix denotes summation
from 1 to 3; e;; is the alternating tensor.
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atoric, i.e. ¢; = 0. The unsymmetric deviatoric curvature tensor is related to the
. 1 .
rotation vector 0; = e ;via

— 1
Xij = Bi,j = Cpa€irk = 5CikiUy kjs (2.1)
and can be decomposed into its symmetric and antisymmetric parts:

X = X+ X (2.2)
with

X = %(X!ﬁi"’%ji) s Xy = %(ij'_ Xsi)-

In a strain gradient deformation theory for incompressible media the strain energy
function w is assumed to be a strictly convex function of both the (deviatoric) strain
tensor ¢ and the curvature tensor y [related to the strain gradient via (2.1)]:

w = w(gy). (2.3)

A dependence of w on the curvature x has the effect of introducing a material length
scale / into the constitutive law for dimensional consistency, which will be illustrated
later. To simplify technical details we will assume henceforth that only the symmetric
part of y contributes to (2.3). In the remainder of the paper the superscripts s are
omitted to keep the notation as simple as possible. The symmetric curvature is
therefore introduced as

Xij = %(9:‘, ,+0,) = % (@insthy, 1+ €justhy i) - (2.4)

The form (2.4) has the advantage that it gives rise to macroscopic effective com-
posite properties of the same functional form: the composite possesses a single
effective length scale /.. The general form (2.1) suffers from the drawback that it gives
rise to effective composite properties with two values for the composite length scale
[, and [, (# [,) corresponding to contributions from symmetric and antisymmetric
components respectively.

Deviatoric stress s and couple stress m are defined as work conjugates of ¢ and y:

ow ow

Sy = 67,, m; = a (2.5)
Note that the assumption (2.4) implies that the couple stress m is symmetric.
A stress potential ¢(s, m) can be introduced as the dual of w (¢, %) :
¢(o,m) = max {6, +mx,—w (&)} (2.6)
Here ¢ is the symmetric stress related to its deviatoric part s via
0, = 8,;+0,04 (2.7)

and o,(x) is the hydrostatic stress. In (2.6) the maximum is taken over all possible &
and y ; ¢ is finite and unique since w is assumed to be strictly convex in ¢ and 7.

As an example, in a constitutive law suggested by Fleck and Hutchinson (1993) w
depends on ¢ and y via a scalar measure & :
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&2 = g2+ 122 (2.8)

Here, ¢, = . /%8,-1-8[] is the von Mises strain invariant. The measure y. = , /%X?jxﬁj is the
analogous curvature invariant ; the length scale / is required on dimensional grounds.
With the choice w = w (&), the stress potential ¢ (6, m) assumes the form

¢ = $(X) = max {L& —w (&)},

where the scalar stress measure X is defined as the work conjugate to & :

dw
X=— = (62+1m)">. 29
1= ) 2.9)
In (2.9) o, =, /%s,-js,-j is the usual von Mises effective stress and m, = . /%m,,-m,,— is the
analogous effective couple stress. In the limit / — 0 the given constitutive description
reduces to conventional J, deformation theory.

2.1. Minimum principles

Consider now a composite material, i.e. a microscopically heterogeneous but macro-
scopically homogeneous solid, occupying a volume V, subjected to prescribed dis-
placements and rotations

u=1id; =20 (2.10)

over the boundary S. It is assumed that w (x;¢&, %) may vary through the volume. It
is natural also to introduce a kinematic assumption of continuity of the displacement
u and the rotation @ throughout V, including at a finite number of interfaces Sj,. In
the case of a two-phase composite this is equivalent to the statement that the phases
are perfectly bonded.

Postulating the stationary principle for the energy integral

W) = J w(X;eg,y) dx (2.11)

for any kinematically admissible incompressible displacement field u [subject to (2.10)]
provides

W) = J' {o,0u; ;+m;00,;} dx = —f {o,,+7;,}oudx
Vv

V
+J [mn;00,+ {o,n,+1;n;}oulds(x) =0. (2.12)
Sint

The vector nis the unit normal to the interface, and [‘] denotes a jump of the bracketed
function across the interface S;,,.

We have introduced within (2.12) the tensor 7,;, defined by

ij»

1
Tj/c = —Ee,:ikmpi’p. (2.13)
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In couple stress theory t;; 1s the antisymmetric part of the stress tensor, and (2.13) is
a restatement of moment equilibrium.

It follows immediately from (2.12) that within the volume V' the equation (of
equilibrium)

O-.I'i,j+’c./'fq_}' = 0 (214)

must be satisfied ; the stress traction (6,4 1;)n; and the couple stress traction m;n
must also be continuous across any interface.

The stationary principle (2.12) gives a minimum principle provided w (g, ) is strictly
convex with respect to ¢ and y [see Fleck and Hutchinson (1993) for further details].
Denote the displacement field which makes W (u) stationary by u*, and denote the
associated value of W by W. Then,

W= W) < W(u) (2.15)

for any kinematically admissible u which differs from u*.
To formulate the complementary (linear or nonlinear) minimum principle, define
the complementary energy by

®(6,m) = J 6(6,m) dx (2.16)

with ¢ given by (2.6). Consider a composite of volume V' with
(0;+T)nm = T? s myn; = Q;)

for prescribed tractions (T° q°) on the boundary S. Then ® has a minimum value
® = O(6*, m*) for the “true” field (¢*, m*). For all other statically admissible fields
(6, m) we have

d < ®(s, m) (2.17)

provided ¢ is strictly convex in ¢ and m; the relation (2.17) holds equality only if
6 =o% m=m*

Examples of material behaviour which satlsfy the convexity conditions are the
power law materials :

(O@ (n+1)/n
w(e,A) = _+_1 DINYR 6’0 > (2.18)

where £, and &, are normalizing constants and » > 1 is the hardening index ;1 & is
the scalar measure (2.3).
For linear strain gradient solids the energy density assumes the form

w(ey) = HE;&;+ #lzxi,-x,;,-, (2.19)

1 This corresponds to the power-law relation &/&, = (£/X,)" between the strain and the stress
measures.
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where p is the shear modulus. This gives the following simple form for the linear
constitutive relations:

sy =2pe; my=2ul’y,. (2.20)

2.2. Elementary bounds

The minimum principles (2.15) and (2.17) provide elementary bounds for the
averaged response of a two-phase composite in terms of volume fractions ¢, and ¢, as
follows. Assume that phase number one of the composite has material properties
(41, 1,) and phase number two has properties (u,, /).

Consider the two-phase composite of overall volume V, subjected to the “uniform
strain”’ boundary conditions

u) (x) = e0x;, 0,(x) =0 (2.21)

on S. [If ¥ were filled with a homogeneous medium then u(x) = uy(x) would be the
“true” field within ¥ and corresponds to a uniform strain ¢].] Assuming that the
composite is linear and isotropic, the effective shear modulus u, can be defined via

1
Pl = i W (u*),
where u* is the actual field in the composite associated with the prescribed dis-
placement boundary conditions. The Voigt bound for u, follows by substituting uy(x)
into the right side of (2.15):

Ux S C1 0+ Co2lds. (2.22)

In analogous fashion, now prescribe “uniform stress’ traction boundary conditions
T? = ayn,,q° = 0onS. Then, the complementary variational principle (2.17) gives
the Reuss lower bound

s = (Crpy ' Hepr ) (2.23)

We note that the elementary results (2.22) and (2.23) are not influenced by couple-
stress effects and provide uniform bounds for u, with respect to the length parameters /,,
L,. We emphasize that the macroscopic strain &° is taken to be constant and therefore the
macroscopic curvature vanishes. The microscopic curvature, however, does not vanish
due to local inhomogeneities, which gives rise to the scale effect at the macroscale.

