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ABSTRACT

Constitutive models are developed for stage I cold compaction of powders under general loading. Dens-
ification is assumed to occur by plastic deformation at the isolated contacts between particles. The shape
of the yield surface is found to be sensitive to the cohesive strength between particles and to be less sensitive
to the degree of inter-particle friction. An internal state variable model is used to describe the evolution of
anisotropy under general loading. The theory assumes that the distribution of contacts between particles
can be approximated by a second order tensor B; a prescription is given for updating B as deformation
proceeds. The predicted compaction behaviour for a state of uniaxial strain is in good agreement with
experimental observations reported in the literature.

I. INTRODUCTION

The compaction of powders is a versatile fabrication route for monolithic metals,
ceramics and polymers. Components can be made to net final shape from a wide
range of alloy compositiohs. Particulate and fibre reinforced composites may also be
manufactured with a powder matrix. At temperatures below about 0.3 of the absolute
melting temperature, compaction is by low temperature plasticity; at higher tem-
peratures power law creep and diffusional flow aid densification.

The initial packing density depends upon particle shape, particle size distribution
and the degree to which the powder has been shaken down. For the case of dense
random packing of monosized spheres the initial relative density is D, = 0.64, where
the relative density D is the macroscopic density of the aggregate divided by the full
density of the particulate material. The process of compaction may be split into two
stages, beginning from a dense random packed aggregate of the powder. During stage
I'compaction individual contacts grow at the isolated contact points between particles.
With increased macroscopic pressure ecach contact grows in area and strain hardens.
Additionally, the number of contacts per particle increases as neighbouring particles
approach and touch each other. In this paper, we examine stage I compaction, and
make the simplifying assumptions that the particles are of spherical shape and of
uniform size throughout the compaction process. When the relative density D has
reached about 0.9, the contacts have grown sufficiently for them to touch each other.
From a modelling point of view, it is then best to consider the material as a solid
containing a non-dilute distribution of voids. This is stage I compaction.

Ashby and co-workers (see for example Helle et al., 1985) have developed simple
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expressions for both stage I and stage IT compaction under hydrostatic pressure. They
consider the three deformation mechanisms of low temperature plasticity, power law
creep and diffusional flow. Here we summarise their main results for stage I cold
compaction. Based on Artz (1982) they find that the number of contacts per particle
Z is approximated by

Z=12D (1.1)

and the average area of each contact A4, is

A = (P=D0) ge (1.2)
== 3\1=D,

where D, is the initial relative density and R, is the initial particle radius. On taking
the local indentation pressure at individual contacts to be three times the uniaxial
yield strength ¢, for the solid composing the particles, Helle et al. (1985) thereby
estimate the macroscopic yield pressure p, for cold isostatic compaction to be

(D—Dy)

_ 2
py = 3D (A=Dy) oy.

(1.3)
The role of strain hardening is neglected.

More recently, Fleck et al. (1992a) have used the Bishop and Hill (1951) method
to estimate the macroscopic yield surface for a random aggregate made from rigid—
perfectly plastic spheres. The analysis parallels the equivalent model for stage II
compaction given by Gurson (1977). Fleck et al. assume that plastic deformation
occurs in a region adjacent to the contacts between particles. The local deformation
field near a contact is taken to be plane strain, and the slip line field solution of Green
(1954) is used to calculate the plastic dissipation at a contact due to normal and
shear loading at each contact. The particles are perfectly bonded at the contacts: in
accordance with Green’s slip line solution the contacts possess a shear strength equal
to the shear yield strength k of the material, and a tensile cohesive strength equal to
the compressive indentation strength of (2 + n)k/\/g ~ 30, where k is the shear yield
strength. The macroscopic yield surface ®(X) of the random aggregate is closely
approximated by the expression

D(L) = (\/; “‘) +<52"' +§> —1=0 (1.4

18p,

where T is the average macroscopic Cauchy stress in the aggregate, X, = %Ekk is the
mean stress and X, = ./ %2;1- X, is the effective stress, defined in terms of the deviatoric
stress T = Z;— 1T

Fleck et al. (1992a) also give a strain hardening law for the aggregate based on the
idea that plastic deformation occurs within hemispherical regions subtended by the
circular contacts for each particle. The recent indentation theory of Hill ez al. (1989)
shows that, as indentation proceeds, the plastic zone at each contact spreads into
undeformed material within each particle. This implies that strain hardening is much
less rapid than that suggested by Fleck et al. (1992a). [Further details on the inden-
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tation theory of Hill et al. (1989) are given in Appendix A.] We note in passing that
a simple correction to the relation (7.7) of Fleck ez al. (1992a)

45 D—D,\»?
F(D) =——D? ° 1.
®)=—7 (1_ Do) (1.9)
brings the predictions into line with the analysis of Hill et al. (1989). Here, F(D) is

the volume fraction of deforming material within the aggregate in the region of the
contacts between particles, as discussed in Fleck et al. (1992a).

2. YIELD SURFACE AND THE ROLE OF INTER-PARTICLE
FRICTION AND COHESIVE STRENGTH

The method of Bishop and Hill (1951) will be used to estimate the macroscopic
yield surface for a random aggregate of rigid—perfectly plastic particles, along the
lines outlined previously by Fleck ez al. (1992a). Here, we shall examine the role
played by friction and cohesive strength between the particles upon the macroscopic
response. First, we summarise the general method and then we apply it to the case of
axisymmetric straining in order to motivate a general form for the macroscopic yield
locus.

A velocity field v(x) is derived throughout the porous body from a uniform macro-
scopic plastic strain rate E. The internal plastic dissipation rate per unit macroscopic
volume W is calculated from the assumed velocity field. Gurson (1977) has shown
that the macroscopic stress & may be calculated in a straightforward fashion by
differentiation of W with respect to E,

ow
X, = 3E

ij

2.1)

This formula also holds for the case of a rigid-strain hardening plastic solid.

