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Abstract—The compaction response has been investigated for an array of spherical particles composed
of elastic, perfectly plastic material. Numerical simulations have been used to examine the evolution of
contact size, contact pressure and macroscopic yield surface with the degree of compaction. It is found
that the macroscopic yield surface of a compact has a corner at the loading point, and its shape evolves

with increasing strain in a non self-similar fashion.

1. INTRODUCTION

A dominant mechanism of the densification of pow-
ders bonded by isolated contacts is the mutual plastic
indentation of powder particles. The contact points
between particles expand into contact areas as plastic
deformation is induced by the applied macroscopic
pressure. Particle deformation by contact growth
prevails until porosity, which is interconnected in-
itially, closes off. The compaction process then passes
into a second stage where the compact behaves as a
solid containing isolated pores.

Macroscopic constitutive laws for the plastic yield-
ing of spherical powders, based on the process of
contact growth between particles, have been devel-
oped for compaction under a purely hydrostatic
stress state [1] and a non-hydrostatic stress state [2].
In these studies, the pressure at an interparticle
contact was taken to be the slip-line solution for
localized plastic deformation at the neck between two
particles. Helle and co-workers [1] used Prandtl’s
solution for indentation of an infinite solid by a flat
punch while Fleck and co-workers [2] used the sol-
ution given by Green [3] for the plastic yielding of a
metal junction under combined shear and pressure.
With increasing compaction, the plastic zone emanat-
ing from a contact begins to interact with the free
surface of the particle and with the deformation zones
of neighbouring contacts. The influence of such inter-
action on the compaction response of spherical pow-
der has not so far been examined. In view of the
technical use of compacted (and sintered) metal pow-
ders, it is of interest to investigate the effects of
particle geometry and contact—contact interaction on
the compaction response.

The yield behaviour of a powder aggregate bonded
by isolated contacts remains unclear. Most of the
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existing yield laws have been obtained by a pragmatic
empirical approach which consists of adding a press-
ure term to the yield function for a fully dense solid,
and determining the unknown parameters from uni-
axial compression tests (e.g. [4]) or from combined
torsion and compression tests (e.g. [5]). This ap-
proach gives yield surfaces which are elliptical in
shape. By constructing a micromechanical theory of
compaction from the deformation behaviour of indi-
vidual powder particles, Fleck et al. [2] found that a
corner exists on the yield surface for spherical pow-
ders subjected to axisymmetric loading. Recent re-
sults of compaction experiments on powders with
different morphologies [6, 7] indicate that the yield
behaviour of a powder compact depends not only on
the density of the compact, but also on the com-
paction strain path.

In this paper, we investigate the compaction be-
haviour of a regular array of spherical particles
subjected to axisymmetrical loading. First, we exam-
ine the evolution of contact size and assess the
influence of particle geometry on contact pressure,
using the simple case of uniaxial compression of a line
of spheres without a radial constraint. Second, we
investigate the macroscopic stress—strain response for
a simple cubic array of spheres subjected to the
deformation states of (i) closed die and (ii) isostatic
compaction. The shape of the yield surface is deter-
mined at various stages of deformation history.

2. POWDER STRUCTURE AND UNIT CELL

The arrangement of powder for this study is shown
in Fig. 1(a). It consists of a simple cubic array of
identical spheres, with the spheres initially touching
each other at six contact points. The loading con-
dition is axisymmetric.

The compaction response of the array of spheres
will be discussed in terms of a representative unit cell
of the aggregate. The unit cell is taken to consist of
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Fig. 1. Arrangement of powder and unit cell. (a) A simple

cubic array of spheres subjected to an axisymmetric stress

state (2,, X.). (b) The representative unit cell consisting of
a single sphere circumscribed by a circular cylinder.

a single spherical particle circumscribed by a circular
cylinder of radius R, equal to that of the undeformed
sphere, and height 2R, as shown in Fig. 1(b). The
relative density A is defined as the volume of solid
material in the unit cell divided by the volume of the
unit cell. Thus, the initial relative density A, = 2/3.
This value is very close to 0.64 which is generally
accepted as the initial relative density for a random
dense packing of spheres.