Improved bounds displaying the scale effect can be found from the variational
principles of Hashin—Shtrikman (1962) type which are derived for strain-gradient
composites in the next section. We shall derive them in a form which does not
necessarily assume that the phases are linear. Thus, the variational statements may
also be useful for deriving bounds for nonlinear composites (cf. Willis, 1983, 1991).

3. VARIATIONAL PRINCIPLES OF HASHIN-SHTRIKMAN TYPE

We shall follow a general strategy developed by Willis (1977, 1983, 1991) for both
linear and nonlinear composites. First, introduce a homogeneous linear comparison
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medium with material properties p, and /, and described by the strain energy function
wo(&, %) given by (2.19). ‘

3.1. Minimum principle for strain energy of composite

If w, is chosen in such a way that at each point of the composite (w,—w) grows
faster than linearly when ¢ or y is large, then a function U (=, B) can be derived as the
dual to (w—wy),

U(rn,B;x) = ngllxn {8ijnij+Xijﬁij —w (e %;X)+wo(e, X)} 3.1

In (3.1) we have introduced arbitrary symmetric “polarizations” n;;, fi,;, whose physical
interpretation will be made clear later.
It follows immediately from (3.1) thatt

w(e,x;X) S wols, ) te n+y f—U(m, f;x). (3.2)

Recall that the minimum principle (2.15) states that the actual strain energy W of the
composite of volume V satisfies

W<J w(e, 1 ;x)dx
14

for all kinematically admissible fields ¢ and y, as long as w (g, % ; X) is strictly convex
for every x. Making use of (3.2) this inequality can be re-expressed in the form,

W<f {wo(g, ) +em+y - p—U(m B;x)} dx (3.3)

for arbitrary =, p and for all kinematically admissible & and . We consider (3.3) to
be the starting point from which is derived the Hashin—Shtrikman upper bound.

When (w,— w) is strictly convex and smooth, the equality holds in (3.3) if and only
if (g, ) is the actual field and

Ty = Sij— 2Uo&s,

Bij = mij_z.uol(z)Xij (3.4

for the true fields s and m ; this establishes the connection with the standard definition
of polarizations. The relations (3.4) appear by extremizing the right hand side of (3.1)
with respect to (g, ) and using definitions (2.5) of s and m.

In the further analysis of (3.3) we follow Willis (1977, 1983). First, we select the
displacement field u which makes stationary the right-hand side of (3.3), for any given
n and . This leads to an upper bound for W in terms of (arbitrary) polarizations
n and B only. In the next section we optimize (3.3) further with respect to the
polarizations.

On writing the right hand side of (3.3) as 7 (=, B ;u), we find the stationary value of
I by taking its variation with respect to incompressible fields u and keeping (=, f)
fixed :

T Henceforth the scalar product f+g means f;;g;; for relevant f and g.
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ol (m,B;u) = J {(2:u08i_1'+nij)58ij+ (2/v‘0[gx:j+ﬁrjj)5xu} dx =0, (3.5)

V

where 8¢, = 2(u; ;+ 6u; ;) and Sy, = (€O 1+ €uduy ). This gives after integration
by parts

J ([LO (V)“],+ n],,,—%ep/,ﬂpq,qj) 5“, dX = 0, (3.6)
V

where
[Lo(V)Ul; = poths pp— 5 Hol8€psi€prith;, gurs- 3.7)
Further rearrangement of (3.7) for incompressible fields u provides
Lo(V)u = poAu—2uol3A%, (3.8)

where A is the Laplace operator.
Since (3.6) is satisfied for an arbitrary incompressible field du (i.e. du,; = 0), it
implies that

[Lo(V)u];+oy ;+7) ,— %epjiﬁpq,qj =0, (3.9)

where oy, 1s the hydrostatic stress.

The differential equation (3.9) must be supplemented by the boundary conditions
(2.10) in order to solve it for u and o,,.

We solve the linear equation (3.9) by assuming that the displacement field u is the
superposition of the solution to two problems, written as u = u,+ .

(i) The comparison medium is subjected to the displacement boundary conditions
(2.10) ; the displacement field u, satisfies

[Lo(V)u,];+ap,; =0, (3.10)

where oy ; is the hydrostatic stress field.
(i) The comparison medium is subjected to a distribution of body forces f; of
magnitude

Ji=m,— %epj,-ﬂpq,q,- (3.11)

with vanishing displacement and rotation on the boundary. The displacement field
within the body i obeys the governing relation

[Lo(V)il];+6n,+/; =0, (3.12)

where &}, is the associated hydrostatic stress.
The fields ¢ and y associated with the solution u = u,+1 are

e=¢g,—Snm— M,
AL =Xo—Pr—0B, (3.13)

where S, M, P and Q are linear operators to be found. These operators are defined
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such that for arbitrary # and §, § = —Sn— Mp and § = — Prn— QP are the strain and
the curvature derived from the displacement field d, for the comparison body subjected
to vanishing displacements and rotations on the boundary, and loaded by the body
force (3.11). Appropriate approximate forms for the linear operators S, M, P and Q
are given in Section 4.

To proceed, we substitute the solution (3.13) for (g, ) into the right hand side of
(3.3). It is shown in Appendix A that the first term on the right hand side becomes

J wo (e, 1) = Wo+3I(m, B), (3.14)
where
I'(m, B) = (m, Sm)+<n, M)+ (B, Prny>+<B. OB (3.15)

and W, is the strain energy of the field u, for the case where the volume V is filled
with the comparison medium. Here the notation <*,*) denotes an inner product

(f,g) = J Ji(x)g;(x) dx = j f(x) - g(x) dx (3.16)

for any relevant f and g.
In summary, relation (3.3) can be formulated as the following minimum principle
of Hashin-Shtrikman type for the strain energy W':

W< W, —ér(naﬁ)+<8o,n>+<xmﬁ>—f Uz, B x) dx (3.17)
v
for arbitrary polarization fields (x, ). For (w—w,) strictly convex the equality sign
holds if and only if # and f are related to the “true” field via (3.4).
So far, we have assumed the comparison medium is linear but have made no such
assumption for the composite. For a linear composite (3.17) simplifies since U(r, B ; X)
can then be written in an explicit form. On writing w(e, %) for the linear composite as

w(e, 1) = p(x)e e+ p(x)Ix)* 1" %,
at each point x of the volume, then the dual function U(=, f; x) as defined by (3.1) is
finite provided
W< gy pl® < ol (3.18)
and is expressed as

1 1
el | [
4(u— o) 4(ul? — pol3)

Even in the more general case of nonlinear composites, further optimization of (3.17)
is possible with respect to piecewise constant polarizations = and f. Following the
pattern of Willis (1983, 1991) these may eventually lead to nonlinear Hashin—Shtrik-
man bounds. This line of enquiry requires a separate investigation and is not pursued
further here.

Ur, B;x) = B B. (3.19)
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We note, however, that the upper bound (3.17) is simplified dramatically if a two-
phase linear composite is considered to be statistically homogeneous and isotropic
(see Section 4).

3.2. Maximum principle for strain energy of composite

Lower bounds for W are obtained by choosing a comparison medium such that
(w—w,) grows faster than linearly at large (g, ) and by introducing the dual function
U_ as

U_(m, B;x) = max {e-m+y B—wle,x;X)+wo(e, 1)}
[compare to (3.1)]. This yields
W) = j w(g, y;x)dx > J {wo(e,x)+e m+y B—U_(m, B;x)}dx.
v v
The minimum principle (2.15) provides

W= ill}f W) > iI‘}fj {we(e,x)+e m+y B—U_(m, B;x)} dx (3.20)

with u varying over all kinematically admissible states. Applying again the above
optimization procedure to the right hand side of (3.20) we arrive at a lower bound
for W given by

W=

vV

o — 51 (m, B)+ e, > + oo, BY ~J U_(m, B;x) dx, (3.21)

which is valid for arbitrary fields =, .
For the case of a linear composite U_ is determined by the formula (3.19) where,
however, u, and /, must satisfy

1> o, > pol. (3.22)

Similar methods can be developed for bounding of the complementary energy @
starting from the complementary minimum principle (2.17) ; this is not pursued here.