Consider a typical contact between neighbouring particles as shown in Fig. 1(a).
The relative velocity of particle I with respect to the stationary reference particle O is
taken to be

U, = E,-jnj2R0 (22)

where n(¢, 0) is the unit radial vector from the centre of particle O to the centre of
particle I, expressed in terms of the spherical co-ordinates (¢, 0). The radial component
of this velocity in the direction OI moving I away from O is v,(¢, 6) ; this component
of the velocity is normal to the contact between the two particles. The remaining
component of the velocity v,(¢, 0) is tangential to the contact. Plastic deformation
occurs in the vicinity of the contact, and average normal and shear tractions ¢,,(¢, 6)
and o,,(¢, 0) act across the contact area. As a result the plastic dissipation per unit
area of contact is

Wc (¢, 0) = 040, + O 0. (2.3)

This plastic dissipation occurs over two particles so half of it is apportioned to each
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Fig. 1. (a) Typical contact between spherical particles, showing unit cell and the definition of co-ordinate
systems. (b) Macroscopic element of powder aggregate under remote axisymmetric loading.
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particle. Let the number of contacts per particle Z be given by (1.1) and the average
contact area A, be given by (1.2). These formulac are reasonably accurate for isostatic
compaction and become progressively inaccurate with increasing component of devi-
atoric straining. The dissipation per particle is then given by

p=8M%LfWK@®&Zhwo (2.4)

where integration is carried out over the particle surface S, of total area 4nR2. In
order to determine the macroscopic stress X from (2.1) we calculate the dissipation
per unit volume W by multiplying the plastic dissipation per particle Wp by the
number of particles per unit volume, 3D/4xR}. Thus

3D
 32n%R3

J (W.($,6)4.2} S, 2.5

or, upon making use of (1.1), (1.2) and (2.3)

i 3D7(D=Dy)

- nn¥n n dS . 26

2.1. Assumed collapse mechanism

We consider a powder aggregate made from rigid-perfectly plastic material, and
restrict the local deformation field in the contacts between particles to plane strain.
We may then use existing slip line field solutions to calculate W,. Following Fleck et
al. (1992a) we start by taking the case of perfectly sticking contacts between particles.
Then, the shear traction o, at a contact is limited by the shear strength k of the
material, and the maximum normal traction ¢, in tension (that is, the cohesive
strength) is limited by the indentation strength of (2+ n)k. The slip line field solution
of Green (1954) is appropriate. The nature of this slip line field depends upon the
ratio v,/v,, which is parameterised by the angle « = arctan(v,/v,). To simplify the
discussion assume v, is positive. [In all calculations we consider the full range of
(n, v).] Then, for a in the range —n/4 < o < 7/4 the Prandtl punch field [Hill (1950)]
applies and '

Om =kQ2+n), o, =0. 2.7

For the case /4 < o < 7/2, the slip line field given by Green (1954) applies, and
the tractions on the contact plane are

Oun = k(1437/2 — 20+ sin 2a), (2.8a)

0, = —kcos2a. (2.8b)
Similarly, for —n/2 < o < —n/4 Green’s (1954) solution applies and

Onn = k(14 37/2 + 20— sin 20), (2.92)

O = kcos2a. (2.9b)
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The solutions presented above for v, > 0 apply also for v, < 0 with appropriate
reversals in sign in the formulae (2.7)—(2.9). Further discussion of Green’s (1954)
solution is given in Fleck et al. (1992a).

In the practical cold compaction of powders lubricants are usually added to reduce
friction between the particles and between the particles and the die walls. The effect
of these lubricants upon the particle—particle interaction may be gauged by considering
the limit of frictionless contacts with o, = 0. Then, the Prandtl field solution (2.7)
applies for all values of «. In the following section the macroscopic yield surface is
given for frictionless and fully sticking contacts, for the case of axisymmetric straining.

So far we have assumed that the dissipation at a contact for v, > 0 is the same as for
v, < 0. Now we define the ratio of tensile cohesive strength to the normal indentation
strength at a contact by the cohesion parameter #, with  in the range of zero to unity.
The case = 1 corresponds to a cohesive strength of (24 m)k at a contact, and n = 0
corresponds to vanishing cohesive strength. We estimate the effect of a reduced
cohesive strength by multiplying the expressions for (o, 0,) in (2.7)-(2.9) by the
knock-down factor 7 in calculation of the dissipation at each contact. Explicit results
are given in the following section for an axisymmetric deformation state.

2.2. Axisymmetric deformation

We shall estimate the macroscopic yield surface for general axisymmetric defor-
mation, for the cases of frictionless and fully sticking particles, and # in the range of
zero to unity. A general axisymmetric stress state is shown in Fig. 1(b), with the
macroscopic stress components

 .=S, Z.=2%,=T (2.10)

in terms of the Cartesian reference frame (X, y, z). It is helpful to introduce two stress
measures as alternatives to (S, T') in the form of a mean stress

T =3 =(5+27)/3 (2.11)
and a measure of the deviatoric stress
X=8-T. (2.12)

Note that the von Mises effective stress T, = /3X}Z}; equals |X| where X’ is the
macroscopic deviatoric stress tensor. The macroscopic plastic strain rate E has Car-
tesian components E,, and E,, = E,,, which may be re-expressed in terms of the
macroscopic dilatation rate H and the distortional rate E, where

H=E,_ +2E,, E=%E.—E.). (2.13)

The quantities H and E are the work conjugates of Z,, and X, respectively : we may
write the plastic dissipation rate per unit volume W as

W=3X,E,=X,H+ZE (2.14)

and, making use of (2.1) we calculate X, and X by differentiation of W with respect
to H and E,
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Fig. 2. Effect of inter-particle shear strength and cohesive strength upon the macroscopic yield surface, for

axisymmetric loading. # = 0 corresponds to vanishing cohesive strength and # = 1 corresponds to full

cohesive strength. The distribution of contacts around each particle is taken to be isotropic, and the
particles are assumed to be rigid—perfectly plastic spheres.