Axisymmetric compaction of a simple cubic array
of spheres leads to the development of four discrete
contacts around the mid-section of each particle, in
addition to a contact at the top and bottom of the
particle. This 3D deformation state is simplified to
axisymmetric deformation of each particle in the
following manner. During compaction, the top and
bottom planes of the unit cell surrounding a represen-
tative particle approach each other, and the circular
cylindrical boundary of the cell shrinks in diameter.
The deformed state of the particle is illustrated in Fig.
2. The contact surface normal to the axis of symmetry
(axial contact) is a circle of radius a; an annular
contact (radial contact) of width 2b and radius R is
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formed around the mid-section of the particle. The
annular contact arises by virtue of the simplifying
assumption of an axisymmetric distribution of con-
tact between particles, and of axisymmetric defor-
mation. It can be interpreted as the contribution from
the four particle contacts surrounding the mid-sec-
tion of a typical particle. The deformed cylindrical
cell boundary has radius R and height 2H.

By conservation of mass, we equate the volume of
the deformed particle to the volume of the unde-
formed sphere of radius R, and, thus, obtain the
current relative density A as

2R}
T 3RH

Q)

The local deformation of a typical particle is
characterized by the radial and axial contact size
parameters b and a, respectively, and the correspond-
ing average contact pressures p, and p, defined by

L

Fo— r 2

Pr= g )
L,

p.=—. (3)
na

Here, L, is the radial load on the annular radial
contact of width 2b and L, is the axial load on the
circular axial contact of radius a.

The macroscopic response of the aggregate is given
by the average state of stress and strain in the
representative unit cell. The logarithmic radial strain
E, and logarithmic axial strain E, are related to the
characteristic dimensions R and H of the deformed

unit cell by
R
E =In[ — 4
; D(R”>, 4

Ez=ln(1%>. 5)

Fig. 2. Deformed state of the unit cell for a cubic array of
spheres, showing characteristic dimensions and macroscopic
stresses.
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Fig. 3. Finite element mesh showing boundary and loading
conditions.

The radial macroscopic stress X, and axial macro-
scopic stress X, on the walls of the unit cell are

b _

Er:ﬁpm (6)
aZ

22=Fp_z' (7)

For closed die compaction (i.e. uniaxial straining),
E, vanishes; for uniaxial compression with no radial
constraint, X, vanishes. In the latter case, the mechan-
ical state of a particle is the same as for a sphere
compressed between two flat frictionless plates.

3. FINITE ELEMENT ANALYSIS

The problem is to determine, at each stage of the
compaction process, the macroscopic strain state
(E,, E.) and the macroscopic stress state (Z,, Z,) for
a cubic array of identical spheres subjected to axisym-
metric loading. If we know the characteristic dimen-
sions R and H of a deformed particle, the contact size
parameters a and b, and the contact pressures p, and
P., the macroscopic quantities can be calculated using
equations (4)—(7). The task, therefore, is to solve the
local problem of contact deformation.

We use numerical simulations to track the evol-
ution of the contact area and the corresponding
variation of contact pressure. This procedure is
adopted for the purpose of obtaining accurate results
which may then be used to appraise the accuracy of
existing approximate analytic solutions. The
ABAQUST finite element (FE) method is used for the

+ABAQUS, HKS Inc., Rhode Island, U.S.A.
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numerical simulations, and full account is taken of
both finite strains and finite deformations.

Symmetry considerations indicate that it is necess-
ary to analyse only the portion of the circular cylinder
defined by the quadrant (0<r <R,, 0<z<R)),
where R, is the radius of the undeformed sphere and
(r, z) are cylindrical coordinates. The finite element
mesh is shown in Fig. 3. It consists of 1024 quadratic
and 176 triangular axisymmetric elements. The tri-
angular elements are used mainly for the purpose of
mesh grading in order to concentrate fine elements at
the contact regions where a strong variation of field
quantities is expected. All elements are of the hybrid
type, with independent interpolation schemes for the
displacement and pressure variables to permit the
modelling of incompressible behaviour.

By virtue of axisymmetry, the displacements,
strains and stresses are functions of only the cylindri-
cal coordinates (r,z). Within an element, the dis-
placement field is assumed to vary linearly so that the
stress is constant. The boundary conditions are indi-
cated in Fig. 3: zero normal displacement (1, = 0) and
zero shear traction (g,, = 0) are prescribed along the
bottom surface (z =0). The curved surface of the
particle is traction free, and the radial displacement
vanishes (4, = 0) along the axis of symmetry r = 0. In
order to simulate axisymmetric compaction, normal
displacements are imposed along the top and right-
hand side of the representative unit cell. Frictionless
interface elements are used to impose the boundary
displacement field, and to endow the particles with
zero cohesive strength. The representative spherical
particle is assumed to be made from an elastic,
perfectly plastic, J,-flow theory solid, with a yield
strain ¢, = 10~* and Poisson’s ratio v =0.3.