4. LINEAR ISOTROPIC HASHIN-SHTRIKMAN BOUNDS

Specialize to the linear case. Then (3.19) holds and the relations (3.17) for the upper
bound on W and (3.21) for the lower bound can be transformed via (3.15) to

. >

220 2 J (o) 1) 7)1l — o) BOX) - BX)

+7(x) * (Sm) (x) + B(x) - (@) (X) +7(x) - (MP) (x)
+B(x) - (Pr) (x) —27(X) " & (x) —2B(x) * %o ()} dx.  (4.1)
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The > sign relates to the upper bound, and the < is for the lower bound. Both

inequalities become equalities if and only if = and f are the “true” polarizations (3.4).
So far, no statistical homogeneity has been employed, and the variational statement

(4.1) is valid for arbitrary microstructure. Then, following Willis (1977, 1981) trans-

lation-invariant approximations for the non-local operators S, M, P and Q emerge,

provided that the composite is statistically uniform and that the polarizations = and

B oscillate rapidly about their mean values % and B. By a standard development of

the reasoning given by Willis (1977, 1981) it can be shown (see Appendix A) that for

large ¥ and for x remote from the boundary of the composite,

Sm)(x) = | S*X —x)(n(x")—#)dx’,

JV

MB)(x) = | M*(x'—x)(B(x")—p)dx’,

JV

r

Pr)(x) = | PP(X' —x)(n(X")—#)dX/,

Jv
(‘ -
OB (x) = | 07X —x)(B(x)—p)dx’, 4.2)
JV
where the kernels S, M*, P* and Q* are given by
Siu(x) = — Gy (i, M ?ﬁd(x) = iekquip, lqj(x)l(ij),(kl)’
P foﬁc/(x) = - ieirsGsl,kjr(x)I(U),(kl): Q,ﬁl(x) = %efrsekqusp,lqu(x)wj),(kl)- (4.3)

Here, G(x) is the infinite body Green’s function for the comparison medium with

parameters p,, /,. An explicit expression for G(x) is derived in Appendix B. In (4.3)

and henceforth, (ij) denotes symmetrization with respect to the relevant indices.
Choose the polarizations = and B to be constant within each phase, i.e.

n(x) = 7, f1(X) + 7, f2(X),
B(x) = B, /1 (x) + B2 f2(%). 4.4

Here f(x), j =1, 2, are characteristic functions for the composite: fi(x) = 1 if x
belongs to phase one; f(x) = 0 otherwise; and f5(x) = 1 —fi(X).

By substitution of approximations (4.2) into (4.1) the terms containing the oper-
ators S, M, P and Q are simplified provided the composite is statistically uniform and
isotropic. We avoid here a detailed discussion and refer the reader to the review of
Willis (1981). A typical term in (4.1) transforms as follows

2

I= J n(x)* (Sm)(x)dx ~ > m, {j f,,(x)J \Sw(x'—x)[fs(x’)—cs] dx’ dx}ns

rs=1

2

= 7, {J 1(x) J ST @[ f(x+2)—c]dz dX}ns,

rs

where V' 1s the infinite volume.
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The cross-correlation function W,,(z) describes the statistical distribution of phases,
and is defined by

If

1
W, |—I7| JV f,(x) f,(x+1z) dx.

The assumption of statistical isotropy implies that ¥, depends only on the modulus
of z. The volume fraction of each phase can be introduced as

¢, = ,(0) = J £, (x) dx.
V
As a result,
2
I~ Y m {J S” @)Y, (1) —c,c] dZ}ns-
rs =1 |l

The correlations W, (|z|) satisfy at each point z the conditions
Y +¥Y, =Y +¥=c, You+¥n=0c, ctc=1,

and are therefore uniquely defined in terms of a ““correlation coefficient” 4 (|z|) such
that #(0) =1, and

¥, = C%‘i‘clczh; Y,=% =cc(l-nh; ¥, = c%+0102h

(see e.g. Willis, 1985). It is also required that % (]z]) —» 0 when |z| — o0 to ensure
absence of long range order.

It is observed from (4.3) and the properties of G (x) (Appendix B) that M and P
are odd functions of x; they give no contribution to (4.1) for constant polarizations
and isotropic correlations. Finally, (4.1) transforms into the algebraic relation

Wy —2W |V » -
[ (<)l | r;] Ecr (l’l’r_l”l()) T,
2

2
+ ¥ —c)em - Sn,—2 Y cm,- {:0}

ros =1 r=1

+|V| [z %Cr (errz_ﬂo (2))“1 ﬂr.ﬂr+ Z (5rs_cr) Csﬁr.QAﬂs_z Z cl‘ﬁl‘.10i|' (45)

r=1 rs=1 r=1

The upper inequality holds so long as (3.18) is satisfied ; the lower inequality holds
provided the condition (3.22) is met. Here

$= j 5* @h(zl) dz, 0= J 07 (@ h(jz)dz (4.6)

are algebraic four-tensors, and &, and j, are mean values, given by
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1
g, = g (x)dx, Yo = x) dx.
0 |V|J‘V 0(X) %o = |V|JVX0( )
In (4.5)
Wo = N0<30,80>+#01(2)<X0;X0>7 4.7

where the inner product has already been defined by (3.16). In order to extract upper
and lower bounds on the effective shear modulus u,, take g, = constant and ¥, = 0.
Optimization of the bounds (4.5) with respect to choice of the piecewise constant
polarizations =,, B, then follows the same formal algebraic routine as that employed
by Willis (1977). The result is

- <
W(>)lu80 €05 (48)

where

2

f= [Z ¢ {1+4(u,~—ﬂo)/«ts}_l] > el +4(— po)ps) (4.9)

r=1 j=1

In (4.8) the upper inequality holds when (u, [;) are chosen to satisfy the constraints
(3.18) ; the lower inequality corresponds to (3.22). In (4.9) usis the shear component
of the isotropic incompressible tensor S. It is of the form

n 1
Us = Si313 = — Y (L),

4yt
where the dimensionless function s is expressed in terms of the correlation coefficient
h (see Appendix B):

() =§J+wez'h(lt)tdt. (4.10)

Then, (4.8) gives the following bounds on g, :

S g ! 4.11
ﬂ*(>)#(ll07 0)7 ( . )

where (u, [;) are chosen to satisfy the constraints (3.18) or (3.22), and the value for
fi is dependent upon the particular choice of values for (u, /,). The bounds (4.11) for
the effective shear modulus p, are developed further in Section 4.1.

The relation (4.11) can also be regarded as the basis for a self-consistent estimation
of uy, as suggested by Willis (1977) for conventional solids. In order to get a self-
consistent estimate for u, bounds are also required for /,. One can expect that (4.1)
can also be used for the derivation of bounds for the effective length scale /. To
estimate /, we have to apply uniform curvature boundary conditions (and linear
strain boundary conditions) to the macroelement ¥ in (4.1). However, for volumes V'
large compared to the length scale, the linear strain terms will dominate the curvature
terms in (4.1). We derive bounds for p, /3 in a speculative manner as follows. Choose
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Yo to be constant and allow g, to vary linearly in x, in a consistent manner such that
g, = 0. The bounds (4.5) apply with i, = ¥, = constant and &, = 0 in V. Assume that
the volume ¥V is much less than /3, such that we can write the strain energy of the
comparison medium approximately as

Wo = |V [1o & * 8o+ 1015 %o * ol = | V11015 %0 * Ao- (4.12)

Similarly, the strain energy of the composite is written approximately as
W = V| [t 8 * 80 + sl io  Tol = IV Itsl% %0 * Ao-
Then, the Hashin—Shtrikman relations (4.5) reduce to

AI? (o, 1o), (4.13)

<

=)
where

2

2 1
.L_JZ = [Z C, {1+4(ur13~#013)ﬂQ}~1_J Z Cj/«ljlj2 [1+4(.ujlj2_MO %)I"'Q]_l- (4.14)

r=1 j=1

Here p,, is the shear component of the tensor 0:

ﬂ 1
Ho = Q313 = m"](lo)a

and
2 + o0
n() = — J e > [1—hn]tde
5 0

(see Appendix B).