ow ow
In order to calculate W consider a typical contact between neighbouring particles
as shown in Fig. 1(a). Given the strain rate specified in (2.13) the motion of the centre

of particle I with respect to the reference particle O is, using (2.2),

vn = Ro[E(3cos? ¢ —1)+2H/3], (2.16a)

v, = —3R,Esin ¢ cos ¢ (2.16b)
in terms of the spherical co-ordinate ¢ defined in Fig. 1(a). For axisymmetric defor-
mation there is no dependence of tractions or velocities on the hoop direction,
measured by the azimuth angle 6 defined in Fig. 1(a). The element of surface d.S, of
the reference particle is given by dS, = 2nR sin ¢ d¢, and the plastic dissipation rate
W follows from (2.6) as

W=

3D*(D—D,) J (G + 00,) sin b} dg. 2.17)

4R,

0

Note that the velocities (v, v,) depend upon ¢ in accordance with (2.16). The tractions
(0.5 0n¢) at the contact between the two particles are estimated from the slip line field
solutions of Green (1954) and Prandtl, as described in Section 2.1.

The macroscopic yield surface is calculated by first integrating (2.17) numerically
for prescribed values of (H, E). The stress state (Z,,, ) corresponding to the strain
rate (H, E) is then determined by differentiating numerically ¥ with respect to H and
E, in accordance with (2.15). Results are given in the (X, X) plane in Fig. 2 for both
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frictionless and fully sticking contacts, and for # in the range of zero to unity.
Macroscopic stresses have been normalised in Fig. 2 with respect to the isostatic yield
pressure p, given by (1.3). The results for the fully sticking case and # = 1 have been
presented previously by Fleck ez al. (1992a). Note from Fig. 2 that the degree of
friction at the contacts plays only a minor role; the yield surface for frictionless
contacts lies slightly inside that for sticking contacts. This is not surprising since the
value of |o,,| in the sticking contacts is never far from the Prandtl field value of
(24+m)k and |a,| < |o,,| for all values of v,/v,. For frictionless contacts and arbitrary
n, the Prandtl field is sufficiently simple for an analytical expression to be obtained
for the macroscopic yield surface. For £ > 0 we find

> 3 o Ll ZaV]
@(Zm,2)=;);—5<11——1;)[1—(1+11) (n—p—y”_o, (2.18)

and for X <0

> 3/ =, .V
<I>(2m,2)=;y 2(1+py>[1—(1+n) ( p—y)}_o. (2.19)

We recognise that it is physically implausible for frictionless contacts to possess a
significant cohesive strength. Since the yield surfaces for frictionless and sticking
contacts are similar, we argue that relations (2.18) and (2.19) are reasonably accurate
for sticking contacts over the full range 0 <7 < 1.

It is clear from Fig. 2 that the cohesive strength of the contacts plays a significant
role for both the frictionless and sticking contacts. When n = 1 the yield surface is
symmetric about the origin and the hydrostatic yield stress in tension and in com-
pression are equal. As 7 is reduced in value the aggregate loses its tensile strength so
that, at # = 0, the yield surface touches the origin: the tensile hydrostatic strength
vanishes for n = 0.

A vertex exists where the yield surface crosses the mean stress axis X, for all cases
shown in Fig. 2. The right hand vertex at X, = #p,, = 0 corresponds to tensile
radial stressing with v, > 0 at particle contacts of all orientations around the reference
particle O in Fig. 1(a). In like manner, the vertex at X, = —p,, X = 0 corresponds to
compressive radial stressing with v, < 0 at particle contacts of all orientations.

Consider first the case of frictionless contacts and 0 < < 1. All contacts experience
radial stressing of the same sign when v,, is of the same sign for all orientations ¢. The
right hand vertex at X, = #p,, = = 0 exists for H > 0, and by (2. 16a) E/H lies in the
range —; < E/H < 2/3. Through normality these critical values of E/H give the angles
of the yleld locus at the vertex. The normal to the yield locus for ¥ — 07 is at an angle
of arctan(2/3) = 33.7° from the horizontal £, axis, and for £ — 0~ is at an angle of
arctan(— 1/3) = —18.4° from the X, axis. The vertex at Z —py, T = 0 exists for
H < 0, and by (2.16a) E/H must again lie in the range —; < E/H < 2/3. The normal
to the yield locus for £ — 0% (in third quadrant of stress- space) is at an angle of 18.4°
from the X, axis, and for ¥ — 0~ (in fourth quadrant of stress-space) is at an angle
of 33.7° from the X, axis.

Now consider sticking contacts (in shear) and 0 < # < 1. The two vertices for each
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Fig. 3. Yield surface for axisymmetric loading in terms of the axial macroscopic stress § and the radial
macroscopic stress 7.

yield surface again correspond to radial stressing at particle contacts of all orien-
tations. According to (2.7)—(2.9) all contacts experience radial stressing when
|| < /4, where o = arctan(v,/v,) and (v,,v,) are defined in (2.16). As discussed by
Fleck et al. (1992a) the normal to the yield locus is at an angle of 22.4° from the
horizontal X, axis in the first and third quadrants, and at an angle of 14.3° from the
%, axis in the second and fourth quadrants. We note that a significant portion of the
yield surface for both sticking and frictionless contacts is closely approximated by the
vertices associated with the frictionless contacts, see Fig. 2.

When yielding occurs at a vertex of the macroscopic yield locus, plastic flow of the
aggregate is free to follow any direction within the limiting cone of normals to the
adjacent smooth segments of the yield surface. In reality, the vertex may be absent
from the macroscopic yield surface for a variety of reasons. The Bishop and Hill
(1951) averaging scheme is an upper bound method which gives an approximation to
the actual yield surface. Strain hardening at individual contacts will also tend to round
off the vertex of the macroscopic yield surface.