The radial and axial displacements of the boundary
of the representative unit cell are applied incremen-
tally, on account of the history dependence of the
material response. Both proportional and non-
proportional straining paths are used to generate data
for the yield behaviour of the unit cell. The pro-
portional straining paths include the special cases of
closed die compaction (E,=0) and isostatic com-
paction (E, = E,). The nonproportional paths are for
uniaxial compression (X, =0) and for radial com-
pression (£, = 0). In order to probe the yield surface
of the array of spheres, the unit cell is deformed to
a prescribed relative density, unloaded to zero macro-
scopic stress, and then re-loaded to yield along
different strain paths.

4. RESULTS AND DISCUSSION

The deformation of a representative spherical par-
ticle under uniaxial loading provides insight into the
nature of contact growth and material flow, without
the complexity introduced by a radial constraint. We
shall discuss this case first, and then proceed to
consider the deformation of a particle subjected to
combined radial and axial constraints.
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4.1. Uniaxial compression
The representative spherical particle is compressed
at its top and bottom, with vanishing radial stress.

The deformed shape of the particle is characterized

2 Ll
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by the contract radius a, particle height 2H and
particle diameter 2R at the mid-section.

4.1.1. Deformed particle geometry. Figure 4(a)
shows the evolution of the geometric parameters
a/R,, H/R, and R/R, with the logarithmic axial
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Fig. 4. (a) Evolution of contact radius a, half particle height H and particle mid-section radius R with
increasing axial strain E. for spherical particle under uniaxial compression with no radial constraint. (b)
Comparison of finite element results for the contact radius with the theoretical and experimental results

of Laptev and Ulyanov [8]. In both figures R,

is the radius of the undeformed particle.
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strain E, = In(H/R,). The normalized radius R/R, of
the mid-section is approximately constant (R/R, ~ 1)
for —E,<0.1; thereafter, it increases nonlinearly
with axial strain. The lag between the start of plastic
deformation at the mid-section of the particle and the
start of plastic deformation at a contact offers some
explanation for the calculated variation of the contact
radius. During the initial period of contact defor-
mation, plastic flow is localized near a contact;
material displaced from the contact region remains in
the vicinity of the contact and provides for rapid neck
growth. With increasing deformation, plastic flow
becomes non-localized and the rate of growth of the
contact radius decreases. As plastic flow spreads over
the full height of the particle, the mode of defor-
mation changes to one where the lateral surface of the
particle steadily moves outwards; consequently, R/R,
increases steadily.

Laptev and Ulyanov [8] have found an approxi-
mate analytical expression for the contact radius by
assuming that the free surface of the particle main-
tains a spherical shape during deformation. The
contact radius a is then related to half the particle
height H according to

wlile) (&) o

where R, is the radius of the undeformed sphere.
Laptev and Ulyanov [8] have also presented exper-
imental data for uniaxial compression of lead
spheres. Their experimental results, and their theor-
etical solution [given by equation (8)], are compared
with the calculated results in Fig. 4(b). The figure
shows (i) the normalized contact radius a/R,, and (ii)
the ratio a/H of contact radius to half the particle
height, as functions of the logarithmic axial strain E,.
The finite element results show better agreement with
the experimental data than the analytical solution of
Laptev and Ulyanov. The lack of quantitative agree-
ment between their solution and the calculated results
is attributed to their assumption of uniform radial
expansion of the free surface of the deforming sphere.
The present analysis shows that, for logarithmic axial
strains of magnitude greater than 25%, this assump-
tion leads to an overprediction of the contact radius
for a given particle height.

The evolution of particle shape is shown in
Fig. 5(a) for the case of uniaxial compression. It is
evident that the material initially accumulates at the
edge of contact with negligible change in diameter of
the mid-section of the particle. Contours of effective
plastic strain € are given in Fig. 5(b) during the initial
stage of localized plasticity close to the contact; € is
defined as € =/ (5)e%e’, where €/} is the plastic strain.
With increasing degree of compaction, the plastic
zone spreads throughout the particle and the mid-
section bulges.