We emphasize that the bounds (4.13) are speculative as our assumption that the
representative volume |V| « [J is somewhat inconsistent with the notion that the
volume V is representative of the composite.

The bounds for u,l% are not developed further but will be used in a self-consistent
scheme (Section 5.4). The bounds for u, are, however, reliable and we now propose
a scheme for their optimization.

4.1. Bounds for the effective shear modulus

We seek explicit expressions for upper and lower bounds on the composite effective
shear modulus p,. Combining (4.9) and (4.11) gives

> c -
” 1+ 1 (U — ) . (4.15)
(<) 1+ Hy —

1
Mo+ o ('//(lo) - 1)

The (=) inequality in (4.15) holds provided
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to <min {py, pur}  and  pol5 < min {u, 13, u, 15} (4.16)

and, for an optimal choice of (u, ;) gives a lower bound on Uy Similarly, the (<)
inequality in (4.15) holds provided

to > max {u;, up} and pol5 > max {u, 13, u,13} (4.17)

and, for an optimal choice of (i, ;) gives an upper bound on .
On physical grounds the upper bound on u, cannot be less than the lower bound.
This places the following restrictions on the admissible form of v :

(1) Y¥(!) must decrease monotonically with increasing /;

1
(i1) I8 {— 1} must decrease monotonically with increasing /.

v

Note that these restrictions on y place restrictions on the correlation function 4 via
(4.10).

Assume without loss of generality that u, > x,. On making use of restrictions (i)
and (ii) the optimal choice of (u, /) to achieve a lower bound from (4.15) is uy, — u,
and pol§ » min{u, /7, uy/3}. This gives

c
M = pp < 14 : ; (4.18)

= +y e,
Ui —Hs

ey e o
vy =y(d),! mln{lz,/;ll},

and (/) is related to the correlation coefficient 4 (|z|) via (4.10).
In similar fashion the optimal choice of (u, ;) to achieve an upper bound from
(4.15) is o — w; and pol§ — max{u, /3, u,13}. This gives

where

e < 14+ : 4.19)

A +y e
Mo —

+ _ +) 7+ — Ha
Yt =yd"),l max{ll,\/;llz}.

The formulae (4.18) and (4.19) demonstrate simple bounds of Hashin—Shtrikman
type for a statistically isotropic two-phase composite in terms of volume fractions and
an isotropic correlation function /4 (|z|) which accounts for the size effect. As a simple
example we take

with

h(z) = eV, (4.20)
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where a is a correlation length related, for example, to the typical grain size of each
phase. The associated expression for (/) = y(//a) is (see Appendix B)

8

Y(z) =m-

Related numerical results are presented in Section 6. In the conventional limit //a —
0, " =y~ =2/5 and the inequalities (4.18), (4.19) transform into the “classical”
Hashin—Shtrikman (1963) bounds for incompressible solids.

Finally, if one of the phases is rigid (u, — o0), the upper bound becomes infinitely
large but the lower bound degenerates to

Cy
- =*‘2§”m}

In the dilute limit (¢, — 0) for rigid reinforcement

po ~p(l+ci f,),

where the lower bound for the strengthening parameter f,

[ 1
=== 4.21
fP <a> l//(l/a) ( )
can be compared with the predictions of Fleck and Hutchinson (1993) (see Section
6).
Alternatively, the limit u, —» 0 corresponds to the case of voids filled with an

incompressible liquid ; then, the lower bound vanishes and the upper bound simplifies
to

C2
b=l

In the limit of a dilute concentration of voids (¢, — 0), we have

py ~ (= f.),

fr (f) 1 (4.22)

where

a)~ 1=i(lja)

This gives an upper bound for the softening parameter f,.

5. SELF-CONSISTENT ESTIMATES

Two different self-consistent schemes are now developed. One of them follows the
approach of Budiansky (1965) and Hill (1965), and assumes that a composite consists
of a matrix containing an infinite number of randomly distributed, equi-sized spherical
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inclusions. The other is based on the above Hashin—-Shtrikman procedure and follows
Willis (1977) in finding an “optimal” comparison medium.

We develop first the approach for spherical inclusions by noting some formal
similarities of the strain-gradient formulation with that of the wave propagation
problem studied by Sabina and Willis (1988).

5.1. Composite with spherical inclusions

Let the spherical inclusions of radius @ comprise phase number one of the composite
and have volume concentration ¢ = ¢,;, and the matrix comprise phase number two.
Define u,(x) as the average displacement field over an ensemble of realizations of
inclusion distribution, at each point x of the composite. Then, u,(Xx) can be represented
by a combination of the averages u;(x) and u,(x), conditional on x belonging to an
inclusion or to the matrix:

u, = cu, + (1 —o)u,.

Similar relations hold for the averaged fields &, %4, Sx and m,.
Following Hill (1965), the constitutive relations (2.20) are averaged via simple
algebraic manipulations as follows:

S = 285 +2¢(1y — 12)8,
my = 24,1590+ 20(ui 17— o 13) 0, (5.1

Now define the effective composite parameters u, and /, by

Sy = 2Uyby, My = 204l %Y. (5.2)
On combining (5.1) and (5.2) we get

Pty = Ho&stC (1) — [2)E),
tsl A5 = .Uzl%X*JFC(IMl% —H2 %)Xl- (5.3)

These formulae provide equations for u, and /, once the conditional averages ¢, and
%, have been obtained in terms of &, and 4. To obtain expressions for (uy, /) we
take two trial fields in turn: (i) &, = constant and y, = 0, and (ii) 4 = constant and
therefore g, is linear in X.

The conditional averages (g, %;) are the average values of strain and curvature at
a point x, assuming that x belongs to an inclusion. The basic prescription of the self-
consistent method of Budiansky and Hill requires us to estimate g, and 7, in terms of
the total effective field (g4, xx) as follows.

Consider an isolated representative inclusion which is centred at x” and contains
our point of interest X. Then x” is such that |x"—x| < a. The inclusion is embedded
into the “effective medium™ (with unknown effective parameters u, and /), and the
field remote from the inclusion is specified as (g,(x), x«(x)) (see Fig. 1).

To proceed, we estimate the average strain and curvature in the inclusion (§(x"),
7(x)) for an assumed remote field (4, x«). We adopt the strategy of calculating
approximately the average strain &(x") and average curvature ¥(x”) in the inclusion.
The conditional average ¢, is related to &(x’) by
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My 8y -
P ~
/7 \\
/ \

Fig. 1. An inclusion of radius a is embedded in the effective medium. A self-consistent estimation of u,(x)
averages the solution u(x,x’) over all possible inclusion centres such that the point x still belongs to the
inclusion.

1
g (X)) l—Q——lj §(x") dx’, (5.4)

where Q = |x'—x| < a. In similar manner 7 is given by

1 = ’ ’
00 % g LeQX(X)dX . (5.5)

We now consider the isolated inclusion problem in order to determine &(x") and % (x").