The existence of a vertex on the macroscopic yield surface poses a problem con-
cerning the non-uniqueness of the direction of plastic flow. One strategy, adopted by
Fleck et al. (1992b) is to round off the yield surface in the vicinity of the vertex.
Recent experimental results on the observed yield surface for compacted copper
powder by Brown and Abou-Chedid (1994) suggest that the yield surface does not
possess vertices on the X, axis.

The numerical results for axisymmetric deformation have been replotted in Fig. 3
using the alternative stress measures S and 7. The “pure-pressure vertex” at
2n = —Dy, X = 0nowappearsasavertexat S = T = —p,; similarly the “hydrostatic-
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tension vertex” at X, = np,, X = 0 now appearsat S = T = np,- The yield surfaces in
the (T, S) plane can be interpreted in the following approximate manner. In the first
quadrant the aggregate yields when the principal stress with the larger magnitude
attains a yield value of 7p,. Similarly, in the third quadrant the aggregate yields when
the principal stress with the largest absolute value attains —p,. By the normal plastic
flow rule, the vector with components (2E,,, E,,) is oriented normal to the yield surface
at the position (7, .S). The shapes of the yield surfaces for both frictionless and sticking
contacts and 0 < # < 1 are such that, in the first and third quadrants, plastic flow is
almost aligned with the direction of the larger principal stress. At the vertices S = T
(in the first and third quadrants of S— T space), plastic flow can range from nearly
uniaxial straining through purely hydrostatic straining to almost plane strain. In the
second and fourth quadrants of (7, S) space yielding occurs with some combination
of axial and transverse straining.

2.3. Comparison with the Cam Clay model

The yield surface for # = 0 bears some resemblance to the empirical Cam Clay soil
mechanics model developed by Schofield and Wroth (1968). In the absence of ¢lasticity
the Cam Clay yield surface is

X 2 X
O, %) = 1)+
( ) (P ) (MP

y y

)2 —1=0 (2.20)

where p, is the hydrostatic yield pressure, and M is a constant of order unity. Schofield
and Wroth found experimentally that the hydrostatic yield pressure varies with relative
density D according to

Py = Do €Xp <~ L) (2.21)

where the constants p, and A are measured by curve fitting (2.21) to experimental
data. Clearly, the densification relation (2.21) is of a different functional form to that
given by (1.3). (By judicious choice of p, and A the two relations may be brought into
approximate coincidence over a small range of D.)

The Cam Clay yield surface (with M = 1) is compared in Fig. 4 with the yield
surface generated in the current study for frictionless contacts. Qualitatively, the two
yield surfaces are of similar form ; the most striking difference is the absence of vertices
on the Cam Clay yield surface. Nonetheless, the degree of similarity leads us to

conclude that the contact yielding model provides a possible micromechanical basis ~ H

for the empirical Cam Clay model.

3. ANISOTROPIC CONSTITUTIVE LAW

So far we have assumed that the contacts between particles are of uniform area
and are distributed around each particle in an isotropic manner. Further, the degree
of strain hardening is taken to be the same at each contact. An anisotropic yield law
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Fig. 4. Comparison of yield surface for an isotropic distribution of contacts with the empirical Cam Clay
model used in soil mechanics.

—_

15

may be developed for stage I compaction by assuming that an appropriate second
order tensor B describes (i) the distribution of contact area, (ii) the number of contacts
per unit surface area of particle and (iii) the hardness of each contact. For the case
of hydrostatic loading B reduces to the relative density D.

The anisotropic constitutive law is developed from the above isotropic theory, so
that it reduces to the isotropic result in the case of hydrostatic loading. We have
already noted that inter-particle friction plays only a secondary role in influencing
the yield surface, and so we make the simplifying assumption of frictionless contact
between particles. The yield surface for the rigid-strain hardening solid is derived
from (2.1), where the plastic dissipation rate per unit current volume W is given by a
slightly modified form of (2.5),

3D
~ 8aR3

Here, the area of a contact A, and the number of contacts z per unit area of particle
are taken to vary spatially over the surface of the particle in a manner which will be
made precise below. The plastic dissipation per unit area of contact W, is given by

Wc = _pvna Uy < 0,

We=npvy, 0,20 (3.2)
where v, 1s the normal contact velocity of one particle relative to a reference particle
and p is the contact pressure at a contact. (For the case of vanishing strain hardening
p = 30,.) On denoting the unit vector along the line of centres of two particles by n,
as shown in Fig. 1(a), the normal contact velocity v, is
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vn = n;U; = EunlnjzRo (3.3)

where the relative velocity v has already been defined by (2.2).

The contact size of a contact 4., the number of contacts per unit area z and the
local indentation pressure p at a contact are all taken to vary over the surface of the
representative particle. Consider first the contact size of a contact 4.. We assume that
A, varies over the surface of the particle according to

A, = 4nRinn;B; (3.4)

where B is deduced from indentation theory. To proceed, we determine the functional
dependence of the Jaumann rate B of B upon E. Consider two spherical particles of
radius R, made from a J, deformation theory solid (of uniaxial response & = (g/0,)"
where 7 is the strain hardening exponent in the range of unity to infinity, and o, is a
material constant). When two spherical particles of radii R, are pressed together by
a total inter-penetration of 24, the area of contact A4 is given by

A = 2nc*hR,. (3.5)

Hill et al. (1989) show that the constant c? varies from ¢* = 0.5 for n = 1 to ¢* ~ 4/3
for n = co. Now imagine that the two particles form part of the powder aggregate;
the normal contact velocity v, between the spheres is

v, = —2h (3.6)

and the rate of growth of the area of contact between the spheres follows from
differentiation of (2.6) with respect to time, as