4.1.2. Contact pressure and macroscopic stress.
Figure 6(a) shows the variation of the normalized
mean contact pressure p,/o, with logarithmic axial
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Fig. 5. (a) Shape change of a spherical particle under
uniaxial compression. (b) Effective plastic strain distribution

for uniaxial compression, E, = —0.025. (c) Effective plastic
strain distribution for isostatic compression, E, = —0.025.

strain E, =In(H/R,). The initial high values of the
contact pressure are due to numerical inaccuracies
associated with small contact sizes in relation to
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Fig. 6. (a) Contact pressure 5, and macroscopic stress X, for uniaxial compression of a particle with no
radial constraint. (b) Finite element results for a sphere are compared with the finite element result for
a cylinder and the slip line field solution for an infinitely wide rectangular block. Stresses are normalized
by the uniaxial yield stress ¢, of the material.
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element size. For — E, > 0.003, where the solution is
accurate, p,/o, falls continuously from a value of
about 3. The decrease in contact pressure is attributed
to the effects of particle geometry and interaction of
the opposite contacts. The variation of the normal-
ized macroscopic stress Z./o, with logarithmic axial
strain E. is included in Fig. 6(a). In contrast to the
contact pressure, the macroscopic stress increases
from zero towards the yield stress o, of the material.

For comparison, we have calculated by the finite
element method the average contact pressure for
plane strain deformation of a circular cylinder of
initial radius R, compressed between two frictionless
plates. The mesh and material properties are identical
to that for the axisymmetric problem. The variation
of the average contact pressure for the plane strain
case is qualitatively similar to that for the axisymmet-
ric case, as shown in Fig. 6(a). However, the initial
fall in contact pressure with increasing axial strain is
more rapid for plane strain deformation than for
axisymmetric deformation. The plane strain contact
pressure settles to almost the plane strain yield
strength, p./o, =2/,/3, at about —E.=0.3. In the
axisymmetric case, much larger axial strains are
required for the contact pressure to settle to the
limiting value of the uniaxial yield strength.

In Fig. 6(b), the calculated average contact press-
ure for both plane strain and axisymmetric defor-
mation are compared with the slip line field solution
for compression of an infinitely wide block of finite
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height 2H made from a rigid, perfectly plastic solid
(see for example [9]). Here, p, /o, is plotted against the
ratio a/H, where H is half the height of the com-
pressed solid (which may be a sphere, a circular
cylinder or a block). The slip line field solution for the
block of finite height is constant initially, with
p-/o, = 3. It begins to fall at about a/H = 0.12 due to
interaction of plastic fields between the opposite
contacts. We note that the calculated plane strain
results and the slip line field solution are in good
agreement.

4.2. Isostatic compression

We consider the limiting case of the representative
unit cell subjected to isostatic straining. The variation
of the macroscopic mean stress X, = (2%, +ZX,)/3
with increasing relative density A is shown in Fig. 7.
The mean stress varies nonlinearly with the relative
density.

A relation given by Helle et al. [1] for the hydro-
static compaction of a random dense packing of
equal spheres is

A—A
P,= 3A2<—1———K3>Jy, A, <A<09) (9

where P, is the macroscopic pressure to cause yield,
o, is the uniaxial yield stress of the material compos-
ing the spheres, A, and A are the initial and current
relative densities of the compact. A plot of equation
(9) is included in Fig. 7 for comparison. For A < 0.75,
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Fig. 7. Macroscopic mean stress £, as a function of the relative density A. The experimental data are from
Laptev and Podlesnyi [10].
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the relation (9) is in reasonable agreement with the
calculated results for isostatic compression; for
A > 0.75; it predicts significantly higher mean stress
than the present analysis. We note that in deriving
equation (9), Helle and co-workers [1] assumed that
the contact pressure at each stage of deformation is
given by the slip line field solution for indentation of
a half-space by a flat punch. Thus, their result does
not include the effects of particle geometry and
contact—contact interaction. On the other hand, the
finite element results incorporate both effects. We
also mention that Helle and co-workers considered
(correctly) a purely hydrostatic stress state, while the
stress state in the current analysis is not purely
hydrostatic, although the strain state is isostatic. This
peculiar feature arises due to the assumption of an
axisymmetric distribution of contacts around each
particle, and of axisymmetric deformation. It is,
therefore, not surprising that the result of the present
analysis does not coincide precisely with the predic-
tions of Helle ez al. [1].