5.2. The isolated inclusion problem

Let an infinite “effective” matrix of properties p,, /, support a displacement field
u,(Xx) in the absence of an inclusion. Consider now a single spherical inclusion of
radius ¢ embedded into the matrix and centred at the point x” as shown in Fig. 1.

The total field both inside and outside the inclusion can be represented as

u=u,+i,

where ii is the additional displacement due to introduction of the inclusion. The
system of integral equations for the solution of u is derived in the strain-gradient
context in a standard way. For this purpose the matrix material can be treated as the
comparison material, i.e. we take py = py, Iy = Ly, Uy = 0y, & = &, and ¥ = L. We
introduce the polarizations = and f via

Sij = 2oty + 1y
my = 2.‘101(2)%[1"1‘/3[/ (5.6)

[cf. (3.4)]. Next, substitute (5.6) into the equilibrium statements (2.14) and (2.13).
The resulting differential equation coincides with (3.8) and (3.9). The solution to our
single problem follows from (3.13) as



Composites with gradient effects 1869

e=¢g —Sn—M™p, (5.7)
xX=%—Pn—0%p, (5.8)
with kernels (4.3). For example, the operator S“=n reads

S*n(x) = J S* (x—x)n(x')dx’".

Q

We now formulate a system of integral equations for the determination of = and
within the inclusion volume Q.

By writing the constitutive law for the inclusion as s; = 2u,¢,; and my; = 2,13y,
we eliminate s and m from (5.6) to get

e=5(—po) ' x =50l —pl5) 'B. (5.9)
In combination with (5.8) this gives
2y — o) 'mA ST+ M7B = &,
sl —pol3) B+ PERA Q7B = %o, (5.10)

Equivalently, the above integral equations can be stated in the form of a stationary
principle :

5®= (n, ) = 0, (5.11)

where
O (m, ) = 5 (1 —tho) Ko my 4+ 50 13— pol3) B, B>+

I(m, B) —2<&0, m) —2{%0. ). (5.12)

The combination of inner products I'™ is defined by (3.15) with S replaced by S* etc.
The domain of integration for the inner product in (5.12) is the inclusion volume Q.
The equivalence of (5.10) and (5.11) 1s secured by the symmetry property

<15, Mooﬂ> = <ﬂaPoon>

for arbitrary =, B, which can be derived directly from (4.3).

In the limit //a - 0, M*, P* and Q* vanish and (5.10) reduces to standard Eshelby
(1957) theory. For the general case (//a # 0), it is difficult to solve (5.10) exactly and
a simple approximation of Galerkin type is used to solve (5.11) by taking © and B to
be constant over the inclusion. Equations (5.10) are then solved “on the average” over
the inclusion volume by equating the mean values of the right and left hand sides (cf.
Sabina and Willis, 1988), giving

%(#1 — o) 'm+Sn+ MB = & (x),
s 3 = pols) ' B+ Pr+ OB = 7o(X). (5.13)

Here
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o ‘ , ;o1 e ,
SE@LLS (x—x")dxdx’, :|Q|LLQ (x—x")dxdx (5.14)

with similar relations for M and P; and
1 1
& =—| g,xX)dx, o, =-—F x) dx. 5.15
0 |Q|JQ 0 (%) Lo Q| JQXO( ) ( )

Note that we have converted the system of integral equations (5.10) into a much
simpler set of algebraic equations (5.13).

Simple analysis shows that M = P = 0 because M *(x) and P~ (x) are odd functions
[see (4.3)]. Therefore, the system (5.13) uncouples to the form

n= [%(,ul — o)~ 1+ 8] &,
B= [%(/11[%_ﬂol%);ll‘i‘Q]_lio-

Isotropy and incompressibility dictate that only shear components are involved, and
(5.9) gives

g(x) = [1+4(u, _#o)ﬂs]wléou(xl)a
Xij(x/) =[1 +4(ﬂ11% _MOI(Z))ﬁQ]_IXOij(x/) (5.16)
within the inclusion Q(x’). Here fis = S)3;5 and fiy = Q33 are the shear component

of the tensors S and Q (Appendix B). The expressions (5.16) for (&, %) are substituted
into relations (5.4) and (5.5) in order to obtain the conditional averages (&, ).

5.3. Self-consistent equations (spherical inclusions)

The above prescription permits us to derive self-consistent expressions for the
composite modulus y, (= u4) and the composite length scale /, (= /). In order to
determine u, and /, we must select appropriate trial fields (&, %o)-

The simplest option is to choose g, = const. (and therefore y, = 0). Then, (5.3) and
(5.16) give

o = o +c (g — p)[1 +4(u; — o) fts(po, o)1~ L (5.17)

To derive a second equation we choose the curvature y,(x) to be constant and the
strain g,(x) to be linear in x. The displacement field is written as

1
Ug;(X) = 3 Vi Xk X js

such that y,;, generates a constant curvature field.
The relations (5.1), (5.2) and (5.16) then give

Ho o= Hzlg‘i‘c(ﬂll%_ﬂz %)[1+4(M11%_Mol(z))ﬁQ(lio,lo)]—l- (5.18)

Making use of the explicit form for fig and fi, given in (B9) the formulae (5.17) and
(5.18) finally transform to

T Incompressibility dictates that y;,+ 7 = 0.
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My —Ho
Mo = Hat¢C 3 - >
Hi— Ho
I+ (1—B2a/ly))
0
12—,
polt = il +e— ;‘;_‘u e (5.19)
l+ 141 00 2 l
ol B2 afly)

with f(z) defined by (B10). Numerical values for y, and /, can be extracted from the
implicit system of equations (5.19) by numerical iteration (see Section 6). For //a —
0 the system uncouples and the first equation reduces to that of Hill (1965) and
Budiansky (1965).

In the dilute limit (¢ — 0), the system (5.19) becomes an explicit set of formulae for
(1o, Io) since p, and /[, on the right sides are replaced by p, and /,:

Hy—Ha

1+ 2170 1 paty)
Ho

Ho = fot+C

.ull%_.uzlg

il —pol3 .
——B(a/l
TONE B2ajl,)

toly = pol3+c
1+

In particular, for a dilute concentration of rigid inclusions (¢, — o) the first formula
gives

J1
o = ,u2+§c - = (5.20)

BQajly)

In the other limit of voids filled with an incompressible fluid (u; — 0) we have:

Sis

Mo ;ﬂz—c?’—:i_m. (5.21)

5.4. Self-consistent equations based on the Hashin—Shtrikman procedure

An alternative self-consistent approach follows Willis (1977, 1981) by choosing an
“optimal” comparison medium. In the strain-gradient context this entails (1) replacing
(15 1) by (uo, ly) in the left hand side of (4.11) and (4.13), and (i1) replacing the
inequalities in (4.11), (4.13) by equalities, to give the following implicit equations for
o and Iy :

:u() = ﬁ(/’l’0710)9 .uol(z) = /’_ljz (:u'()7 lO)
Then (4.9) and (4.14) become
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2

Ko = |: 21 Cr {1"‘4(%—#0)#5}7'] C 2 o [T +H4(— po)psl

S j=1

) —1
ol = [ Y e {1+4ul? —puolug} ™! }

r=1

2

oY el [+ 4l — polDugl ™" (5.22)

j=1

We note that (5.22) can be manipulated into the same algebraic form as the relations
(5.17) and (5.18) derived by the Budiansky—Hill method. The only difference is that-
psand p,in (5.22), and fi, and figin (5.17) and (5.18) are given by different formulae.
Explicit expressions are given in Appendix B for ugand p, in the Hashin—Shtrikman
procedure [for the correlation (4.20)] and for fi, and [is in the alternative self-
consistent scheme. In the conventional limit //a — 0 both self-consistent approaches
become equivalent, as has been discussed by Willis (1977).