A = —nc?Ryv,. (3.7)

We conclude via (3.3) and (3.6) that 4 scales with the macroscopic strain rate E
according to

A oc RinmiE,. (3.8)

An expression for the Jaumann rate B is obtained by differentiating (3.4) with respect
to time, and by equating the resulting expression for A4, with that for 4 ; hence,

B, cE, (3.9)

The “constant of proportionality” between B and E in (3.8) is obtained by cal-
ibrating (3.4) to reduce to the formula (1.2) in the hydrostatic limit. The rate form of
(1.2) gives

d=-"_L g (3.10)
c 3 (1 o Do) 0-Lkk+ .
Under purely hydrostatic straining, (3.4) gives
A, = 4nR3nn B, (3.11)

and, upon comparing the above two expressions, we deduce that B is related to E by
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B L D, 12
iy —4(1—D0) ij* (3 )
The above formula for B is used to update the internal state variable B
Now consider the local hardness 7 at each individual contact. The average inden-
tation pressure j for mutual indentation of two power-law hardening plastic spheres
is given by Johnson (1985) and Hill ez al. (1989)

0.044,\"/*"
p= 360( R ) (3.13)
0

where 7 is the strain hardening exponent. Hence, the local hardness at each contact
varies with position over a representative particle as stipulated by (3.13) and (3.4).

To complete the specification for 1 in (3.1) we must determine how the number of
contacts per unit area of particle surface z depends upon the tensor B. We assume
that z(n) is linear in the normal velocity v, between two particles, so that

z oc nnEy. (3.14)
In the hydrostatic limit z = Z/4nR{ is given by (1.1), and
= — 3D Ey. (3.15)
nRE

Comparlson of (3.14) and (3.15) provides the constant of proportionality i in (3.14)
—9D/n R} for arbitrary straining. The rate z may be phrased in terms of B instead
of E by making use of (3.12) to give,

_ 36(1 "‘Do) )

R nn;B,, (3.16)
which may be integrated directly to give,
36(1—D,) 3D,
=—"n . 3.17
TR} / R} (3.17)

In summary, B defines the material state during compaction. For a given value of
B, the macroscopic stress X is calculated from (2.1), with W given by (3.1). Since W
is homogeneous of degree one in E, the value of £ depends upon the assumed direction
of E. The current yield surface is mapped out by selecting all possible directions of E.
Some examples of the evolution of yield surface given by the above model are given
in the following section for axisymmetric loading. In a more general implementation
of the scheme it is best to differentiate (2.1) analytically, and integrate (3.1) numeri-
cally over the surface of the reference particle.

The tangent modulus L relates the Jaumann stress increment 3 to the strain rate E
by

Z = LBy (3.18)

In general, L is homogeneous and of degree zero in E. When loading is proportional
or nearly so, continued loading of active contacts occurs and L is obtained by
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Fig. 5. Effect of strain path on the evolution of yield surface, according to the anisotropic theory. The yield

surface is given for both isostatic compaction (hydrostatic strain history) and closed die compaction

(uniaxial strain state with E,, = E,, = 0). Contacts are frictionless between particles, and the two limits of

full cohesive strength # = 1 and zero cohesive strength = 0 are presented. The powder has been compacted
to a relative density D = 0.8 from an initial density Dy = 0.64.

differentiation of (2.1) with respect to time. In the more general loading case, unload-

ing of some of the contacts occurs and it is difficult to extract an explicit expression
for L.

4. PREDICTIONS OF THE ANISOTROPIC CONSTITUTIVE LAW FOR
AXISYMMETRIC LOADING

Consider the powder aggregate in an initial isotropic state and subjected to the
axisymmetric stress state shown in Fig. 2. The anisotropic constitutive law simplifies
considerably for the case of proportional axisymmetric straining, where E = AH.
Then, B may be integrated to give

1 /D—D,
B,]l’l,n] = 'ﬁ 1—D0

)[(1 —22)sin® ¢+ (1+34) cos® ¢] 4.1)

in terms of the spherical co-ordinate ¢ defined in Fig. 1.

The predicted shape of the macroscopic yield surface is shown in Fig. 5 for both
isostatic compaction (£ = 0) and closed die compaction (E,, = E,, = 0). We take the
case of ideally plastic behaviour n = oo, and show the effect of inter-particle cohesion
by taking the two limits of # = 0 and # = 1 in the expression (3.2) for W,. It is clear
from Fig. 5 that the strain path has a major influence on the shape of the yield surface.
In all cases a corner exists at the loading point of the yield surface. This is similar to
the development of a corner at the loading point in crystal plasticity theory for
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Fig. 6. Macroscopic stress versus strain response for isostatic compaction and closed die compaction. The

anisotropic theory is calibrated against the isotropic theory to give the same response under isostatic

straining. For closed die compaction, the anisotropic theory predicts a stiffer response than the isotropic
theory.

independent hardening or mild latent hardening (where the cross-hardening from one
slip system to the next is less than the self-hardening on the active slip systems). The
yield surface for isostatic compaction is the same as that given previously in Fig. 2
for the isotropic model: this is fully expected as the anisotropic model is calibrated
against the isotropic model for the case of isostatic loading.

Macroscopic stress—strain responses are given in Fig. 6 for both the anisotropic
theory and the isotropic hardening theory of Fleck et al. (1992a). We consider the
ideally plastic limit » = oo and assume the initial relative density D, = 0.64. The strain
measure used is the relative density D : for the case of isostatic compaction D is related
to the true hydrostatic strain H by D = D,exp(— H), and for closed die compaction
D is related to the only non-vanishing strain component E,, by D = Dyexp(—E,,).
(Note that H = E,, for closed die compaction). Since the anisotropic theory has been
calibrated against the isotropic theory in the limit of isostatic straining the isotropic
hardening and anisotropic hardening theories give identical predictions for isostatic
compaction.