Laptev and Podlesnyi [10] have provided exper-
imental data for the hydrostatic compaction of lead
and tin powders. The finite element results show good
agreement with their data for tin, and poor agreement
with their data for lead. Equation (9) shows better
agreement with the data for lead, than for tin. The
predicted macroscopic mean stress for closed die
compression is included in Fig. 7. It is observed that
the mean stress to achieve a given density is higher for
isostatic compression than for closed die com-
pression. In contrast, the constitutive law given by
Fleck et al. [2] predicts the same pressure vs relative
density response for closed die compaction and iso-
static compaction.

The plastic strain distribution for isostatic com-
pression is displayed in Fig. 5(c) for E,= —0.025.
Although plasticity is concentrated in the region of
the contacts (both at the top of the particle and at the
mid-plane), the plastic zones have begun to overlap
between the contacts. For the case of uniaxial com-
pression with E,= —0.025 [see Fig. 5(b)], plastic
deformation is local to the contact at the top of the
particle.

4.2.1. Contact area. 1t is of interest to examine the
development of contact areas 4, and 4, normal to the
radial and axial directions, respectively. We consider
the cases of isostatic compression (E,=E) and
closed die compression (E, =0). These two cases
relate directly to practical situations where powders
are processed by isostatic and closed die pressing.

The growth of the contact areas 4, and A, with
increasing relative density A is shown in Fig. 8(a) for
both isostatic and closed die compression of the
representative unit cell. The contact areas have been
normalized by the total surface area of an unde-
formed particle 4, = 4nR 2, where R, is the radius of
the undeformed particle.

For isostatic compression, the normalized axial
contact area 4,/A4, varies approximately linearly with
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relative density, while the variation of the normalized
radial contact 4,/4, is nonlinear. A,/4, exceeds 4, /A4,
throughout the densification process. This is not
surprising since the radial contact corresponds to an
annular ring and mimics the contribution from four
particles at the mid-section of a typical particle in a
simple cubic array of spheres.

For closed die compression (i.e. uniaxial straining),
the radial contact area A, is less than the axial contact
area A, for A < 0.8; thereafter, 4, exceeds A, . The fact
that A4, < A, initially is to be expected since the
mid-section of the particle (which represents the
initial point of radial contact) starts to deform only
when plastic flow has spread through the entire
particle thickness. We note further from Fig. 8(a) that
isostatic compression gives a higher radial contact
area, and a lower axial contact area, than closed die
compression at a given relative density.

Next, consider the overall contact area of a par-
ticle, rather than the details of contact growth in a
particular direction. For this purpose, we define a
specific contact area A4, as the total contact surface
area per particle 4,,,, divided by the total surface area
of the undeformed particle 4, = 4nR 2. The variation
of the specific contact area 4, with relative density A
is shown in Fig. 8(b) for both isostatic and closed die
compression. We note that the total contact area per
particle is larger for isostatic compression than for
closed die compression. In the case of closed die
compression, the computed variation of A, is reason-
ably linear in A for A, <A <0.85, where A, is the
initial relative density.

For isostatic compaction of a random dense pack-
ing of identical spheres, Helle et al. [1] have proposed
that the evolution of each contact area A, with the
relative density A can be described by the semi-empir-

ical relation
nf{A—A
A, == °)R2
¢ 3<1——A0) i

where A, is the initial relative density and R, is the
initial radius of a particle. Helle and co-workers
assumed that the coordination number (average num-
ber of contacts per particle) is

(10)

Z=12A (11)
and so the specific contact area is
A;=AA - A,)/1-A,). (12)

This expression, and the experimental data given
by Fischmeister and Artz [11] for compaction of
spherical bronze powder, are included in Fig. 8(b). In
plotting their results, we have taken the initial relative
density for a dense random packing of spheres to be
A, = 0.64. The finite element results and the empirical
relation of Helle et al. are in good agreement with the
experimental data of Fischmeister and Artz [11]. The
finite element analysis predicts a significantly larger
specific contact area A4, for isostatic compression in
comparison with closed die compression. This is not
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Fig. 8. Evolution of contact area with relative density A for isostatic, and closed die, compression of a
spherical particle. (a) Normalized radial contact area 4,/4, and normalized axial contact area A4./4,. (b)
Specific contact area 4, (=4,,,/4,). The experimental data are from Fischmeister and Artz [11].
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reflected by the experimental data. At least part of the
discrepancy is due to the fact that the finite element
analysis assumes axisymmetric deformation at the
local level for each particle. In reality, powder exists
as a dense random packing and the deformation state
for each particle is 3D.