6. NUMERICAL RESULTS

The results obtained in the preceding sections permit straightforward numerical
implementation. The bounds were calculated explicitly from analytic formulae (4.18),
(4.19) and (B8). The relevant self-consistent equations are (5.17) and (5.18) for both
the Budiansky-Hill scheme and (with suitable modification) for the scheme based on
the Hashin—Shtrikman procedure. They were solved by iteration for given values of
¢, and /, starting from the dilute limits and then by parameter tracking. The iteration
scheme demonstrated rapid convergence.

As a first example the Hashin—Shtrikman bounds and the related self-consistent
estimates have been calculated for a two-phase composite with p,/u, =2 and 5
and /, = [, = 1. The self-consistent estimate is compared with the Hashin—Shtrikman
bounds in Figs 2 and 3. The effect of concentration ¢; on composite modulus is shown
explicitly in Fig. 2a for u,/u, = 2 and in Fig. 2b for u,/u, = 5. Similarly, the effect of
length scale / is displayed in Fig. 3a for u,/u, = 2 and in Fig. 3b for u,/u, = 5. Note
that the composite stiffness increases with increasing //a (see Fig. 3). In all cases the
self-consistent estimates lic between the upper and lower Hashin—Shtrikman bounds,
and in turn the Hashin—Shtrikman bounds lie between the elementary (Voigt and
Reuss) bounds. Clearly, the Hashin—Shtrikman bounds are much closer together than
the elementary bounds. When //a = 0 the results reproduce the conventional Hashin—
Shtrikman bounds and the self-consistent estimates of Budiansky and Hill.

The Budiansky—Hill self-consistent estimate (based on the “‘spherical inclusions™
assumption) and the self-consistent estimate based on the Hashin—Shtrikman pro-
cedure [for the “exponential” correlation (4.20)] are compared in Fig. 4. We show
the effect of volume concentration ¢, upon the effective shear modulus in Fig. 4a for
the case u,/u, = 5 and [, = [, = | = a. The effect of the non-dimensional length scale
//a upon effective shear modulus is given explicitly in Fig. 4b (again for u,/u, = 5). It
is noted from both Fig. 4a and b that the two self-consistent schemes give similar
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4
.,.;'& -
u =% -
[ s
2 ,/’"\
15 v Z
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i S bounds
Py -
L 77 7 t/a=0
3%
) :
L __;;
1 1 P L 1 L L 1 —-
0 05 1

Fig. 2. Effect of inclusion concentration upon the Hashin—Shtrikman upper and lower bounds, and related
self-consistent estimates. Results are shown for both //a = 0 and //a = 1, with [, = /, = [ and the correlation
function (4.20). In (a) u; = 2u,, and in (b) u; = Sp,.

effective moduli, and that the effective moduli increase with increasing //a. In fact, for
the case //a = 0, the two schemes give identical predictions [as observed by Willis
(1977)] ; the case //a = 0 is included in Fig. 4a for comparison purposes. The effect of
concentration ¢, upon the effective length scale /; is given in Fig. 4c, for /, = 5/, = Sa
and pu, = u,. Again, the two self-consistent approaches give almost identical predic-
tions. As expected, /, converges to /; as ¢, = 1 and [, converges to /, as ¢, » 0. For
intermediate values of ¢, the effective length scale [, is somewhat higher than the
arithmetic mean value (‘“‘rule of mixtures™).

Figure 5 shows the self-consistent estimate (5.20) for strengthening due to a dilute
concentration of rigid spherical particles; for comparison the Hashin—Shtrikman
lower bound (4.21) and the exact results of Fleck and Hutchinson (1993) are included.
(The results of Fleck and Hutchinson apply directly to the constitutive law of the
present paper upon appropriate re-scaling, as outlined in Appendix C.) The self-
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(a)
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L Self-consistent estimates
L — —— Hashin- Shtrikman bounds

112 - Elementary bounds

I PR T R R R P IR PR R TI FR T PP

0 05 1 15 2 25 3
1/a

——— Self-consistent estimates
= — — Hashin-Shtrikman bounds
+-+---- Elementary bounds

t/a

Fig. 3. Effect of ratio of length scales //a upon the Hashin—Shtrikman upper and lower bounds, and related
self-consistent estimates. Results are presented for ¢, =0.2 and /, =/, =/ In (a) yu, = 2u,, and in (b)
Hy = Sity.

consistent scheme predicts slightly less strengthening than the exact result; this is due
to the approximate nature of the solution to the isolated inclusion problem [see
(5.16)].

7. CONCLUDING DISCUSSION

The constructions of the present paper demonstrate a simple generalization of the
Hashin—Shtrikman and self-consistent techniques for two-phase linear composites,
where the constitutive law of each phase involves couple stresses. The Hashin—Shtrik-
man bounds provide exact analytic formulae for bounding the effective shear modulus.
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Fig. 4a. The self-consistent estimates as a function of concentration ¢, for p; = Su,, l, = I, =/and lfa = 1.
The self-consistent estimate based on the Hashin—Shtrikman procedure assumes the correlation function

(4.20). For the case //a = 0 the two self-consistent schemes give identical predictions.
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Fig. 4b. Comparison of Budiansky—Hill self-consistent estimates and the self-consistent estimates based on

the Hashin-Shtrikman procedure, for ¢, = 0.2, u, = Sp,and [, =1, = [.

They are derived from piecewise constant polarizations. It is known that they are
attainable bounds for the conventional solid where / — 0 (see e.g. Milton, 1986). It is
not clear to us whether the Hashin-Shtrikman bounds can be improved upon for a
two-phase strain gradient composite by assuming a spatial variation in polarizations.
The accuracy of the self-consistent scheme (based on the Budiansky—Hill approach)
can be improved by a more detailed analysis of the isolated inclusion problem; this
is not pursued here. It is likely that further technical development can also provide
bounds for the effective length parameter /, when the composite 1s subjected to

macroscopic bending.
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Fig. 4c. The self-consistent estimates of the effective length scale /, as a function of concentration ¢, for
Uy = Up, l] = 512 and lz/d = 1.
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Fig. 5. Strengthening due to a dilute concentration of rigid spheres. The Hashin—Shtrikman lower bound
(4.21) and the Budiansky—Hill self-consistent estimate are compared with the exact calculations of Fleck
and Hutchinson (1993).

bounds for the effective length parameter /, when the composite is subjected to
macroscopic bending.

The schemes developed in the current paper can be generalized to other strain
gradient media, such as those detailed by Mindlin (1965). Finally, the present work
provides the /inear background for estimating the response of nonlinear strain-gradient
composites. This has been done recently for conventional nonlinear composites by
Willis (1983, 1991), Talbot and Willis (1985) and Ponte-Castafieda (1991).

ACKNOWLEDGEMENTS

The authors are grateful for financial support from the U.S. Office of Naval Research, under
contract number N00014-91-J-1916. The authors appreciate helpful discussions with Profs J.
R. Willis and J. W. Hutchinson.



Composites with gradient effects 1877

REFERENCES

Aifantis, E. C. (1984) On the microstructural origin of certain inelastic models. J. Engng Mater.
Technol. 106, 326-330.

Aifantis, E. C. (1987) The physics of plastic deformation. Int. J. Plasticity 3, 221-247.

Aifantis, E. C. (1992) On the role of gradients in the localization of deformation and fracture.
Int. J. Engng Sci. 30, 1279-1299.

Budiansky, B. (1965) On the elastic moduli of some heterogeneous materials. J. Mech. Phys.
Solids 13, 223-227.

Eshelby, J. D. (1957) The determination of the elastic field of an ellipsoidal inclusion and
related problems. Proc. R. Soc. Lond. A241, 376-396.

Fleck, N. A. and Hutchinson, J. W. (1993) A phenomenological theory for strain gradient
effects in plasticity. J. Mech. Phys. Solids 41, 1825-1857.