For closed die compaction the anisotropic theory predicts substantially greater
hardening along the direction of straining than the isotropic theory of Fleck et al.
(1992a). This is due to the fact that the anisotropic theory gives both larger contacts
and a larger number of contacts along the direction of straining (z axis) than the
isotropic theory. The isotropic hardening theory predicts a purely hydrostatic stress
state for a strain state of closed die compaction, as a consequence of the vertex on the
hydrostatic stress axis of the yield surface shown in Fig. 5. In fact, the isotropic theory
predicts an identical stress state at a given value of D for closed die compaction and
for isostatic compaction, see Fig. 6. It is thought that the anisotropic theory is more
physically realistic than the isotropic hardening theory since it attempts to model
geometric hardening due to growth of the contacts between particles along the direc-
tion of macroscopic straining.
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Fig. 7. Comparison of yield surface with experimental data for closed die compaction. The experimental
data are for gas atomised copper powder (Brown and Abou-Chedid, 1994), iron powder (Gollion ef al.,
1989) and for aluminium powder (Watson and Wert, 1993).

4.1. Comparison with experimental observations

A number of investigators have examined experimentally the compaction response
of metal powders for both closed die compaction and isostatic compaction (Koerner
and Quirus, 1971 ; Gollion et al., 1989 ; Watson and Wert, 1993 ; Brown and Abou-
Chedid, 1994). We shall now argue that the anisotropic constitutive law has some
success in predicting the closed die compaction response.

Measured values of deviatoric stress X = S— T and mean stress X, = %S +§T are
plotted in Fig. 7, for closed die compaction from an initial relative density of
D, ~ 0.64. In each case, the data refer to a relative density D of 0.8, and values for p,
have been chosen to equal the measured pressure in an isostatic compaction to
D = 0.8. The predictions of both the isotropic theory and the anisotropic theory are
included in the figure. The experimental data clearly show that the stress state in
closed die compaction is not isostatic ; both the data and the anisotropic model suggest
that /2, =~ 1.4 whereas the isotropic theory gives £ = 0. The magnitude of stresses
given by the anisotropic theory for closed die compaction is in reasonable agreement
with the measured stress state ; there is some indication that the anisotropic theory is
stronger than the experimentally observed response.

Next we compare the magnitude of axial stress X, in closed die compaction with
the magnitude of hydrostatic stress X, in isostatic compaction, in order to compact
a powder to the same relative density D, from an initial density D, = 0.64. For the
ideally plastic solid, the anisotropic theory predicts X,,/X,, = 0.50 and the isotropic
theory gives X /X., = 1, independent of the degree of compaction. Experimental
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data for cold compaction of metal powders suggest that X /X  lies in the range
2./2,. = 0.45-0.78, and is almost independent of D for stage I compaction D < 0.9
(Koerner and Quirus, 1971 ; Gollion et al., 1989 ; Watson and Wert, 1993 ; Brown
and Abou-Chedid, 1994).

We conclude that the anisotropic theory is in broad agreement with the experimental
observations for closed die compaction.

5. CONCLUDING REMARKS

In this paper the roles of inter-particle friction, cohesive strength and anisotropy
have been examined for stage I cold compaction of spherical powders. It is assumed
that the compaction mechanism is rate independent plasticity at the contacts between
particles. We find that the magnitude and shape of the macroscopic yield locus are
strongly influenced by the magnitude of the cohesive strength between particles and
by the non-uniform development of contacts around each particle; in contrast, the
level of inter-particle friction has only a minor influence on the bulk behaviour.
Both the isotropic and the anisotropic constitutive laws are based on the kinematic
assumption (2.2) that the relative velocity between two neighbouring particles follows
directly from the macroscopic strain rate. This assumption is reasonable for straining
which is close to hydrostatic, but becomes less accurate when the strain rate involves
a significant deviatoric component. An alternative scheme is to assume that the
macroscopic strain rate is the sum of the strain rate contributions from all contacts
surrounding a particle ; only those contacts which are instantaneously yielding con-
tribute to the macroscopic strain rate. In this manner a theory may be developed
along the lines of crystal plasticity theory. Such a theory would show in a more
accurate fashion the role of inter-particle shear strength upon the macroscopic yield
surface. Some initial steps in the development of such a theory have already been
taken by Calladine (1971), and the approach would merit further study.

ACKNOWLEDGEMENTS

The financial support of ARPA is gratefully acknowledged (collaborative program with the
University of Virginia under the contract number 0014-91-J-4089). The author wishes to thank
Dr A. C. F. Cocks and Professor M. F. Ashby for helpful discussions.

REFERENCES

Artz, E. (1982) The influence of an increasing particle co-ordination on the densification of
spherical powders. Acta Metall. 30, 1883—1890.

Bishop, J. F. D. and Hill, R. (1951) Phil. Mag. 42, 1298.

Brown, S. B. and Abou-Chedid, G. (1994) J. Mech. Phys. Solids 42(3), 383.

Calladine, C. R. (1971) A microstructural view of the mechanical properties of saturated clay.
Geotechnigue 21, 319-415.

Fischmeister, H. F., Artz, E. and Olsson, L. R. (1978) Particle deformation and sliding during



1426 N. A. FLECK

compaction of spherical powders: a study by quantitative metallography. Powder Metall.
21(4), 179-187.

Fleck, N. A., Kuhn, L. T. and McMeeking, R. M. (1992a) Yielding of metal powder bonded
by isolated contacts. J. Mech. Phys. Solids 40(5), 1139-1162.

Fleck, N. A., Otoyo, H. and Needleman, A. (1992b) Indentation of porous solids. Int. J. Solids
Struct. 29(13), 1613-1636.