4.3. Combined radial and axial compression

For the practical case of powder compaction, the
powder particles deform under a multi-axial stress
state. Here, we consider the case of axisymmetric
stressing. Radial and axial constraints are imposed on
the representative unit cell by prescribing strain
rates £, and E, in the radial and axial directions,
respectively, Proportional strain paths are described
by

E =Etany, (n <y <3n/2)

where the phase angle i is a constant. The straining
paths in strain space (E,, E,) are shown in Fig. 9. In
this figure, we have included the strain paths observed
for uniaxial compression (Z, = 0) and for radial com-
pression (Z,=0); these cases involve proportional
stressing but slightly non-proportional straining.
4.3.1. Contact pressures and macroscopic stresses.
The mean contact pressures p, and p, have been
calculated using equations (2) and (3), respectively. A
plot of the normalized axial mean contact pressure

02 T

p./o, vs the magnitude of the logarithmic axial strain
E, is shown in Fig. 10(a) for a number of straining
paths. Similar to the case of uniaxial compression [see
Fig. 6(a)], the mean contact pressure falls initially.
However, at some critical value of the axial strain, the
mean contact pressure starts to increase. The geo-
metric hardening response found for the case of
combined radial and axial constraints is not surpris-
ing. Material displaced from the contact region is
forced to extrude up through the continuously de-
creasing gap between neighbouring contacts. This
increases the constraint on the deformation process
and a higher driving pressure is then required. The
minimum value of the mean contact pressure and the
corresponding value of the axial strain vary with the
straining path. In particular, for isostatic straining,
the minimum value of j,/s, is 1.92 and occurs at
about 10% logarithmic axial strain while, for a closed
die strain state (E,=0), it is about 13% less and
occurs at an axial strain of approx. 30%.

The macroscopic stresses X, and X, have been
calculated using equations (6) and (7), respectively.
The variation of the normalized macroscopic axial
stress X, /o, with increasing axial strain is shown in
Fig. 10(b) for a number of straining paths. These
stress—strain curves differ from the uniaxial com-
pression curve [see Fig. 6(a)] by the exhibition of a
continued hardening response.
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Fig. 9. Compaction strain paths.
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Fig. 10. Evolution of contact and macroscopic stresses with true axial strain for a spherical particle under

combined radial and axial compression. (a) Normalized axial contact stress j./o,. (b) Normalized
macroscopic axial stress X, /o .

The normalized mean radial contact pressure j,/o,  creasing axial strain is given in Fig. 11(b). The radial
is plotted against the magnitude of the logarithmic contact pressure and the macroscopic radial stress
axial strain E, in Fig. 11(a); and the variation of the  vary with the logarithmic axial strain E, in a manner
normalized macroscopic radial stress Z,/o, with in-  similar to that of the corresponding axial quantities.
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4.3.2. Isodensity curves. Experimental difficulties
have limited laboratory investigations of the yield
behaviour of a powder compact to the generation of
isodensity curves which do not involve probing the
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yield surface. The procedure consists of deforming a
powder aggregate continuously along different stress
paths, and evaluating the locus of stress states re-
quired to produce a compact of prescribed relative

4 ——rry - -
3 y=1037 6 y=135n
E N ’;"z=i:-',‘a"‘lf 4 v=115n 7 y=1471
3.5F E, 5 w=125n 8 w=15n |-
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(b)
Fig. 11. Evolution of (a) normalized radial contact stress j, /o, and (b) normalized macroscopic radial
stress X, /o, with true axial strain E;.
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density. This method has been used to study the yield
behaviour of iron powder [6] and copper powder [7].