Fleck, N. A., Muller, G. M., Ashby, M. F. and Hutchinson, J. W. (1994) Strain gradient
plasticity : theory and experiment. Acta Metall. Mater. 42, 475-487.

Gel’'fand, I. M. and Shilov, G. E. (1964) Generalized Functions, Vol. 1: Properties and Oper-
ations. Academic Press, New York.

Hashin, Z. and Shtrikman, S. (1962) On some variational principles in anisotropic and inhomo-
geneous elasticity. J. Mech. Phys. Solids 10, 335-342.

Hashin, Z. and Shtrikman, S. (1963) A variational approach to the theory of elastic behaviour
of multiphase materials. J. Mech. Phys. Solids 11, 127-140.

Hill, R. (1965) A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13,
213-222.

Koiter, W. T. (1964) Couple stresses in the theory of elasticity, I and Il. Proc. Ned. Acad. Wet.
(B) 67, 17-44.

Milton, G. W. (1986) Modelling the properties of composites by laminates. Homogenization
and Effective Moduli of Materials and Media (ed. J. L. Ericksen, D. Kinderlehrer, R. V.
Kohn and J. L. Lions), pp. 150-174. Springer, Berlin.

Mindlin, R. D. (1965) Second gradient of strain and surface tension in linear elasticity. Int. J.
Solids Struct. 1, 417-438.

Muhlhaus, H. B. and Aifantis, E. C. (1991) A variational principle for gradient plasticity. Int.
J. Solids Struct. 28, 845-857.

Ponte-Castafieda, P. (1991) The effective mechanical properties of nonlinear isotropic
composites. J. Mech. Phys. Solids 39, 45-71.

Sabina, F. J., Smyshlyaev, V. P. and Willis, J. R. (1993) Self-consistent analysis of waves in a
matrix—inclusion composite. 1. Aligned spheroidal inclusions. J. Mech. Phys. Solids 41, 1573—
1588.

Sabina, F. J. and Willis, J. R. (1988) A simple self-consistent analysis of wave propagation in
particulate composites. Wave Motion 10, 127-142.

Smyshlyaev, V. P., Willis, J. R. and Sabina, F. J. (1993a) Self-consistent analysis of waves in a
matrix—inclusion composite. II. Randomly oriented spheroidal inclusions. J. Mech. Phys.
Solids 41, 1589-1598.

Smyshlyaev, V. P., Willis, J. R. and Sabina, F. J. (1993b) Self-consistent analysis of waves in
a matrix—inclusion composite. III. A matrix containing cracks. J. Mech. Phys. Solids 41,
1809-1824.

Talbot, D. R. S. and Willis, J. R. (1985) Variational principles for inhomogeneous nonlinear
media. IMA J. Appl. Math. 35, 39-54.

Willis, J. R. (1977) Bounds and self-consistent estimates for the overall moduli of anisotropic
composites. J. Mech. Phys. Solids 25, 185-202.

Willis, J. R. (1980) A polarization approach to the scattering of elastic waves : 1. Scattering by
a single inclusion. J. Mech. Phys. Solids 28, 287-305.

Willis, J. R. (1981) Variational and related methods for the overall properties of composites.
Advances in Applied Mechanics (ed. C.-S. Yih), Vol. 21, pp. 1-78. Academic Press, New York.
Willis, J. R. (1983) The overall elastic response of composite materials. J. Appl. Mech. 50,

1202--1209.



1878 V.P.SMYSHLYAEYV and N. A. FLECK

Willis, J. R. (1985) The nonlocal influence of density variations in a composite. Int. J. Solids
Struct. 21, 805-817.

Willis, J. R. (1991) On methods for bounding the overall properties of nonlinear composites.
J. Mech. Phys. Solids 39, 73-86.

Zbib, H. M. and Aifantis, E. C. (1992) On the gradient dependent theory of plasticity and
shear banding. Acta Mech. 92, 209-225.

APPENDIX A: OPERATORS RELATED TO THE GREEN’S FUNCTION

We start by deriving (3.14). We consider the right hand side of (3.14) and show that it can
be rearranged into the left hand side. Recall from (3.13) that the linear operators S, M, P and
Q are defined by

F=—Sn—MB, §=—Pn—0p, (A1)

where the displacement field @ satisfies (3.9) and zero boundary conditions. Then I'(z, p), as
defined by (3.15), can be rearranged to the form

F(ﬂ,ﬂ) = - <1t,€> - <ﬁ5i>7

where the expressions on the right hand side denote inner products as defined in (3.16). Now
integrate by parts (twice) and use (3.7) and (3.9) to get

F(TC, ﬁ) = J (n/i,/ﬁi+ﬂpq,paz[) dX

14
1 ~ ~ 1 ~ ~
= J {mi;— Eepjiﬂpq,qi} g dx = J {— oty + Zho! 0€psiCpiillgqrsy Ur AX. (A2)
14 |14

Note that the equation inside the braces on the right hand side of (A2) equals — Ly(V)ii by the
definition (3.7). Since
[Lo(V)i—Lo(V)u]; = —[Lo(V)u,]; = o3

from (3.10), the relation (A2) can be rewritten as

F(TE, ﬁ) = J‘ { - uOui.pp +%MO[%ep.\'iej)rjui,qqr.\'} ﬁi dx' (A3)
14
Integration by parts of (A2) gives
L(x, B) = 2u0<E8) +2u0l5<T %> (A4)
and the same manipulation on (A3) yields
T(m, B) = 2u0<e, & + 2110152, 1 (A5)

To complete the derivation of (3.14) we combine (A4) and (A5) with the definition of
Wo = tol&0, 80> + 1old<{0> Yo - and thereby obtain the left hand side of (3.14), since ¢ = g,+&
and y = %o+ 7%

To derive translation-invariant approximations for the operators S, M, P and Q we follow
the strategy of Willis (1977, 1981). A sketch of the derivation follows. The infinite body Green’s
function G,(x —x’) is defined from (3.7) and (3.9) as

Ho Gik,qq (X - X/) 7 %MO 15 e[)xieprijjk,qqrs (x - x/) + Ak,i + 6ik5(x - XI) = Oa (A6)

where A, (x —x’) is the equilibrium hydrostatic stress field due to a point load. Incompressibility
implies that G;;; = 0.

i),
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Consider again the displacement field @ which satisfies (3.9) for some given = and g with
ii = 0 = 0 on the boundary. Multiplying (A6) by #(x) and integrating over V" with respect to
x, we obtain for arbitrary constants 7,; and f;,

ﬁk (x/) = - J\ {Gik,j (X - X/) [7[/'1' (X) - ﬁif] dx + %epjiGﬂ(,qi (X - X/) [ﬁ[)q (X) - qu]} dx

—JGm@—XTE@Nﬂ@+Ji%ﬁww—fﬂ%@MNﬂ,(Aﬂ

s
where

Ti (%) = [m;(x) =7+ 2008

R, (%) = [Bpy (X) =By + 2005 Xpal 1y

and n is the outward unit normal.

Next, let # and B be the mean values of polarizations = and § over V. Assume that the
polarizations oscillate rapidly about these mean values. The reasonings of Willis (1977, 1981)
can be adopted here as follows.

(i) Consider (A7) where x” is taken to lie on the boundary. Then the right hand side of (A7)
vanishes due to zero displacement on the boundary.

(ii) Differentiate (A7) to transform &, into 6, = %e,,‘.kﬁ,(‘s and take x’ to lie on the boundary.
Then the right hand side again vanishes due to zero rotation on the boundary.

(iii) Regard the resulting system of two equations as integral equations for T and R. Since
the volume integrals contain terms (z—#) and (f— B) which rapidly oscillate about zero, it is
plausible to suppose that the solution (T, R) also oscillates about zero.