Gollion, J., Bouvard, D., Stutz, P., Grazzini, H., Levaillant, C., Baudin, P. and Cescutti J. P.
(1989) On the rheology of metal powder during cold compaction. Proc. Int. Conf. on Powders
and Grains (ed. Biarez and Gourves), pp. 433-438, 4-8 September 1989, Clermont-Ferrand,
France.

Green, A. P. (1954) The plastic yielding of metal junctions due to combined shear and pressure.
J. Mech. Phys. Solids 2, 197-211.

Gurson, A. L. (1977) Trans. ASME Ser. H, J. Engng Mater. Technol. 99, 2.

Helle, A. S., Easterling, K. E. and Ashby, M. F. (1985) Hot-isostatic pressing diagrams: new
developments. Acta Metall. 33(12), 2163-2174.

Hill, R. (1950). The Mathematical Theory of Plasticity. Oxford University Press.

Hill, R., Storakers, B. and Zdunek, A. B. (1989) A theoretical study of the Brinell hardness
test. Proc. Roy. Soc. Lond. A436, 301-330.

Johnson, K. L. (1985) Contact Mechanics. Cambridge University Press.

Kaker, A. K. and Chaklader, A. C. D. (1967) J. Appl. Phys. 38, 3223.

Koerner R. M. and Quirus F. J. (1971) High density P/M compacts utilizing shear stresses.
Int. J. Powder Metall. 7(3), 3-9.

Mason, G. (1968) Nature 217, 733.

Schofield, A. and Wroth, C. P. (1968) Critical State Soil Mechanics. McGraw Hill.

Scott, G. D. (1962) Nature 194, 956.

Watson, T. J. and Wert, J. A. (1993) On the development of constitutive relations for metallic
powders. Metall. Trans. A 24A, 2071-2081.

APPENDIX A : ESTIMATION OF YIELD SURFACE FOR DENSE
RANDOM PACKING

In this appendix, we calculate the distribution of number and size of contacts around a
representative particle in a powder aggregate. The powder is taken to be initially in a state of
dense random packing, and is subjected to proportional axisymmetric straining. Once the
distribution of contact size is known, the macroscopic yield surface is estimated via a relation
of the form (2.1).

Size and number of contacts for axisymmetric compaction

The total area of contacts per particle depends upon the strain state as follows. We assume
that spherical powder of uniform radius R, exists in a state of dense random packing prior to
compaction. A representative spherical particle of radius R, is placed at the chosen origin of a
spherical co-ordinate system as shown in Fig. 1(a). When the aggregate is subjected to a
uniform state of true strain E it is assumed that a neighbouring particle with centre located
initially at r moves to a location R = F - r, in terms of the deformation gradient F = ¢*. Provided
R = |R| < 2R, the two particles are in contact with a finite area of contact 4. We estimate 4
by employing the indentation theory outlined by Hill ef al. (1989). They consider normal
indentation of a half-space made from a power-law hardening plastic solid by a rigid ball of
radius R,. The uniaxial tensile response of the plastic solid is taken as ¢ = (¢/ad,)" where # is the
strain hardening exponent in the range of unity to infinity, and o, is a material constant. Hill
et al. find that the contact area A4 varies with the penetration 4 of the indenter according to

A =2nc*hR,. (A.1)
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The constant ¢? is a function only of n and varies from a value of 0.5 for n = 1 to a value of
approximately 4/3 for n = co. In the present context the penetration A is defined by 4 = 2R, — R,
for R < 2R,. Relation (A.1) is the same as (3.5) and has been repeated here for the sake of
convenience.

In order to calculate the total area of contact for the representative particle placed at the
origin, we need to specify the distribution of neighbouring particles in a dense random packing.
Let the cumulative radial density function G(r) denote the cumulative number of neighbouring
particle centres within a fictitious sphere of radius r around a central reference sphere. Scott
(1962) and Mason (1968) have determined G(r) for dense random packing. Their results show
that G(r) can be adequately approximated by Artz (1982),

G(r) = Z(,+c( ’

R 1), r= 2R, (A2)

where Z, = 7.3 and C = 15.5. The radial density function g() is given by

dG C
g(r) = PP 2(Zy—2C)o(r—2R,)+ IR, r = 2R, (A.3)
where ¢ is the Dirac delta function. Relation (A.3) is the probability density function for
particle contacts, for particles with an initial centre—centre spacing of r.

To proceed, consider the case of a dense random packing subjected to the axisymmetric
strain field (E,,, E,, = E,,, E..). Since deformation is axisymmetric and the arrangement of
particles is isotropic the location of the centre of a representative particle may be represented
by the spherical polar co-ordinates (r,, ¢,) in the undeformed state and by (R, ¢) in the
deformed state. (Without loss of generality the azimuth angle 6 = 0.) We assume that the
central reference particle is in contact with a neighbouring particle if R < 2R,

The total area of contact around a representative particle in the deformed configuration A,

due to contact with neighbouring particles initially in a dense random configuration follows
from (A.1) and (A.3) as

72 v,
A, = J de, J dr{Adg(r)} (A.4a)
/2 7, C
= J d¢0 J dr{chzRo (2R0 - R) [205(r0 '—2R0) + ﬁ:'} (A.4b)

where r = r; corresponds to R = 2R, in the deformed state. A straightforward kinematic
relation exists between r and R of the form r = SR where the geometrical factor f is given by

B = (e *Exsin® p+e~ 2= cos? )2 (A.5a)
in terms of the axisymmetric strain state (E,,, E,, = E,,, E.,), and by
B =e 3 (efsin? p+e £ cos? ¢)'/? (A.5b)

in terms of the reduced strain variables F = %(E,z—Exx) and H = E_,+2E,,. Thus r,= 2R,
and (A.4b) may be integrated over r to give

A, = 1*R? rﬂ {Sin b0 [220 (%)+ C(ﬁ+ % — 2>]} debo. (A.6)

The total area of contact 4, may be written in terms of the spherical co-ordinate ¢ in the
deformed configuration as
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7/