We have evaluated the isodensity curves for a
simple cubic array of spherical particles deformed
along the different loading paths shown in Fig. 9. A
plot of the isodensity curves for A = 0.7, 0.8 and 0.95
is shown in Fig. 12. The results are presented in X,
vs X space, where

z,=Q2%+2)/3 (13)
is the macroscopic mean stress, and
r=X.—3%, (14)

is a measure of the macroscopic deviatoric stress. In
the plot, we have normalized Z,, and X by the uniaxial
yield stress ¢, of the material composing the spherical
particles. The isodensity curves are not symmetrical
about the hydrostatic stress axis (Z,, = 0); the curves
also change shape as the relative density A increases
from 0.7 to 0.95. The curve for A = 0.95 has an apex
in the neighbourhood of the loading point corre-
sponding to an isostatic straining path. Nevertheless,
the isodensity curves are smooth, with no corner
development.

4.4. The macroscopic yield surface

The probing method has been used to determine
the shape of the yield surface for a compact of given
relative density. In this method, the representative
unit cell of the simple cubic array of spherical par-
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ticles is first strained to a prescribed relative density
and unloaded to zero macroscopic stress. The com-
pact that results from this operation (henceforth
referred to as the “precompact”) is then re-loaded
along a prescribed straining path until it yields. This
procedure is repeated for different straining paths.
The locus of macroscopic stress at the point of plastic
collapse gives the shape of the limit yield surface.

The yield surfaces for a precompact produced by
isostatic straining (isostatic precompact) and one
produced by closed die compression (closed die pre-
compact) have been determined. The re-loading paths
correspond to those shown in Fig. 9: the macroscopic
strain rates E, and E. in the radial and axial direc-
tions, respectively, are related by E, = E, tan y, where
n <y <3mn/2. Typical stress—strain curves used to
evaluate the yield point of a precompact during the
re-loading process are shown in Fig. 13. In general,
plastic collapse of a precompact occurs in an elastic,
perfectly plastic manner. The macroscopic stress dis-
plays a plateau at a macroscopic strain of 6 x 10~* to
2 x 1073 as y varies from = to 37 /2. For cases where
the limiting yield stress is not clear, we have evaluated
yield at 0.002 plastic strain.

Figure 14 shows the yield surfaces for an isostatic
precompact and a closed die precompact of relative
density A =0.8. In this plot, the macroscopic radial
stress X, and the macroscopic axial stress . have
been normalized by the uniaxial yield stress o, of the
solid. The direction of the macroscopic strain rate

1.5 T T T
1 Z,=0
2 y=n1
3 y=103n
4 y=1I5n
0.5t 5 V=125t |
6 y=135n
7 y=147T1
—ZX/oy
y=15mn
9 Z,=0
-0.51 B
E,
. v
5 Isostatic compression :
8 Closed die compression E,
% 0.5 1 15 2
~Xy, /oy

Fig. 12. Isodensity curves at relative density A =0.7, 0.8 and 0.95 in terms of macroscopic mean stress
Z,, and macroscopic deviatoric stress X.
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Fig. 13. Typical stress-strain curves used to evaluate the yield point of a precompact along various strain
paths.

vector (2E,, E.) is indicated at the loading points. In
constructing the yield surfaces, the normality rule has
been adopted so that the strain rate vector at each
point is normal to the yield surface. Note that the
lines £, = 0 and X, = 0 form part of the boundary for
the yield surface. This is because the present analysis
assumes cohesionless contact between the particles.
Consequently, only compressive contact stresses are
admissible; otherwise, contacts become disrupted and
the compact returns to a loose, unadhered state.
For the isostatic precompact, a corner exists on the
yield surface at the loading point which corresponds
to an isostatic strain path. Similarly, the yield surface
for a closed die precompact has a vertex at the
loading point. The isostatic precompact has a lower
yield stress in uniaxial compression and a higher yield
stress in pure radial compression than the closed die
precompact, in spite of the fact that both have the
same relative density. This demonstrates that the
yield behaviour of the aggregate of spheres is not
just a function of the relative density; it also depends
on the previous deformation path. Path dependence
of the yield behaviour of compacted iron and copper
powders has been observed experimentally by
Gurson and McCabe [6] and Brown and Abou-
Chedid [7]. The issue of path dependence of the yield

behaviour of powders is important in practice as the
strength of components fabricated by powder com-
paction may be influenced by the deformation paths
used to reach the final shape.