(iv) Granting this, the surface integral terms in (A7) are only significant when x” is in a
“boundary layer” close to S. The approximation in (4.2) is to neglect the contribution from
the surface integrals of (A7).

The operators S, M, P and Q in (A1) relate the polarizations to the strain field & and to the
curvature field %. We obtain these operators by converting the expression (A7) for the dis-
placement field ii(x) into the corresponding expressions for the strain and curvature fields by
differentiation.

APPENDIX B: EXPLICIT FORMULAE FOR THE GREEN’S
FUNCTION AND FOR THE KERNEL FUNCTIONS S AND O~

To derive an explicit formula for the infinite body Green’s function defined by (A6) we use
the method of Willis (1980) based on “plane wave” decomposition of the three-dimensional
Dirac delta function §(x). A useful property of d(x) has been given by Gel’fand and Shilov
(1964),

5®=14 5(E-x) ds (&),
[E]=1

T

where ¢” is the second derivative of the one-dimensional delta function. This motivates an
attempt to find G,,(x) in terms of the decomposition

1
Gi(x) == J‘ F(&-x;8)ds(d),
87 Jyg -1

where the function F}; is to be found. Note that F; is taken to depend upon x only via the scalar
quantity (&-x), but is also assumed to be a function of &,
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Substitution of the above expressions for d(x) and G;(x) into (A6) gives
J [Fi— 12y, & EF T + A — 46" ds (§) = 0; (BI)
1g=1
A, is written in terms of its transform A,, where

Ar(x) =

5 J A(&-x;8) ds(®).
87 Jig=1

The primes in (B1) denote differentiations with respect to the scalar argument y = &-x. The
incompressibility condition implies that &,F ;, = 0. We seek a solution F;; such that the integrand
of the above equation vanishes identically. Note also that (B1) is simplified using the identity

epsieprjérés = 5ij_ éiﬁj

for arbitrary |&| = 1.
Elementary analysis of the above relations coupled with the requirement for G (and therefore
for F) to tend to zero at infinity gives

1 2
F(¢-x) = 7(5ij_£i£j) CXp {‘— 7|€X|}a

2
Gy(x) = J (6;;— &) exp {— 71¢ 'Xl}ds ©. (B2)
tel=1

82 ul

We note that the representations (B2) for an incompressible strain gradient medium are
formally similar to those of Willis [1980, formula (3.10)] for time-harmonic “conventional”
dynamics (for the case of an incompressible isotropic medium). Specifically, the dynamic
formula of Willis for the Green’s function G° (x, 1) depends on A = w~'/u/p, where p is
density, w is the angular frequency, and 2z is the wavelength of a shear wave. In the low-
frequency limit A — oo the formula of Willis transforms to that for statics

Gy(x) = J (05— E:€)0(&x) ds (&).
lg1=1

8 ul

In analogous fashion, the Green’s function for the strain gradient solid transforms to the
conventional static result when / tends to zero. The general exact correspondence between
G (x,]) and G (x;A) for finite [ and A is

G,(x,)) = —Gj (x; —i%)%-G?_,(x). (B3)

Thus, we may interpret the strain gradient Green’s function in terms of that for dynamics with
an imaginary wavelength. The above simple connection permits us to use existing methods,
developed for dynamics problems, for the strain gradient composites. See, for example, Sabina
and Willis (1988), Sabina et al. (1993), and Smyshlyaev et al. (1993a,b).

The integral over the unit sphere in (B2) is easily calculated analytically leading to an explicit
formula for G;(x) similar to that derived by Mindlin (1965) for more general strain gradient
media. This explicit formula is also derived from (B3) and an explicit representation for G*
[see e.g. Sabina and Willis (1988), formula (B.1)]:

1 1—2¢ 211 XX, g, 92 | —e—2Mxi/t
GU(XJF%{&”TJr w7 ax,-ax_,-[ x| }}

The formula (B2) provides the kernels S, M®, P* and Q* defined in (4.3). For example,
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Szﬁgﬁc/(x) = (2752#)— lf (—0i +§ifk)fjfl|(zj)(k1)_{ _1725(6 "X) +17? ef2lé~x]/l} ds($) (B4)
1¢él=1

and
Q:O;Ok/(x) = (Snzﬂ)lj (_5,'/("‘éiék)fjfn(ly)(k/)
El=1
X =174 0(E-x)+ e 2 21725"(E-x) ) ds(&).  (BS)

In the case of elastodynamics, a kernel S¢ (x, 4) is related to GY in the same way that S*
(x,7) is related to G;; (x, /). The transformation (B3) provides the connection between S* and
S and O and S¢:

N
STa(x, ) = — S (X; —12)—}—5?,,(,()(),

[
Q (x, 1) =%lzs?ﬂ</<X; _i§>- (B6)

The kernel functions S* and O appear in (4.6) in order to calculate the tensors Sand 0 in
the Hashin—Shtrikman scheme. The fourth order tensors S and Q are isotropic in nature, and
their shear components ps and p, may be written as

.us=§1313: ﬂQ:Q1313- (B7)
Expressions for uy and u, follow from (B4), (B5) and (4.6) :

1
Hs = m'ﬁ(lo) s Ho = n(lp),

4 ol
where

+ 20

Y(l) = %JM e h{nede, n() = EJ e ' [1—h(0]tdt.

0 0

In particular, for the exponentially decaying correlation function (4.20), W(/) = y(//a),
n(l) = i(l/a), and
8 z(z+4)

ser2 9= e

U(2) = (B8)

Observe that the explicit formula (B8) gives the limiting value y = 2/5 in the conventional
limit z = //a — 0. Then, (4.18) and (4.19) reduce to “‘classical” Hashin—Shtrikman theory for
the conventional solids.

In the Budiansky—Hill self-consistent scheme, the kernels S*(x, /) and Q*(x, /) are used to

derive the tensors Sand Q via (5.14). The moduli jis and fip, used in the self-consistent estimates
(5.17) and (5.18), are the shear moduli of § and Q, for example,

fs = S_1313 > /IQ = Q1313-

Explicit expressions may be obtained for jig and /i, directly from (5.14), (B4) and (BS), or from
the connection (B6) and explicit formulae of Sabina and Willis (1988) as

s = 101,% {1 —ﬂ(2§>},
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1 a
i = 2_ ) B9
o 40u013ﬂ( 1) .
where
1
B(z) = 3 —:Z) e~ (zcoshz—sinhz). (B10)

APPENDIX C: UNSYMMETRIC CONSTITUTIVE RELATIONS

Consider a solid which supports an antisymmetric couple stress m* in addition to a symmetric
couple stress, m®. The constitutive law reads

miy =2y, my = 2uliy.
For this solid, moment equilibrium implies

TU = _!’L(152+la2)eiikX]s1i,[n

and the governing differential equation (3.10) in u becomes, via (3.7),
”0 ui,pp - %.u() (152 + lf) epsieprjuj, qqrs + O-h,i = 0 (C 1)

Thus, the governing differential equation (3.10) for the symmetric solid is brought into agree-
ment with (C1) for the more general solid by the simple transformation

L JP+I (C2)

Further, the boundary conditions for the case of rigid inclusions in the symmetric couple stress
medium survive this transformation: u = @ = 0 on the boundary of the inclusions. For non-
rigid inclusions the connection is more complicated because the transformation (C1) fails to
satisfy the interface conditions.

We conclude that the displacement field for the rigid particle problem in a symmetric couple
stress solid (with length scale /) holds immediately for the more general solid (with length
scales [, and /,) by making the transformation (C2). This argument enables us to make use of
the existing solution of Fleck and Hutchinson (1993) with unsymmetric curvature (/; = /,) for
a dilute concentration of rigid inclusions by appropriate re-scaling of / (see Fig. 5).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