A, =J p(N)dS, = 471R§J 2pa~1) sin ¢ d¢ (A7)

0

where N is the unit outward normal to the surface S, of the representative particle in the
deformed configuration and p(N) is the probability density function of contact area over the
representative particle. Comparison of (A.6) and (A.7) provides an expression for p(N) as

_ce” p—1 1_
pN) =7 5 [ZZO< 7 )+C(ﬁ+ 5 2)] (A.8)

An expression may also be obtained for the total number of contacts Z due to axisymmetric
compaction of a dense random array of particles. The approach is essentially the same as for
calculation of contact size ; the reference particle is in contact with a neighbouring particle if,
in the deformed configuration, R < 2R,. The resulting expression for Z is

Z= J " {sin é e;ﬂ (Zy+C(B— 1))} dé. (A.9)

0

Calculation of macroscopic yield locus for axisymmetric compaction

The macroscopic yield surface may be calculated from the assumed distribution (A.7) of
contact size over the reference particle. Consider the case of frictionless particles with ideal
cohesive strength n = 1. With the relative normal velocity v, between particles given by (2.16a),
and the local contact pressure at a contact given by (2.7), the plastic dissipation rate per unit
volume W follows from (2.4) and (A.7) as

13D
_24nR8

J {Oumlval p(N) } A, (A.10)

The macroscopic yield locus for a given state of prior strain is determined by numerical
differentiation of W with respect to E as stipulated by (2.1).

A comparison is given in Fig. Al of the macroscopic yield surface predicted from an
assumed dense random packing arrangement and the yield surface derived from the anisotropic
constitutive law (described in Section 3 of the main text). We neglect strain hardening at the
material level, and show the yield surfaces for both isostatic compaction and closed die
compaction, at a relative density D = 0.7 from an assumed initial density of Do = 0.64. The
magnitude of the yield surface in the dense random packing model is somewhat sensitive to the
assumed value of the constant ¢2. We take ¢* = 4/3 which is appropriate for n = oo in the Hill
et al. (1989) indentation theory (see A.1). In general Fig. A1 shows excellent agreement between
the predictions of the anisotropic model and the dense random packing model. This provides
further theoretical support to the accuracy of the anisotropic theory.

Size and number of contacts for isostatic compaction

Helle et al. (1985) have given simple analytical formulae for the number of contacts per
particle (equation (1.1) of the current paper) and for the average area of each contact 4, (1.2),
for the case of isostatic compaction. Their estimates are based on the idealised calculations of
Artz (1982). Here, we present a more rigorous calculation for the case of stage I compaction,
and show that the simple relations given by Helle et al. (1985) are adequate for practical
purposes.

The number of contacts per particle depends upon hydrostatic strain by a simplified version
of the above argument for axisymmetric straining. During compaction, the relative density D
increases from the dense random packing value D, = 0.64, and the centre—centre spacing
between two representative particles is reduced from r to
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Fig. Al. Comparison of yield surface given by anisotropic theory and the dense random packing model,
for isostatic compaction and closed die compaction. Initial density Dy, = 0.64 and current density D = 0.8.
Stresses have been normalised by the isostatic yield strength p, given by (1.3).

D, 1/3
R= r<3) . (A.11)

We assume that contact occurs between two particles if R is less than 2R,. Then, the total
number of contacts per particle Z as a function of D is given by

2R\(D/D)'
Z = J {g(r)}dr, . (A.12)
2R,
which reduces to
D\!13
Z=ZO+C’|:<—) —1] (A.13)
D,

via (A.3). The prediction (A.13) appears to be slightly more accurate than the formula (1.1) of
Helle et al. (1985), when compared against the experimental data of Fischmeister et al. (1978),
see Fig. A2,

Now consider the total area of contact per particle. Consider two representative particles in
a dense random packed aggregate ; the particles have an initial centre—centre spacing of r > 2R,.
When the relative density is increased from the initial value D, to the current value D, the
spacing decreases to a value R given by (A.11). The overlap between the two particles is
2h = 2R, — R provided R < 2R,, and the area of contact is given by (A.1). The total area of
contact per particle is deduced by integrating over all possible initial values of particle—particle
spacing
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Fig. A2. Number of contacts per particle Z plotted against relative density D, assuming an initial density

D, = 0.64. The predictions (A.13) and that given by Helle ez al. (1985) are compared with the experimental

‘data of Fischmeister et al. (1978). Note that the theoretical predictions are independent of the strain
hardening exponent #.
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Fig. A3. Total area of contacts 4, normalised by the surface area of a particle 4n R}, plotted against relative
density D, for isostatic compaction from an initial relative density D, = 0.64. The predictions of Helle et
al. (1985) and the dense random packing calculation (A.16) are compared with the experimental isostatic
compaction data of Fischmeister et al. (1978), and Kaker and Chaklader (1967). The dependence of the
constant ¢? upon strain hardening exponent # in relation (A.16) is taken from Hill ez al. (1989).

2R, (D/DY'?
A, = I {9(n A4} dr, (A.14)

2R,

which gives via (A.1) and (A.3)
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D 1/3 D 1/3 D 1/3
At=2nc2RﬁZo(l—(—D—0> >+nc2R5C(<D—O) +(3°> —2). (A.15)

Helle ef al. (1985) suggest that the total contact area per particle is 4, = ZA,, where Z is
given by (1.1) and 4. is given by (1.2). The predictions of Helle ef al. are compared with (A.15)
in Fig. A3, along with the experimental isostatic compaction data of Fischmeister ez al. (1978),
and Kaker and Chaklader (1967). We note good agreement between the predictions of (A.15)
and the experimental data for realistic values of » in the range 4-10, and D in the range 0.64—
0.85. The prediction of Helle et al. (1985) lies slightly above both the experimental data and
the prediction (A.15) but is acceptable for practical purposes.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