It is of interest to examine how the shape of the
yield surface evolves with relative density. As case
studies, we consider the yield surfaces of an isostatic
precompact and a closed die precompact at relative
density A=0.7, 0.8 and 0.9. The calculated yield
surfaces at these densities are shown in (X,, Z,) space
in Fig. 15(a), and in (Z,,, ) space in Fig. 15(b). For
both isostatic and closed die precompacts, the shape
of the yield surface changes as the compaction pro-
cess passes from Stage I densification (A =0.7) to
moderate densification (A = 0.8) and then to Stage II
compaction (A =0.95). At all densities, a corner
exists at the loading point corresponding to the initial
compaction strain path (i.e. the loading path used to
produce the precompact).

A yield surface proposed by Fleck et al. [2] for a
random aggregate of rigid, perfectly plastic metal
particles bonded by isolated contacts is

JSE L (SIE 2
) = 2) 1=
¢ (Zn, Z,A) ( 37, + 181)y+3 0,
(A, <A<09) (15
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where P, is the macroscopic stress to cause yield
under a purely hydrostatic stress state. P, is related
to the relative density A by equation (9). Gurson [12]
assumed that the pores in a particulate solid, rather
than the interparticle contacts, are isolated; his ex-
pression for the yield surface of a porous solid is

2(1—A 3z
d)G(Zm’Z’ A)=—(—A2—)|:_ 1 +C05h<7‘m>:|

y

¥ 2
+<a_yZ> —1=0. (16)

These two yield surfaces are compared with the
calculated results for an isostatic precompact in

Fig. 16(a), and with the results for a closed die
precompact in Fig. 16(b). In each case, the calculated
yield surface lies partly outside that predicted by
Fleck et al. [2] for A =0.7; and entirely within it for
A > 0.7. Both the yield surfaces obtained from the
above finite element calculations and the yield surface
given by Fleck et al. [2] have corners. However, the
position of the corner is at the point of pure pressure
for the model of Fleck and co-workers, while it is at
the loading point corresponding to the initial com-
paction strain path in the present analysis. For both
precompacts, the calculated yield surface at each
density lies entirely within that predicted by Gurson
[12]. Gurson’s yield surfaces are elliptical in shape,
with no corner development.

0 =, 1 '
Isostatic precompact
2 =P
0.2 |
-0.4f ]
4 / J l
° 9
-0.6f o ] ) ]
9
. 5
'0.8 " 2 Er 6 8 ]
E.z .
E Closed die precompact
'1-1 0.8 0.6 0.4 0.2 0
L,/oy
1 Zz=0 4 v=1I5n 7 w=147n
2 ¥=mnm 5§ v=125n g v=15n E.z=l.:‘,tanw
3 y=1.037 ¢ wv=135n 9 £.=0

Fig. 14. Yield surfaces for precompacts of relative density A = 0.8, showing the direction of the strain rate
vector at a loading point.
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Fig. 15. Yield surfaces for isostatic and closed die precompacts at relative density A =0.7, 0.8 and 0.95.
(a) Yield surface in terms of macroscopic radial stress X, and macroscopic axial stress Z,. (b) Yield surface

in terms of macroscopic mean stress X,

5. CONCLUDING REMARKS

A finite element investigation has been conducted
of the compaction behaviour of an array of equal
spherical particles. We have examined the evolution
of contact size, the variation of the local stress at an

and macroscopic deviatoric stress X.

interparticle contact, and the macroscopic yield be-
haviour of the aggregate.

Under uniaxial axisymmetric compression, the
average contact stress decreases monotonically with
increasing axial strain from a value of about 30, to
a value of ¢,. Under combined radial and axial
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compression, the mean contact pressure initially de- The finite element calculations suggest that a cor-
creases from about 30,. A stage is then reached where  ner exists on the macroscopic yield surface at the
the contact pressure increases again in order to loading point. Further studies are required in
extrude material through the gap between particle order to explore the practical significance of the
contacts. corner.

1.5 T —

—— [Isostatic precompact

— — Fleck et al. (1992)
Gurson (1977)

—— Closed die precompact
— — Fleck et al. (1992)
Gurson (1977)
155 1 2 3

=~ Ly /oy

(b)

Fig. 16. Calculated yield surfaces for (a) isostatic precompact, and (b) closed die precompact, compared
with the yield criteria of Fleck et al. [2] and Gurson [12].
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